9 research outputs found

    Bounds on Contention Management in Radio Networks

    Get PDF
    The local broadcast problem assumes that processes in a wireless network are provided messages, one by one, that must be delivered to their neighbors. In this paper, we prove tight bounds for this problem in two well-studied wireless network models: the classical model, in which links are reliable and collisions consistent, and the more recent dual graph model, which introduces unreliable edges. Our results prove that the Decay strategy, commonly used for local broadcast in the classical setting, is optimal. They also establish a separation between the two models, proving that the dual graph setting is strictly harder than the classical setting, with respect to this primitive

    Bounds on contention management in radio networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 79-82).In this thesis, we study the local broadcast problem in two well-studied wireless network models. The local broadcast problem is a theoretical approach for capturing the contention management issue in wireless networks; it assumes that processes are provided messages, one by one, that must be delivered to their neighbors. We study this problem in two theoretical models of wireless networks, the classical radio network model and its more recent generalization, the dual graph model which includes the possibility of unreliable time-changing links. Both these models are synchronous; the execution proceeds in lock-step rounds and in each round, each node either transmits a message or listens. In each round of the dual graph model, each unreliable link might be active or inactive, whereas in the classical model, all the links are always active. In each round, each node receives a message if and only if it is listening and exactly one of its neighbors, with respect to the the active links of that round, transmits. The time complexity of the local broadcast algorithms is measured by two bounds, the acknowledgment bound and the progress bound. Roughly speaking, the former bounds the time it takes each broadcasting node to deliver its message to all its neighbors and the latter bounds the time it takes a node to receive at least one message, assuming it has a broadcasting neighbor. Typically these bounds depend on the maximum contention and the network size. The standard local broadcast strategy is the Decay protocol introduced by Bar-Yehuda et al. [19] in 1987. During the 25-years period in which this strategy has been used, it has remained an open question whether it is optimal. In this paper, we resolve this long-standing question. We present lower bounds on progress and acknowledgment bounds in both the classical and the dual graph model and we show that, with a slight optimization, the Decay protocol matches these lower bounds in both models. However, the tight progress bound of the dual graph model is exponentially larger than the progress bound in the classical model, in its dependence on the maximum contention. This establishes a separation between the two models, proving that progress in the dual graph model is strictly and exponentially harder than its classical predecessor. Combined, our results provide an essentially complete characterization of the local broadcast problem in these two important models.by Mohsen Ghaffari.S.M

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    A (Truly) Local Broadcast Layer for Unreliable Radio Networks

    Get PDF
    In this paper, we implement an efficient local broadcast service for the dual graph model, which describes communication in a radio network with both reliable and unreliable links. Our local broadcast service offers probabilistic latency guarantees for: (1) message delivery to all reliable neighbors (i.e., neighbors connected by reliable links), and (2) receiving some message when one or more reliable neighbors are broadcasting. This service significantly simplifies the design and analysis of algorithms for the otherwise challenging dual graph model. To this end, we also note that our solution can be interpreted as an implementation of the abstract MAC layer specification---therefore translating the growing corpus of algorithmic results studied on top of this layer to the dual graph model. At the core of our service is a seed agreement routine which enables nodes in the network to achieve "good enough" coordination to overcome the difficulties of unpredictable link behavior. Because this routine has potential application to other problems in this setting, we capture it with a formal specification---simplifying its reuse in other algorithms. Finally, we note that in a break from much work on distributed radio network algorithms, our problem definitions (including error bounds), implementation, and analysis do not depend on global network parameters such as the network size, a goal which required new analysis techniques. We argue that breaking the dependence of these algorithms on global parameters makes more sense and aligns better with the rise of ubiquitous computing, where devices will be increasingly working locally in an otherwise massive network. Our push for locality, in other words, is a contribution independent of the specific radio network model and problem studied here

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    Data Dissemination in Unified Dynamic Wireless Networks

    Full text link
    We give efficient algorithms for the fundamental problems of Broadcast and Local Broadcast in dynamic wireless networks. We propose a general model of communication which captures and includes both fading models (like SINR) and graph-based models (such as quasi unit disc graphs, bounded-independence graphs, and protocol model). The only requirement is that the nodes can be embedded in a bounded growth quasi-metric, which is the weakest condition known to ensure distributed operability. Both the nodes and the links of the network are dynamic: nodes can come and go, while the signal strength on links can go up or down. The results improve some of the known bounds even in the static setting, including an optimal algorithm for local broadcasting in the SINR model, which is additionally uniform (independent of network size). An essential component is a procedure for balancing contention, which has potentially wide applicability. The results illustrate the importance of carrier sensing, a stock feature of wireless nodes today, which we encapsulate in primitives to better explore its uses and usefulness.Comment: 28 pages, 2 figure

    On Simple Back-Off in Unreliable Radio Networks

    Get PDF
    In this paper, we study local and global broadcast in the dual graph model, which describes communication in a radio network with both reliable and unreliable links. Existing work proved that efficient solutions to these problems are impossible in the dual graph model under standard assumptions. In real networks, however, simple back-off strategies tend to perform well for solving these basic communication tasks. We address this apparent paradox by introducing a new set of constraints to the dual graph model that better generalize the slow/fast fading behavior common in real networks. We prove that in the context of these new constraints, simple back-off strategies now provide efficient solutions to local and global broadcast in the dual graph model. We also precisely characterize how this efficiency degrades as the new constraints are reduced down to non-existent, and prove new lower bounds that establish this degradation as near optimal for a large class of natural algorithms. We conclude with an analysis of a more general model where we propose an enhanced back-off algorithm. These results provide theoretical foundations for the practical observation that simple back-off algorithms tend to work well even amid the complicated link dynamics of real radio networks

    The cost of radio network broadcast for different models of unreliable links

    Get PDF
    We study upper and lower bounds for the global and local broadcast problems in the dual graph model combined with different strength adversaries. The dual graph model is a generalization of the standard graph-based radio network model that includes unreliable links controlled by an adversary. It is motivated by the ubiquity of unreliable links in real wireless networks. Existing results in this model [11, 12, 3, 8] assume an offline adaptive adversary - the strongest type of adversary considered in standard randomized analysis. In this paper, we study the two other standard types of adversaries: online adaptive and oblivious. Our goal is to find a model that captures the unpredictable behavior of real networks while still allowing for efficient broadcast solutions. For the online adaptive dual graph model, we prove a lower bound that shows the existence of constant-diameter graphs in which both types of broadcast require Ω(n/ log n) rounds, for network size n. This result is within log-factors of the (near) tight upper bound for the offline adaptive setting. For the oblivious dual graph model, we describe a global broadcast algorithm that solves the problem in O(Dlog n + log[superscript 2] n) rounds for network diameter D, but prove a lower bound of Ω(√n= log n) rounds for local broadcast in this same setting. Finally, under the assumption of geographic constraints on the network graph, we describe a local broadcast algorithm that requires only O(log[superscript 2] n logΔ) rounds in the oblivious model, for maximum degree Δ. In addition to the theoretical interest of these results, we argue that the oblivious model (with geographic constraints) captures enough behavior of real networks to render our efficient algorithms useful for real deployments.Ford Motor Company (University Research Program)United States. Air Force Office of Scientific Research (AFOSR Contract No. FA9550- 13-1-0042)National Science Foundation (U.S.) (NSF Award No. CCF-1217506)National Science Foundation (U.S.) (NSF Award No. 0939370-CCF)National Science Foundation (U.S.) (NSF Award No. CCF-AF-0937274)United States. Air Force Office of Scientific Research (AFOSR Contract No. FA9550-08-1-0159)National Science Foundation (U.S.) (NSF Award No. CCF-072651
    corecore