18 research outputs found

    Bounding data races in space and time

    Get PDF
    © 2018 ACM. We propose a new semantics for shared-memory parallel programs that gives strong guarantees even in the presence of data races. Our local data race freedom property guarantees that all data-race-free portions of programs exhibit sequential semantics. We provide a straightforward operational semantics and an equivalent axiomatic model, and evaluate an implementation for the OCaml programming language. Our evaluation demonstrates that it is possible to balance a comprehensible memory model with a reasonable (no overhead on x86, ∼0.6% on ARM) sequential performance trade-off in a mainstream programming language

    ΠšΠΎΠΌΠΏΠΈΠ»ΡΡ†ΠΈΡΠΌΠΎΠ΄Π΅Π»ΠΈΠΏΠ°ΠΌΡΡ‚ΠΈ OCaml Π² Power

    No full text

    On Thin Air Reads: Towards an Event Structures Model of Relaxed Memory

    Full text link
    To model relaxed memory, we propose confusion-free event structures over an alphabet with a justification relation. Executions are modeled by justified configurations, where every read event has a justifying write event. Justification alone is too weak a criterion, since it allows cycles of the kind that result in so-called thin-air reads. Acyclic justification forbids such cycles, but also invalidates event reorderings that result from compiler optimizations and dynamic instruction scheduling. We propose the notion of well-justification, based on a game-like model, which strikes a middle ground. We show that well-justified configurations satisfy the DRF theorem: in any data-race free program, all well-justified configurations are sequentially consistent. We also show that rely-guarantee reasoning is sound for well-justified configurations, but not for justified configurations. For example, well-justified configurations are type-safe. Well-justification allows many, but not all reorderings performed by relaxed memory. In particular, it fails to validate the commutation of independent reads. We discuss variations that may address these shortcomings

    SmartTrack: Efficient Predictive Race Detection

    Full text link
    Widely used data race detectors, including the state-of-the-art FastTrack algorithm, incur performance costs that are acceptable for regular in-house testing, but miss races detectable from the analyzed execution. Predictive analyses detect more data races in an analyzed execution than FastTrack detects, but at significantly higher performance cost. This paper presents SmartTrack, an algorithm that optimizes predictive race detection analyses, including two analyses from prior work and a new analysis introduced in this paper. SmartTrack's algorithm incorporates two main optimizations: (1) epoch and ownership optimizations from prior work, applied to predictive analysis for the first time; and (2) novel conflicting critical section optimizations introduced by this paper. Our evaluation shows that SmartTrack achieves performance competitive with FastTrack-a qualitative improvement in the state of the art for data race detection.Comment: Extended arXiv version of PLDI 2020 paper (adds Appendices A-E) #228 SmartTrack: Efficient Predictive Race Detectio

    Bridging the Gap between Programming Languages and Hardware Weak Memory Models

    Full text link
    We develop a new intermediate weak memory model, IMM, as a way of modularizing the proofs of correctness of compilation from concurrent programming languages with weak memory consistency semantics to mainstream multi-core architectures, such as POWER and ARM. We use IMM to prove the correctness of compilation from the promising semantics of Kang et al. to POWER (thereby correcting and improving their result) and ARMv7, as well as to the recently revised ARMv8 model. Our results are mechanized in Coq, and to the best of our knowledge, these are the first machine-verified compilation correctness results for models that are weaker than x86-TSO

    Compass: {S}trong and Compositional Library Specifications in Relaxed Memory Separation Logic

    Get PDF

    Kater: {A}utomating Weak Memory Model Metatheory and Consistency Checking

    Get PDF
    corecore