62 research outputs found

    Circuits with arbitrary gates for random operators

    Full text link
    We consider boolean circuits computing n-operators f:{0,1}^n --> {0,1}^n. As gates we allow arbitrary boolean functions; neither fanin nor fanout of gates is restricted. An operator is linear if it computes n linear forms, that is, computes a matrix-vector product y=Ax over GF(2). We prove the existence of n-operators requiring about n^2 wires in any circuit, and linear n-operators requiring about n^2/\log n wires in depth-2 circuits, if either all output gates or all gates on the middle layer are linear.Comment: 7 page

    Extracting All the Randomness and Reducing the Error in Trevisan's Extractors

    Get PDF
    We give explicit constructions of extractors which work for a source of any min-entropy on strings of length n. These extractors can extract any constant fraction of the min-entropy using O(log2n) additional random bits, and can extract all the min-entropy using O(log3n) additional random bits. Both of these constructions use fewer truly random bits than any previous construction which works for all min-entropies and extracts a constant fraction of the min-entropy. We then improve our second construction and show that we can reduce the entropy loss to 2log(1/epsilon)+O(1) bits, while still using O(log3n) truly random bits (where entropy loss is defined as [(source min-entropy)+ (# truly random bits used)- (# output bits)], and epsilon is the statistical difference from uniform achieved). This entropy loss is optimal up to a constant additive term. Our extractors are obtained by observing that a weaker notion of "combinatorial design" suffices for the Nisan-Wigderson pseudorandom generator, which underlies the recent extractor of Trevisan. We give near-optimal constructions of such "weak designs" which achieve much better parameters than possible with the notion of designs used by Nisan-Wigderson and Trevisan. We also show how to improve our constructions (and Trevisan's construction) when the required statistical difference epsilon from the uniform distribution is relatively small. This improvement is obtained by using multilinear error-correcting codes over finite fields, rather than the arbitrary error-correcting codes used by Trevisan.Engineering and Applied Science

    Lower Bounds for Matrix Factorization

    Get PDF
    We study the problem of constructing explicit families of matrices which cannot be expressed as a product of a few sparse matrices. In addition to being a natural mathematical question on its own, this problem appears in various incarnations in computer science; the most significant being in the context of lower bounds for algebraic circuits which compute linear transformations, matrix rigidity and data structure lower bounds. We first show, for every constant dd, a deterministic construction in subexponential time of a family {Mn}\{M_n\} of n×nn \times n matrices which cannot be expressed as a product Mn=A1AdM_n = A_1 \cdots A_d where the total sparsity of A1,,AdA_1,\ldots,A_d is less than n1+1/(2d)n^{1+1/(2d)}. In other words, any depth-dd linear circuit computing the linear transformation MnxM_n\cdot x has size at least n1+Ω(1/d)n^{1+\Omega(1/d)}. This improves upon the prior best lower bounds for this problem, which are barely super-linear, and were obtained by a long line of research based on the study of super-concentrators (albeit at the cost of a blow up in the time required to construct these matrices). We then outline an approach for proving improved lower bounds through a certain derandomization problem, and use this approach to prove asymptotically optimal quadratic lower bounds for natural special cases, which generalize many of the common matrix decompositions

    Extractor Lower Bounds, Revisited

    Get PDF
    We revisit the fundamental problem of determining seed length lower bounds for strong extractors and natural variants thereof. These variants stem from a "change in quantifiers" over the seeds of the extractor: While a strong extractor requires that the average output bias (over all seeds) is small for all input sources with sufficient min-entropy, a somewhere extractor only requires that there exists a seed whose output bias is small. More generally, we study what we call probable extractors, which on input a source with sufficient min-entropy guarantee that a large enough fraction of seeds have small enough associated output bias. Such extractors have played a key role in many constructions of pseudorandom objects, though they are often defined implicitly and have not been studied extensively. Prior known techniques fail to yield good seed length lower bounds when applied to the variants above. Our novel approach yields significantly improved lower bounds for somewhere and probable extractors. To complement this, we construct a somewhere extractor that implies our lower bound for such functions is tight in the high min-entropy regime. Surprisingly, this means that a random function is far from an optimal somewhere extractor in this regime. The techniques that we develop also yield an alternative, simpler proof of the celebrated optimal lower bound for strong extractors originally due to Radhakrishnan and Ta-Shma (SIAM J. Discrete Math., 2000)

    Variations on Classical and Quantum Extractors

    Get PDF
    Many constructions of randomness extractors are known to work in the presence of quantum side information, but there also exist extractors which do not [Gavinsky {\it et al.}, STOC'07]. Here we find that spectral extractors ψ\psi with a bound on the second largest eigenvalue λ2(ψψ)\lambda_{2}(\psi^{\dagger}\circ\psi) are quantum-proof. We then discuss fully quantum extractors and call constructions that also work in the presence of quantum correlations decoupling. As in the classical case we show that spectral extractors are decoupling. The drawback of classical and quantum spectral extractors is that they always have a long seed, whereas there exist classical extractors with exponentially smaller seed size. For the quantum case, we show that there exists an extractor with extremely short seed size d=O(log(1/ϵ))d=O(\log(1/\epsilon)), where ϵ>0\epsilon>0 denotes the quality of the randomness. In contrast to the classical case this is independent of the input size and min-entropy and matches the simple lower bound dlog(1/ϵ)d\geq\log(1/\epsilon).Comment: 7 pages, slightly enhanced IEEE ISIT submission including all the proof

    More on a problem of Zarankiewicz

    Get PDF
    We show tight necessary and sufficient conditions on the sizes of small bipartite graphs whose union is a larger bipartite graph that has no large bipartite independent set. Our main result is a common generalization of two classical results in graph theory: the theorem of Kovari, Sos and Turan on the minimum number of edges in a bipartite graph that has no large independent set, and the theorem of Hansel (also Katona and Szemeredi and Krichevskii) on the sum of the sizes of bipartite graphs that can be used to construct a graph (non-necessarily bipartite) that has no large independent set. Our results unify the underlying combinatorial principles developed in the proof of tight lower bounds for depth-two superconcentrators
    corecore