1,216 research outputs found

    MorphoSys: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798

    A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems

    Get PDF

    220801

    Get PDF
    Multicore platforms are being increasingly adopted in Cyber-Physical Systems (CPS) due to their advantages over single-core processors, such as raw computing power and energy efficiency. Typically, multicore platforms use a shared memory bus that connects the cores to the off-chip main memory. This sharing of memory bus may cause tasks running on different cores to compete for access to the main memory whenever data/instructions are need to be read/written from/to the main memory. Such competition is problematic, as it may cause variations in the execution time of tasks in a non-deterministic way. To reduce the complexity of analysing this problem, the 3-phase task model was proposed that divides tasks' executions into distinct memory and execution phases. The distinctive memory phases are then scheduled to eliminate/minimize main memory contention between concurrently executing tasks. However, 3-phase tasks running on different cores may still compete to access the shared memory bus/main memory in order to execute memory phases. This paper presents a partitioned scheduling-based approach that allows one to derive memory bus contention-aware worst-case response time of tasks that follow the 3-phase task model. In particular, the bus-contention analysis is derived by considering two memory access models, i.e., (i) dedicated memory access model, where a core having allowed to access the main memory via memory bus is permitted to execute more than one memory phase, and (ii) fair memory access model, that restrict each core to execute only one memory phase in its allocated bus access. Both these models represent different system and application requirements, and the resulting bus contention of tasks may vary depending on the considered model. To evaluate the effectiveness of the proposed bus contention analysis, we compare its performance against an existing analysis in the state-of-the-art by performing (i) case-study experiments, using benchmarks from the Mälardalen Benchmark suite, and (ii) empirical evaluation using synthetic task sets. Results show that our proposed analysis can improve task set schedulability of 3-phase tasks by up to 88 percentage points.This work was partially supported by European Union’s Horizon 2020 -The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement No. 732505. Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER000020” 845 financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; also by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); by FCT and the Portuguese National Innovation Agency (ANI), under the CMU Portugal partnership, through the European Regional Development Fund (ERDF) of the Operational Competitiveness Programme and Internationaliza850 tion (COMPETE 2020), under the PT2020 Partnership Agreement, within project FLOYD (POCI-01-0247- FEDER-045912), also by FCT under PhD grant 2020.09532.BD.info:eu-repo/semantics/publishedVersio

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses

    Get PDF
    Most works in schedulability analysis theory are based on the assumption that constraints on the performance of the application can be expressed by a very limited set of timing constraints (often simply hard deadlines) on a task model. This model is insufficient to represent a large number of systems in which deadlines can be missed, or in which late task responses affect the performance, but not the correctness of the application. For systems with a possible temporary overload, models like the m-K deadline have been proposed in the past. However, the m-K model has several limitations since it does not consider the state of the system and is largely unaware of the way in which the performance is affected by deadline misses (except for critical failures). In this paper, we present a state-based representation of the evolution of a system with respect to each deadline hit or miss event. Our representation is much more general (while hopefully concise enough) to represent the evolution in time of the performance of time-sensitive systems with possible time overloads. We provide the theoretical foundations for our model and also show an application to a simple system to give examples of the state representations and their use
    • …
    corecore