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Abstract. We show tight necessary and sufficient conditions on the sizes of small bipartite graphs
whose union is a larger bipartite graph that has no large bipartite independent set. Our main result
is a common generalization of two classical results in graph theory: the theorem of Kővári, Sós and
Turán on the minimum number of edges in a bipartite graph that has no large independent set, and
the theorem of Hansel (also Katona and Szemerédi and Krichevskii) on the sum of the sizes of bipartite
graphs that can be used to construct a graph (non-necessarily bipartite) that has no large independent
set. Our results unify the underlying combinatorial principles developed in the proof of tight lower
bounds for depth-two superconcentrators.

1 Introduction

Consider a bipartite graph G = (V,W,E), where |V |, |W | = n. Suppose every k element subset
S ⊆ V is connected to every k element subset T ⊆W by at least one edge. How many edges must
such a graph have? This is the celebrated Zarankiewicz problem.

Definition 1 (Bipartite independent set). A bipartite independent set of size k×k in a bipartite
graph G = (V,W,E) is a pair of subsets S ⊆ V and T ⊆ W of size k each such that there is no
edge connecting S and T , i.e., (S × T ) ∩ E = ∅.

The Zarankiewicz problem asks for the minimum number of edges in a bipartite graph that does
not have any bipartite independent set of size k × k. We may think of an edge as a complete
bipartite graph where each side of the bipartition is just a singleton. This motivates the following
generalization where we consider bipartite graphs as formed by putting together not just edges,
but, more generally, small complete bipartite graphs.

Definition 2. A bipartite graph G = (V,W,E) is said to be the union of complete bipartite graphs
Gi = (Vi,Wi, Ei = Vi×Wi), (i = 1, 2, . . . , r) if each Vi ⊆ V , each Wi ⊆W , and E = E1 ∪ · · · ∪Er.

Definition 3. We say that a sequence of positive integers (n1, n2, . . . , nr) is (n, k)-strong if there is
a bipartite graph G = (V,W,E) that is a union of graphs Gi = (Vi,Wi, Ei = Vi×Wi), i = 1, 2, . . . , r,
such that

– |V |, |W | = n;
– |Vi| = |Wi| = ni;
– G has no bipartite independent set of size k × k.

What conditions must the ni’s satisfy for (n1, n2, . . . , nr) to be (n, k)-strong? Note that the Zarankiewicz
problem is a special case of this question where each ni is 1 and

∑
i ni corresponds to the number

edges in the final graph G.
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Remark. The Zarankiewicz problem is more commonly posed in the following form: What is the
maximum number of edges in a bipartite graph with no k × k bipartite clique. By interchanging
edges and non-edges, we can ask for the maximum number of non-edges (equivalently the minimum
number of edges) such that there is no k × k bipartite independent set. This complementary form
is more convenient for our purposes.

The Kővári, Sós and Turán bound
The following classical theorem gives a lower bound on the number of edges in that have no large
independent set.

Theorem 1 (Kővári, Sós and Turán [6]; see, e.g., [2], Page 301, Lemma 2.1.). If G does
not have an independent set of size k × k, then

n

(
n− d
k

)(
n

k

)−1
≤ k − 1,

where d is the average degree of G.

The above theorem implies that

n ≤ (k − 1)

(
n− d
k

)−1(
n

k

)
≤ (k − 1)

(
n− k + 1

n− d− k + 1

)k
= (k − 1)

(
1 +

d

n− d− k + 1

)k
≤ (k − 1) exp

(
dk

n− d− k + 1

)
,

which yields,

d ≥ (n− k + 1) log(n/(k − 1))

k + log(n/(k − 1))
.

In this paper, we will mainly be interested in k ∈ [n1/10, n9/10], in which case we obtain

|E(G)| = nd = Ω

(
n2

k
log n

)
.

For the problem under consideration, this immediately gives the necessary condition

r∑
i=1

n2i = Ω

(
n2

k
log n

)
. (1)

It will be convenient to normalize ni and define αi = ni
n/k . With this notation, the inequality above

can be restated as follows.
r∑
i=1

α2
i = Ω(k log n). (2)



The Hansel bound
The same question can also be asked in the context of general graphs. In that case, we have the
classical theorem.

Theorem 2 (Hansel [4], Katona and Szemerédi [5]). Suppose it is possible to place one
copy each of Kni,ni, i = 1, 2, . . . , r, in a vertex set of size n such that the resulting graph has no
independent set of size k. Then,

r∑
i=1

ni ≥ n log

(
n

k − 1

)
.

Although this result pertains to general graphs and is not directly applicable to the bipartite graph
setting, it can be used (details omitted as we will use this bound only to motivate our results, not to
derive them) to derive a necessary condition for bipartite graphs as well. In particular, normalizing
ni by setting ni = αi

n
k as before, one can obtain the necessary condition

r∑
i=1

αi = Ω(k log n). (3)

Note that neither of the two bounds above strictly dominates the other: if all αi are small (say
� 1), then the first condition derived from the Kővári, Sós and Turán bound is stronger, wheras if
all αi are large (� 1), then the condition derived from the Hansel bound is stronger.

In our applications, we will meet situations where the αi’s will not be confined to one or the
other regime. To get optimal results, one must, therefore, devise a condition appropriate for the
entire range of values for the αi’s. Towards this goal, we start by trying to guess the form of this
general inequality by asking a dual question: what is a sufficient condition on ni’s (equivalently
αi’s) for (n1, n2, . . . , nr) to be (n, k)-strong? We derive the following.

Theorem 3 (Sufficient condition). Suppose k ∈ [n1/10, n9/10], and let αi ∈ [n−1/100, n1/100],
i = 1, 2 . . . , r. Then, there is a constant A > 0 such that if∑

i:αi≤1
α2
i +

∑
i:αi>1

αi ≥ Ak log n,

then (n1, n2, . . . , nr) is (n, k)-strong, where ni = αi(n/k).

Using this insight, we then show that this sufficient condition is indeed also necessary (with slightly
different constants).

Theorem 4 (Necessary condition). Suppose k ∈ [n1/10, n9/10], and let αi ∈ [n−1/100, n1/100],
i = 1, 2 . . . , r. Then, there is a constant B > 0 such that if (n1, n2, . . . , nr) is (n, k)-strong where
ni = αi(n/k), then ∑

i:αi≤1
α2
i +

∑
i:αi>1

αi ≥ Bk log n.

Our proof of Theorem 4 uses a refinement of the ideas used in Radhakrishnan and Ta-Shma [7].
In a later section, we also show that our inequality leads to a modular proof of their tight lower
bound on the size of depth-two superconcentrators.

A tradeoff result for depth-two superconcentrators was shown by Dutta and Radhakrishnan [3].
Their main argument leads one to consider situations where the small bipartite graphs used to
build the bigger one are not symmetric, instead of being of the form Kni,ni , they are of the form
Kmi,ni (with perhaps mi 6= ni).



Definition 4. We say that a sequence of pairs of positive integers ((m1, n1), (m2, n2), . . . , (mr, nr))
is (n, k)-strong if there is a bipartite graph G = (V,W,E) that is a union of graphs Gi = (Vi,Wi, Ei =
Vi ×Wi), i = 1, 2, . . . , r, such that

– |V |, |W | = n;

– |Vi| = mi and |Wi| = ni.

– G has no bipartite independent set of size k × k.

We refine our arguments and provide tight necessary and sufficient conditions for this asymmetric
setting as well. From the necessary condition for the asymmetric setting, we derive the tradeoff
result shown earlier by Dutta and Radhakrishnan [3]. Our main results are the following.

Theorem 5 (Sufficient condition: asymmetric case). Suppose k ∈ [n1/10, n9/10], and let
αi, βi ∈ [n1/100, n−1/100], i = 1, 2 . . . , r. Then, there is a constant C > 0 such that if∑

i∈X
αiβi +

∑
i∈{1,2,...,r}\X

(αi + βi)H(pi) ≥ Ck log n

for every X ⊆ {1, 2, . . . , r}, where pi = αi
αi+βi

and H(pi) = −pi log(pi) − (1 − pi) log(1 − pi) is the
binary entropy function, then the sequence ((m1, n1), (m2, n2), . . . , (mr, nr)) is (n, k)-strong where
mi = αi(n/k), ni = βi(n/k).

Theorem 6 (Necessary condition: asymmetric case). Suppose k ∈ [n1/10, n9/10], and let
αi, βi ∈ [n−1/100, n1/100], i = 1, 2 . . . , r. Then, there is a constant D > 0 such that if the sequence
((m1, n1), (m2, n2), . . . , (mr, nr)) is (n, k)-strong where mi = αi(n/k) and ni = βi(n/k), then∑

i∈X
αiβi +

∑
i∈{1,2,...,r}\X

(αi + βi)H(pi) ≥ Dk log n

for every X ⊆ {1, 2, . . . , r}, where pi = αi
αi+βi

and H(pi) = −pi log(pi)− (1− pi) log(1− pi).

Organization

In Section 2, we first derive the sufficient condition (Theorem 3) and then prove the necessary
condition (Theorem 4) for the symmetric setting. We then present generalizations of these results
to the asymmetric setting in Section 3. In Section 4, we derive the depth-two superconcentrator
results.

2 Building bipartite graph from smaller symmetric bipartite graphs

2.1 Sufficient condition: Theorem 3

Let us consider a probabilistic construction of a bipartite graph G = (V,W,E) where, given
n1, n2, . . . , nr such that αi = ni

n/k ∈ [n−1/100, n1/100], we place an independently drawn random
copy Gi of Kni,ni between V and W . In other words, G is the union of G1, G2, . . . , Gr where
Gi = (Vi,Wi, Ei = Vi ×Wi) and Vi, Wi are uniformly chosen random ni element subsets of V and
W respectively. Fix a potential independent set (S, T ) of size k × k. Then, as shown below,

Pr[E(Hi) ∩ S × T = ∅] ≤ 1− (1− exp(−αi))2. (4)



Thus, since the graphs Gi’s are chosen independently, the probability that (S, T ) is independent in
G is

p = Pr[(S, T ) is independent in G] ≤
r∏
i=1

(1− (1− exp(−αi))2).

By the union bound, if p
(
n
k

)2
< 1 then there is bipartite graph built by putting together one copy

each of Kni,ni that avoids all independent sets of size k×k. The interesting aspect of this calculation
is in the form of the expression pi = 1− (1− exp(−αi))2. We will show below that

pi ≤

{
exp

(
−α2

i
3

)
if αi ≤ 1

exp(−(1− ln 2)αi) if αi > 1
(5)

This immediately gives us our first result, the sufficient condition stated as Theorem 3 in the
introduction.

Proof of (4): Recall that Gi = (Vi,Wi, Vi ×Wi), where Vi and Wi are uniformly chosen random
subsets of V and W of size ni each.

Pr[E(Hi)∩S×T = ∅] = Pr[Vi∩S = ∅∨Wi∩T = ∅] = 1− (1−Pr[Vi∩S = ∅])(1−Pr[Wi∩T = ∅]).

Then, (4) follows from this because

Pr[Vi ∩ S = ∅],Pr[Wi ∩ T = ∅] =

(
n− k
ni

)(
n

ni

)−1
≤
(
n− k
n

)ni

≤ exp

(
−kni

n

)
= exp(−αi).

Proof of (5): We have

pi = 1− (1− exp(−αi))2 = exp(−αi)(2− exp(−αi)).

If αi ≤ 1, then we have

2− exp(−αi) ≤ 1 + αi −
α2
i

2
+
α3
i

6
≤ exp

(
αi −

α2
i

3

)
.

Thus,

pi = exp(−αi)(2− exp(−αi)) ≤ exp

(
−α

2
i

3

)
.

If αi > 1, then we have

pi = exp(−αi)(2− exp(−αi)) ≤ 2 exp(−αi) = exp(−αi + ln 2) ≤ exp(−(1− ln 2)αi).

We might ask if this sufficient condition is also necessary. As noted in the introduction, the
Kővári, Sós and Turán bound (Inequality 2) explains the first term in the above sufficient condition,
and the Hansel bound (Inequality 3) explains the second term. We thus have explanations for both
the terms in the LHS of the sufficient condition, using two classical theorems of graph theory.
However, neither of them implies in full generality that the sufficient condition derived above is
necessary.



2.2 Necessary condition: Theorem 4

We show that the sufficient condition derived in Theorem 3 is also necessary upto constants.

Let k ∈ [n
1
10 , n

9
10 ] and αi ∈ [n−1/100, n1/100], i = 1, 2, . . . , r. Suppose we are given a bipartite

graph G = (V,W,E) which is the union of complete bipartite graphs G1, G2, . . . , Gr and has no
bipartite independent set of size k × k, where Gi = (Vi,Wi, Ei = Vi ×Wi) with |Vi| = |Wi| = ni =
αi(n/k). We want to show that for some constant B > 0,∑

i:αi≤1
α2
i +

∑
i:αi>1

αi ≥ Bk log n.

We will present the argument for the case when k =
√
n; the proof for other k is similar, and

focussing on this k will keep the notation and the constants simple. We will show that if the second
term in the LHS of the above inequality is small, say,

SecondTerm =
∑
i:αi>1

αi ≤
1

100
k log n,

then the first term must be large, i.e.,

FirstTerm =
∑
i:αi≤1

α2
i ≥

1

100
k log n.

Assume SecondTerm ≤ 1
100k log n. Let us call a Gi for which αi > 1 as large and a Gi for which

αi ≤ 1 as small. We start as in [7] by deleting one of the sides of each large Gi independently and
uniformly at random from the vertex set of G. For a vertex v ∈ V , let dv be number of large Gi’s
such that v ∈ Vi. The probability that v survives at the end of the random deletion is precisely
2−dv . Now, ∑

v

dv =
∑
i:αi>1

ni ≤
1

100
n log n,

where the inequality follows from our assumption that SecondTerm ≤ 1
100k log n. That is, the average

value of dv is 1
100 log n, and by Markov’s inequality, at least half of the vertices have their dv’s at

most d = 1
50 log n. We focus on a set V ′ of n/2 such vertices, and if they survive the first deletion,

we delete them again with probability 1 − 2−(d−dv), so that every one of these n/2 vertices in V ′

survives with probability exactly 2−d = n−1/50. Let X be the vertices of V ′ that survive. Similarly,
we define W ′ ⊆W , and let Y ⊆W ′ be the vertices that survive.

Claim. With probability 1− o(1), |X|, |Y | ≥ n
4 2−d.

The claim can be proved as follows. For v ∈ V ′, let Iv be the indicator variable for the event that
v survives. Then, Pr[Iv = 1] = 2−d = n−1/50 for all v ∈ V ′. Furthermore, Iv and Iv′ are dependent
precisely if there is a common large Gi such that both v, v′ ∈ Vi. Thus, any one Iv is dependent
on at most ∆ = dv ×max{ni : αi > 1} ≤ (1/50) log nn1/100(n/k) = (1/50)n51/100 log n such events
(recall k =

√
n). We thus have (see Alon-Spencer [1])

E[|X|] =
∑
v∈V ′

Iv =
n

2
2−d =

1

2
n49/50;

Var[|X|] ≤ E[|X|]∆.



By Chebyshev’s inequality, the probability that |X| is less than E[|X|]
2 is at most

4Var[X]

E[|X|]2
≤ 4∆

E[|X|]
= o(1).

A similar calculation can be done for |Y |. (End of Claim.)

The crucial consequence of our random deletion process is that no large Gi has any edge between
X and Y . Since G does not have any independent set (S, T ) of size k×k, the small Gi’s must provide
the necessary edges to avoid such independent sets between X and Y . Consider an edge (v, w) of a
small Gi. The probability that this edge survives in X × Y is precisely the probability of the event
Iv ∧ Iw. Note that the two events Iv and Iw are either independent (when v and w do not belong to
a common large Gi), or they are mutually exclusive. Thus, the expected number of edges supplied
between X and Y by small Gi’s is at most∑

i:αi≤1
α2
i (n/k)22−2d = FirstTerm× (n/k)22−2d,

and by Markov’s inequality, with probability 1/2 it is at most twice its expectation. Using the
Claim above we conclude that the following three events happen simultaneously: (a) |X| ≥ n

4 2−d,
(b) |Y | ≥ n

4 2−d, (c) the number of edges conecting X and Y is at most FirstTerm × (n/k)22−2d.

Using (1), this number of edges must be at least 1
3
49
50

(n2−d)2

16k log n. (Note that 1
3 suffices as the

constant in (1) for the case |X|, |Y | ≥ n49/50

4 and k =
√
n.) Comparing the upper and lower bounds

on the number of edges thus established, we obtain the required inequality

FirstTerm ≥ 1

100
k log n.

3 Building bipartite graph from smaller asymmetric bipartite graphs

3.1 Sufficient condition: Theorem 5

3.2 Necessary condition: Theorem 6

Let k ∈ [n
1
10 , n

9
10 ] and αi, βi ∈ [n−

1
100 , n

1
100 ], i = 1, 2, . . . , r. Suppose we are given a bipartite graph

G = (V,W,E) which is the union of complete bipartite graphs G1, G2, . . . , Gr and has no bipartite
independent set of size k×k, where Gi = (Vi,Wi, Ei = Vi×Wi) with |Vi| = mi = αi(n/k) and |Wi| =
ni = βi(n/k). As stated in Theorem 6, we let pi = αi

αi+βi
and H(pi) = −pi log(pi)−(1−pi) log(1−pi).

We wish to show that there is a constant D > 0 such that∑
i∈X

αiβi +
∑

i∈{1,2,...,r}\X

(αi + βi)H(pi) ≥ Dk log n

for every X ⊆ {1, 2, . . . , r}.
The proof is similar to the proof of Thereom 4 and again we present the argument for the case

when k =
√
n. Fix a subset X ⊆ {1, 2, . . . , r}. Our plan is to assume that the second term in the

LHS of the above inequality is small,

SecondTerm =
∑

i∈{1,2,...,r}\X

(αi + βi)H(pi) ≤
1

100
k log n,



and from this conclude that the first term must be large,

FirstTerm =
∑
i∈X

αiβi ≥
1

100
k log n.

Assume SecondTerm ≤ 1
100k log n. We will call a graph Gi whose index i ∈ X as marked, and

a graph Gi whose index i /∈ X as unmarked. As before, we will delete one of the sides of each
unmarked Gi independently at random from the vertex set of G. However, since this time there
are different number of vertices on the two sides of Gi, we need to be more careful and choose the
deletion probabilities cleverly. We do so as follows. For every unmarked Gi independently, we delete
all the vertices in Wi with probability pi and all its vertices in Vi with the remaining probability
1− pi.

For a vertex v ∈ V , let Sv be the set of i /∈ X such that v ∈ Vi. Define dv to be the quantity∑
i∈Sv

log(1/pi). The probability that v survives the random deletion process is 2−dv . Using the
fact that pi = αi

αi+βi
and plugging the expression for H(pi) in the assumption that SecondTerm ≤

1
100k log n, we get ∑

i/∈X

(αi log(1/pi) + βi log(1/(1− pi))) ≤
1

100
k log n.

Multiplying both sides by (n/k), this implies∑
i/∈X

mi log(1/pi) ≤
1

100
n log n, (6)

and ∑
i/∈X

ni log(1/(1− pi)) ≤
1

100
n log n. (7)

Since ∑
v∈V

dv =
∑
i/∈X

mi log(1/pi),

the average value of dv is at most 1
100 log n, and by Markov’s inequality, at least 3n/4 vertices v ∈ V

have their dv at most d = 1
25 log n. Moreover, since αi, βi ∈ [n−1/100, n1/100], we have

pi ≤
n1/100

n1/100 + n−1/100
,

and thus

1

pi
≥ n1/100 + n−1/100

n1/100

=
1

1− n−1/100

n1/100+n−1/100

≥ exp

(
n−1/100

n1/100 + n−1/100

)

≥ exp

(
1

2
n−1/50

)
.



The above implies log(1/pi) ≥ 1
2n
−1/50, which combined with (6) yields

∑
i/∈X

mi ≤
1

50
n51/50 log n.

Since ∑
v∈V
|Sv| =

∑
i/∈X

mi,

the average value of |Sv| is at most 1
50n

1/50 log n, and again by Markov’s inequality, at least 3n/4

vertices v ∈ V satisfies |Sv| ≤ d′ = 4
50n

1/50 log n.

We focus on a set V ′ of n/2 vertices v ∈ V such that dv ≤ d and |Sv| ≤ d′. If any vertex v ∈ V ′
survives the first deletion, we delete it further with probability 1 − 2−(d−dv), so that the survival
probability of each vertex in V ′ is exactly 2−d = n−1/25. Let X be the set of vertices in V ′ that
survive. Similarly, we define W ′ ⊆W , and let Y be the set of vertices in W ′ that survive.

Claim. With probability 1− o(1), |X|, |Y | ≥ n
4 2−d.

The proof of the claim is exactly like the previous time. For v ∈ V ′, we let Iv be the indicator
variable for the event that v survives in X. Then, Pr[Iv = 1] = 2−d = n−1/25 for all v ∈ V ′.
Furthermore, Iv and Iv′ are dependent precisely if there is a common unmarked Gi such that
both v, v′ ∈ Vi. Thus, any one Iv is dependent on at most ∆ = |Sv| × max{mi : i /∈ X} ≤
(4/50)n1/50 log nn1/100(n/k) = (4/50)n53/100 log n such events (recall k =

√
n). Now we have

E[|X|] =
∑
v∈V ′

Iv =
n

2
2−d =

1

2
n24/25;

Var[|X|] ≤ E[|X|]∆.

By Chebyshev’s inequality, the probability that |X| is less than E[|X|]
2 is at most

4Var[X]

E[|X|]2
≤ 4∆

E[|X|]
= o(1).

A similar calculation can be done for |Y |. (End of Claim.)

Since no unmarked Gi has any edge between X and Y , the marked Gi’s must provide enough
edges to avoid all independent sets of size k × k between X and Y . As in the proof of Theorem 4,
we can argue that an edge of a marked Gi survives in X × Y with probability at most 2−2d. Thus
the expected number of edges supplied between X and Y by marked Gi’s is at most∑

i∈X
mini2

−2d =
∑
i∈X

αiβi(n/k)22−2d = FirstTerm× (n/k)22−2d,

and by Markov’s inequality with probability 1/2 it is at most twice its expectation. Thus the event
where both X and Y are of size at least n

4 2−d and the number of edges connecting them is at most
FirstTerm × (n/k)22−2d occurs with positive probability. From (1), this number of edges must be

at least 1
3
24
25

(n2−d)2

16k log n. (Note that 1
3 suffices as the constant in (1) when |X|, |Y | ≥ n24/25

4 and
k =
√
n.) Thus we get

FirstTerm ≥ 1

100
k log n.



4 Depth-two superconcentrators

Consider a graph G = (V,M,W,E) with three sets of vertices V , M and W , where |V |, |W | = n, and
all edges in E go from V to M or M to W . Such a graph is called a depth-two n-superconcentrator
if for every k ∈ {1, 2, . . . , n} and every pair of subsets S ⊆ V and T ⊆W , each of size k, there are
k vertex disjoint paths from S to T .

We reprove two known lower bounds for depth-two superconcentrators: the first one is a lower
bound on the number of edges (Theorem 7) shown in [7] which we reprove here using Theorem 4;
the second one is a tradeoff result between the number of edges going from V to M and the number
of them going from M to W (Theorem 8) shown in [3] which we reprove using Theorem 6.

Theorem 7 (Radhakrishnan and Ta-Shma [7]). If the graph G = (V,M,W,E) is a depth-two

n-superconcentrator, then |E(G)| = Ω(n (logn)2

log logn).

Proof. This proof is similar to the one used in [7], but the use of Theorem 4 makes the calculations
modular. Assume that the number of edges in a depth-two n-superconcentrator G is at most

(B/100)n (logn)2

log logn , where B is the constant in Theorem 4. By increasing the number of edges by a
factor at most two, we assume that each vertex in M has the same number of edges coming from
V and going to W . For a vertex v ∈ M , let deg(v) denote the number of edges that come from V
to v (equivalently the number of edges that go from v to W ). Let For k ∈ [n1/4, n3/4], define

High(k) = {v ∈M : deg(v) ≥ n

k
(log n)2};

Medium(k) = {v ∈M :
n

k
(log n)−2 ≤ deg(v) <

n

k
(log n)2};

Low(k) = {v ∈M : deg(v) <
n

k
(log n)−2}.

Claim. For each k ∈ [n1/4, n3/4], the number of edges incident on Medium(k) is at least B
2 n log n.

Fix a k ∈ [n1/4, n3/4]. First observe that |High(k)| < k, for otherwise, the number of edges in G
would already exceed n(log n)2, contradicting our assumption. Thus, every pair of subsets S ⊆ V
and T ⊆ W of size k each has a common neighbour in Medium(k) ∪ Low(k). We are now in a
position to move to the setting of Theorem 4. For each vertex v ∈ Medium(k)∪Low(k), consider the
complete bipartite graph between its in-neighbours in V and out-neighbours in W . The analysis
above implies that the union of these graphs is a bipartite graph between V and W that has no
independent set of size k × k. For v ∈ Medium(k) ∪ Low(k), let αv = deg(v)

n/k . Using Theorem 4, it
follows that ∑

v∈Medium(k)∪Low(k):αv≤1

α2
v +

∑
v∈Medium(k)∪Low(k):αv>1

αv ≥ Bk log n. (8)

For αv ≤ 1, α2
v ≤ αv and thus we can replace α2

v by αv when (log n)−2 ≤ αv ≤ 1 and conclude

∑
v∈Low(k)

α2
v +

∑
v∈Medium(k)

αv ≥ Bk log n. (9)



One of the two terms in the LHS is at least half the RHS. If it is the first term then noting that
αv < (log n)−2 for all v ∈ Low(k), we obtain∑

v∈Low
deg(v) = (n/k)

∑
v∈Low

αv

≥ (n/k)(log n)2
∑
v∈Low

α2
v

≥ B

2
n(log n)3,

Since the left hand side is precisely the number of edges entering Low(k), this contradicts our
assumption that G has few edges. So, it must be that the second term in the LHS of (9) is at least
B
2 k log n. Then, the number of edges incident on Medium(k) is∑

v∈Medium

deg(v) = (n/k)
∑

v∈Medium

αv ≥
B

2
n log n.

This completes the proof of the claim.
Now, consider values of k of the form n1/4(log n)4i in the range [n1/4, n3/4]. Note that there

are at least ( 1
10) log n/ log log n such values of k and the sets Medium(k) for these values of k are

disjoint. By the claim above, each such Medium(k) has at least B
2 n log n edges incident on it, that

is G has a total of at least B
20n

(logn)2

log logn edges, again contradicting our assumption.

Theorem 8 (Dutta and Radhakrishnan [3]). If the graph G = (V,M,W,E) is a depth-two
n-superconcentrator with average degree of nodes in V and W being a and b respectively and a ≤ b,
then

a log

(
a+ b

a

)
log b = Ω(log2 n).

Proof. We may assume that b > log n, otherwise the total number of edges in G is at most 2n log n
which contradicts Theorem 7 proved earlier. We may also assume that b < (log n)

1
10 , otherwise the

theorem can be easily seen to be true. For a vertex v ∈M , let degV (v) denote the number of edges
that come from V to v and degW (v) denote the number of edges that go from v to W . We will

assume that the ratio degV (v)
degW (v) is equal to a

b for each vertex v ∈M . This is without loss of generality

as we can make the ratio degV (v)
degW (v) equal to a

b by increasing the number of edges from V to v (if
degV (v)
degW (v) is smaller) or increasing the number of edges from v to W (if the ratio is larger), and this
process does not increase the number of edges between V and M or between M and W more than
by a factor two. (We ignore the rounding issues as they are not important.)

For k ∈ [n1/4, n3/4], define

High(k) = {v ∈M : deg(v) ≥ n

k
b2};

Medium(k) = {v ∈M :
n

k
b−2 ≤ deg(v) <

n

k
b2};

Low(k) = {v ∈M : deg(v) <
n

k
b−2}.

We consider values of k of the form n1/4b4i in the range [n1/4, n3/4]. There are at least L = logn
10 log b

such values of k and the sets Medium(k) for these values of k are disjoint. Thus out of these values
of k, we can find one, say k0, such that the number of edges from V to Medium(k0) is at most an

L .



We observe that |High(k0)| < k0, otherwise the number of edges between M and W would be
at least b2n > bn which is a contradition. Thus every pair of subsets S ⊆ V and T ⊆ W of size k
each has a common neighbour in Medium(k0)∪Low(k0). For each vertex v ∈ Medium(k0)∪Low(k0),
consider the complete bipartite graph between the in-neighbours and out-neighbours of v. The
union of these graphs is a bipartite graph between V and W that has no independent set of size
k× k. For v ∈ Medium(k0)∪Low(k0), let αv = degV (v)

n/k0
and βv = degW (v)

n/k0
. It follows from Theorem 6

that ∑
v∈Low(k0)

αvβv +
∑

v∈Medium(k0)

(αv + βv)H(
αv

αv + βv
) ≥ Dk0 log n. (10)

where D is the constant from Theorem 6. One of the two terms in the LHS is at least half the RHS.
If it is the first term, noting that βv < b−2 for all v ∈ Low(k0), we obtain∑

v∈Low(k0)

degV (v) = (n/k0)
∑

v∈Low(k0)

αv

≥ (n/k0)b
2

∑
v∈Low(k0)

αvβv

≥ D

2
n log nb2

≥ D

2
n(log n)3

Since the left hand side is precisely the number of edges entering Low(k0), we get a ≥ D
2 (log n)3

which proves the theorem. If the second term in the LHS of (10) is at least D
2 k0 log n, we get∑

v∈Medium(k0)

(αv + βv)H(
αv

αv + βv
) ≥ D

2
k0 log n.

Simplifying we get ∑
v∈Medium(k0)

(
αv log

(
αv + βv
αv

)
+ βv log

(
αv + βv
βv

))
≥ D

2
k0 log n.

We know that (
αv + βv
βv

)βv
=

(
1 +

αv
βv

)βv
≤ exp(αv),

which means

βv log

(
αv + βv
βv

)
≤ α

ln 2
.

Noting αv+βv
αv

= a+b
a , we have

∑
v∈Medium(k0)

αv log

(
a+ b

a
+

1

ln 2

)
≥ D

2
k0 log n.

Since a ≤ b, a+b
a ≥ 1 and we conclude

∑
v∈Medium(k0)

αv log

(
a+ b

a

)
= Ω(k0 log n).



The number of edges from V to Medium(k0) is precisely∑
v∈Medium(k0)

degV (v) = (n/k0)
∑

v∈Medium(k0)

αv.

But we know that there are at most an
L edges from V to Medium(k0). Thus

ak0
L

log

(
a+ b

a

)
= Ω(k0 log n),

which implies

a log

(
a+ b

a

)
log b = Ω(log2 n).
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