476 research outputs found

    Source Coding When the Side Information May Be Delayed

    Full text link
    For memoryless sources, delayed side information at the decoder does not improve the rate-distortion function. However, this is not the case for more general sources with memory, as demonstrated by a number of works focusing on the special case of (delayed) feedforward. In this paper, a setting is studied in which the encoder is potentially uncertain about the delay with which measurements of the side information are acquired at the decoder. Assuming a hidden Markov model for the sources, at first, a single-letter characterization is given for the set-up where the side information delay is arbitrary and known at the encoder, and the reconstruction at the destination is required to be (near) lossless. Then, with delay equal to zero or one source symbol, a single-letter characterization is given of the rate-distortion region for the case where side information may be delayed or not, unbeknownst to the encoder. The characterization is further extended to allow for additional information to be sent when the side information is not delayed. Finally, examples for binary and Gaussian sources are provided.Comment: revised July 201

    Multipath streaming: fundamental limits and efficient algorithms

    Get PDF
    We investigate streaming over multiple links. A file is split into small units called chunks that may be requested on the various links according to some policy, and received after some random delay. After a start-up time called pre-buffering time, received chunks are played at a fixed speed. There is starvation if the chunk to be played has not yet arrived. We provide lower bounds (fundamental limits) on the starvation probability of any policy. We further propose simple, order-optimal policies that require no feedback. For general delay distributions, we provide tractable upper bounds for the starvation probability of the proposed policies, allowing to select the pre-buffering time appropriately. We specialize our results to: (i) links that employ CSMA or opportunistic scheduling at the packet level, (ii) links shared with a primary user (iii) links that use fair rate sharing at the flow level. We consider a generic model so that our results give insight into the design and performance of media streaming over (a) wired networks with several paths between the source and destination, (b) wireless networks featuring spectrum aggregation and (c) multi-homed wireless networks.Comment: 24 page

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Limited-Rate Channel State Feedback for Multicarrier Block Fading Channels

    Full text link
    The capacity of a fading channel can be substantially increased by feeding back channel state information from the receiver to the transmitter. With limited-rate feedback what state information to feed back and how to encode it are important open questions. This paper studies power loading in a multicarrier system using no more than one bit of feedback per sub-channel. The sub-channels can be correlated and full channel state information is assumed at the receiver.Comment: Submitted to IEEE Transactions on Information Theor

    Universal Estimation of Directed Information

    Full text link
    Four estimators of the directed information rate between a pair of jointly stationary ergodic finite-alphabet processes are proposed, based on universal probability assignments. The first one is a Shannon--McMillan--Breiman type estimator, similar to those used by Verd\'u (2005) and Cai, Kulkarni, and Verd\'u (2006) for estimation of other information measures. We show the almost sure and L1L_1 convergence properties of the estimator for any underlying universal probability assignment. The other three estimators map universal probability assignments to different functionals, each exhibiting relative merits such as smoothness, nonnegativity, and boundedness. We establish the consistency of these estimators in almost sure and L1L_1 senses, and derive near-optimal rates of convergence in the minimax sense under mild conditions. These estimators carry over directly to estimating other information measures of stationary ergodic finite-alphabet processes, such as entropy rate and mutual information rate, with near-optimal performance and provide alternatives to classical approaches in the existing literature. Guided by these theoretical results, the proposed estimators are implemented using the context-tree weighting algorithm as the universal probability assignment. Experiments on synthetic and real data are presented, demonstrating the potential of the proposed schemes in practice and the utility of directed information estimation in detecting and measuring causal influence and delay.Comment: 23 pages, 10 figures, to appear in IEEE Transactions on Information Theor

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/
    • …
    corecore