6,985 research outputs found

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and XβŠ†VX\subseteq V, if Ξ΄X(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set MβŠ†VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if Ξ΄M(v)β‰₯Ξ΄V(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:Vβ†’{βˆ’1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=βˆ‘v∈N(v)f(v)β‰₯tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set SβŠ†VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if Ξ΄S(v)β‰₯Ξ΄Vβˆ’S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016

    Global defensive k-alliances in graphs

    Get PDF
    Let Ξ“=(V,E)\Gamma=(V,E) be a simple graph. For a nonempty set XβŠ†VX\subseteq V, and a vertex v∈Vv\in V, Ξ΄X(v)\delta_{X}(v) denotes the number of neighbors vv has in XX. A nonempty set SβŠ†VS\subseteq V is a \emph{defensive kk-alliance} in Ξ“=(V,E)\Gamma=(V,E) if Ξ΄S(v)β‰₯Ξ΄SΛ‰(v)+k,\delta_S(v)\ge \delta_{\bar{S}}(v)+k, βˆ€v∈S.\forall v\in S. A defensive kk-alliance SS is called \emph{global} if it forms a dominating set. The \emph{global defensive kk-alliance number} of Ξ“\Gamma, denoted by Ξ³ka(Ξ“)\gamma_{k}^{a}(\Gamma), is the minimum cardinality of a defensive kk-alliance in Ξ“\Gamma. We study the mathematical properties of Ξ³ka(Ξ“)\gamma_{k}^{a}(\Gamma)

    New bounds on the signed total domination number of graphs

    Full text link
    In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turan, we present a sharp lower bound on this parameter for graphs with no complete graph of order r+1 as a subgraph. Also, we prove that n-2(s-s') is an upper bound on the signed total domination number of any tree of order n with s support vertices and s' support vertives of degree two. Moreover, we characterize all trees attainig this bound.Comment: This paper contains 11 pages and one figur

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Some Results on incidence coloring, star arboricity and domination number

    Full text link
    Two inequalities bridging the three isolated graph invariants, incidence chromatic number, star arboricity and domination number, were established. Consequently, we deduced an upper bound and a lower bound of the incidence chromatic number for all graphs. Using these bounds, we further reduced the upper bound of the incidence chromatic number of planar graphs and showed that cubic graphs with orders not divisible by four are not 4-incidence colorable. The incidence chromatic numbers of Cartesian product, join and union of graphs were also determined.Comment: 8 page
    • …
    corecore