2,972 research outputs found

    New Bounds for the Garden-Hose Model

    Get PDF
    We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Θ(n)\Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(nlog3n)O(n\cdot \log^3 n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f)GH(f) of the order Ω(n2+ϵ)\Omega(n^{2+\epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.Comment: In FSTTCS 201

    Welfare Maximization with Limited Interaction

    Full text link
    We continue the study of welfare maximization in unit-demand (matching) markets, in a distributed information model where agent's valuations are unknown to the central planner, and therefore communication is required to determine an efficient allocation. Dobzinski, Nisan and Oren (STOC'14) showed that if the market size is nn, then rr rounds of interaction (with logarithmic bandwidth) suffice to obtain an n1/(r+1)n^{1/(r+1)}-approximation to the optimal social welfare. In particular, this implies that such markets converge to a stable state (constant approximation) in time logarithmic in the market size. We obtain the first multi-round lower bound for this setup. We show that even if the allowable per-round bandwidth of each agent is nϵ(r)n^{\epsilon(r)}, the approximation ratio of any rr-round (randomized) protocol is no better than Ω(n1/5r+1)\Omega(n^{1/5^{r+1}}), implying an Ω(loglogn)\Omega(\log \log n) lower bound on the rate of convergence of the market to equilibrium. Our construction and technique may be of interest to round-communication tradeoffs in the more general setting of combinatorial auctions, for which the only known lower bound is for simultaneous (r=1r=1) protocols [DNO14]

    Strengths and Weaknesses of Quantum Fingerprinting

    Full text link
    We study the power of quantum fingerprints in the simultaneous message passing (SMP) setting of communication complexity. Yao recently showed how to simulate, with exponential overhead, classical shared-randomness SMP protocols by means of quantum SMP protocols without shared randomness (QQ^\parallel-protocols). Our first result is to extend Yao's simulation to the strongest possible model: every many-round quantum protocol with unlimited shared entanglement can be simulated, with exponential overhead, by QQ^\parallel-protocols. We apply our technique to obtain an efficient QQ^\parallel-protocol for a function which cannot be efficiently solved through more restricted simulations. Second, we tightly characterize the power of the quantum fingerprinting technique by making a connection to arrangements of homogeneous halfspaces with maximal margin. These arrangements have been well studied in computational learning theory, and we use some strong results obtained in this area to exhibit weaknesses of quantum fingerprinting. In particular, this implies that for almost all functions, quantum fingerprinting protocols are exponentially worse than classical deterministic SMP protocols.Comment: 13 pages, no figures, to appear in CCC'0

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Sums of products of polynomials in few variables : lower bounds and polynomial identity testing

    Get PDF
    We study the complexity of representing polynomials as a sum of products of polynomials in few variables. More precisely, we study representations of the form P=i=1Tj=1dQijP = \sum_{i = 1}^T \prod_{j = 1}^d Q_{ij} such that each QijQ_{ij} is an arbitrary polynomial that depends on at most ss variables. We prove the following results. 1. Over fields of characteristic zero, for every constant μ\mu such that 0μ<10 \leq \mu < 1, we give an explicit family of polynomials {PN}\{P_{N}\}, where PNP_{N} is of degree nn in N=nO(1)N = n^{O(1)} variables, such that any representation of the above type for PNP_{N} with s=Nμs = N^{\mu} requires TdnΩ(n)Td \geq n^{\Omega(\sqrt{n})}. This strengthens a recent result of Kayal and Saha [KS14a] which showed similar lower bounds for the model of sums of products of linear forms in few variables. It is known that any asymptotic improvement in the exponent of the lower bounds (even for s=ns = \sqrt{n}) would separate VP and VNP[KS14a]. 2. We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT) algorithm for circuits computed by the above model when TT and the individual degree of each variable in PP are at most logO(1)N\log^{O(1)} N and sNμs \leq N^{\mu} for any constant μ<1/2\mu < 1/2. We get quasipolynomial running time when s<logO(1)Ns < \log^{O(1)} N. The PIT algorithm is obtained by combining our lower bounds with the hardness-randomness tradeoffs developed in [DSY09, KI04]. To the best of our knowledge, this is the first nontrivial PIT algorithm for this model (even for the case s=2s=2), and the first nontrivial PIT algorithm obtained from lower bounds for small depth circuits

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}

    Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement

    Full text link
    We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of functions; (b) A local hidden variable model needs only a constant amount of communication to create, within an arbitrarily small statistical distance, a distribution resulted from local measurements of an entangled quantum state, as long as the number of measurement outcomes is constant.Comment: A preliminary version of this paper appears as part of an article in Proceedings of the the 37th ACM Symposium on Theory of Computing (STOC 2005), 460--467, 200
    corecore