59 research outputs found

    Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

    Get PDF
    We derive a priori residual-type bounds for the Arnoldi approximation of a matrix function and a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, we will use a priori decay bounds for the entries of functions of banded non-Hermitian matrices by using Faber polynomial series. Numerical experiments illustrate the quality of the results

    Rational Krylov for Stieltjes matrix functions: convergence and pole selection

    Full text link
    Evaluating the action of a matrix function on a vector, that is x=f(M)vx=f(\mathcal M)v, is an ubiquitous task in applications. When M\mathcal M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating xx when f(z)f(z) is either Cauchy-Stieltjes or Laplace-Stieltjes (or, which is equivalent, completely monotonic) and M\mathcal M is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case M=IABTI\mathcal M=I \otimes A - B^T \otimes I, and vv obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of xx. Pole selection strategies with explicit convergence bounds are given also in this case

    Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

    Get PDF
    This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, a priori decay bounds for the entries of functions of banded non-Hermitian matrices will be exploited, using Faber polynomial approximation. Numerical experiments illustrate the quality of the results

    Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods

    Full text link
    We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix AA, defined as tr(f(A))\operatorname{tr}(f(A)) where f(x)=xlogxf(x)=-x\log x. After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.Comment: 32 pages, 10 figure

    Rational Krylov for Stieltjes matrix functions: convergence and pole selection

    Get PDF
    Evaluating the action of a matrix function on a vector, that is x= f(M) v, is an ubiquitous task in applications. When M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating x when f(z) is either Cauchy–Stieltjes or Laplace–Stieltjes (or, which is equivalent, completely monotonic) and M is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case M= I⊗ A- BT⊗ I, and v obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of x. Pole selection strategies with explicit convergence bounds are given also in this case

    Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices

    Full text link
    We consider the problem of estimating the trace of a matrix function f(A)f(A). In certain situations, in particular if f(A)f(A) cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from [E. Aune, D. P. Simpson, J. Eidsvik, Parameter estimation in high dimensional Gaussian distributions, Stat. Comput., 24, pp. 247--263, 2014], we also characterize situations in which using just one stochastic vector is always -- not only in expectation -- better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods

    Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds

    Full text link
    When analyzing complex networks, an important task is the identification of those nodes which play a leading role for the overall communicability of the network. In the context of modifying networks (or making them robust against targeted attacks or outages), it is also relevant to know how sensitive the network's communicability reacts to changes in certain nodes or edges. Recently, the concept of total network sensitivity was introduced in [O. De la Cruz Cabrera, J. Jin, S. Noschese, L. Reichel, Communication in complex networks, Appl. Numer. Math., 172, pp. 186-205, 2022], which allows to measure how sensitive the total communicability of a network is to the addition or removal of certain edges. One shortcoming of this concept is that sensitivities are extremely costly to compute when using a straight-forward approach (orders of magnitude more expensive than the corresponding communicability measures). In this work, we present computational procedures for estimating network sensitivity with a cost that is essentially linear in the number of nodes for many real-world complex networks. Additionally, we extend the sensitivity concept such that it also covers sensitivity of subgraph centrality and the Estrada index, and we discuss the case of node removal. We propose a priori bounds for these sensitivities which capture the qualitative behavior well and give insight into the general behavior of matrix function based network indices under perturbations. These bounds are based on decay results for Fr\'echet derivatives of matrix functions with structured, low-rank direction terms which might be of independent interest also for other applications than network analysis
    corecore