
Bounding Data Races in Space and Time
(Extended working version, with appendices)

Stephen Dolan

University of Cambridge, UK

KC Sivaramakrishnan

University of Cambridge, UK

Anil Madhavapeddy

University of Cambridge, UK

Abstract
We propose a new semantics for shared-memory parallel

programs that gives strong guarantees even in the presence

of data races. Our local data race freedom property guar-

antees that all data-race-free portions of programs exhibit

sequential semantics. We provide a straightforward oper-

ational semantics and an equivalent axiomatic model, and

evaluate an implementation for the OCaml programming

language. Our evaluation demonstrates that it is possible to

balance a comprehensible memory model with a reasonable

(no overhead on x86, ~0.6% on ARM) sequential performance

trade-off in a mainstream programming language.

CCS Concepts •Computingmethodologies→ Shared
memory algorithms; • Theory of computation → Par-
allel computing models;

Keywords weak memory models, operational semantics

ACM Reference Format:
Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy.

2018. Bounding Data Races in Space and Time: (Extended work-

ing version, with appendices). In Proceedings of working draft (’18).
ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
Modern processors and compilers aggressively optimise pro-

grams. These optimisations accelerate without otherwise af-

fecting sequential programs, but cause surprising behaviours

to be visible in parallel programs. To benefit from these opti-

misations, mainstream languages such as C++ and Java have

adopted complicated memory models which specify which

of these relaxed behaviours programs may observe. However,

these models are difficult to program against directly.

The primary reasoning tools provided to programmers by

these models are the data-race-freedom (DRF) theorems. Pro-
grammers are required to mark as atomic all variables used
for synchronisation between threads, and to avoid data races,
which are concurrent accesses (except concurrent reads) to

nonatomic variables. In return, the DRF theorems guaran-

tee that no relaxed behaviour will be observed. Concisely,

data-race-free programs have sequential semantics.
When programs are not data-race-free, such models give

few or no guarantees about behaviour. This fits well with

’18, August 2018, Cambridge, UK
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

unsafe languages, where misuse of language constructs gen-

erally leads to undefined behaviour. Extending this to data

races, another sort of misuse, is quite natural. On the other

hand, safe languages strive to give well-defined semantics

even to buggy programs. These semantics are expected to

be compositional, so that programs can be understood by

understanding their parts, even if some parts contain bugs.

Giving weak semantics to data races threatens this com-

positionality. In a safe language, when f() + g() returns

the wrong answer even when f() returns the right one, one

can conclude that g has a bug. This property is threatened

by weak semantics for data races, when a correct g could be

caused to return the wrong answer by a data race in f.

We propose a new semantics for shared-memory parallel

programs, which gives strong guarantees even in the face of

data races. Our contributions are to:

• introduce the local DRF property (§2), which allows

compositional reasoning about concurrent programs

even in the presence of data races.

• propose a memorymodel with a straightforward small-

step operational semantics (§3), prove that it has the

local DRF property (§4), and provide an equivalent

axiomatic model (§6).

• show that our model supports many common compiler

optimisations and provide sound compilation schemes

to both the x86 and ARMv8 architectures (§7), and

demonstrate their efficiency in practice in the hybrid

functional-imperative language OCaml (§8).

2 Reasoning Beyond Data-Race Freedom
We propose moving from the global DRF property:

Data-race-free programs have
sequential semantics

to the stronger local DRF property:

All data-race-free parts of programs have
sequential semantics

To demonstrate the difference between global and local

DRF, we present several examples of sequential program

fragments, and multithreaded contexts in which a lack of

local DRF causes unexpected results.

2.1 Bounding Data Races in Space
The first step towards local DRF is bounding data races in
space, ensuring that a data race on one variable does not

affect accesses to a different variable.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/222831817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

Since the C++ memory model gives semantics only to

data-race-free programs, in principle it does not have this

property. Still, it is not obvious how this property could fail to

hold in a reasonable implementation, so we give an example.

Example 1. b = a + 10

Assumption There are no other accesses to a or b.

Expected result Afterwards, b = a + 10.

Possible result Afterwards, b , a + 10. (C++)

Explanation Consider the following multithreaded pro-

gram, where c is a nonatomic global variable:

c = a + 10;

... // some computation

b = a + 10;

c = 1;

Suppose that the elided computation is pure (writes no

memory and has no side-effects). The compiler might notice

that a is not modified between its two reads, and thus oc-

currences of a + 10 may be combined, optimising the first

thread to:

t = a + 10;

c = t;

... // some computation

b = t;
Register pressure in the elided computation can cause the

temporary t to be spilled. Since its value is already stored

in location c, a clever register allocator may choose to re-

materialise t from c instead of allocating a new stack slot
1
,

giving:

t = a + 10;

c = t;

... // some computation

b = c;

c = 1;

However, in the transformed program, the data race be-

tween c = a + 10 and c = 1may cause c to contain the wrong

value. From the programmer’s point of view, two reads of

location a returned two different values, even though there

were no concurrent writes to a! Indeed, the only data race

is the two concurrent writes to c, a variable which is never

read.

A data race on one variable affecting the results of reading

another is far from the worst effect that compiler optimisa-

tions can bestow on racy C++ programs. Boehm [9] gives

several others, but this one suffices to show bounding data

races in space is a nontrivial property, and that reasonable

implementations of C++ do not necessarily possess it.

2.2 Bounding Data Races in Time
In contrast to C++, the Java memory model [16] limits the

allowable behaviours even in the presence of data races. In

particular, the value that is returned by reading a variable

1
This is an optimisation not generally implemented, because of the effort

involved in preserving information about the contents of memory all the

way to register allocation, but has been proposed for addition to LLVM [15].

must be something written to the same variable, so data

races are indeed bounded in space.

However, data races in Java are not bounded in time: a
data race in the past can cause later accesses to have non-

sequential behaviour, as in the following example. Below,

when we say that two accesses happen concurrently, we mean

that neither happens-before the other using the ordering de-

fined by the memory model. Roughly, this means that the

two accesses occur in different threads without any synchro-

nisation between the threads.

Example 2. b = a; c = a;

Assumption No accesses to a, b, c happen concur-

rently with the above.

Expected result Afterwards, b = c.

Possible result Afterwards, b , c. (C++, Java)

Explanation Consider the program below, where flag is

an atomic (volatile in Java) boolean, initially false.

a = 1;

flag = true;

a = 2;

f = flag;

b = a;

c = a;
Suppose that f is true afterwards. Then the read and

the write of flag synchronise with each other (flag being

volatile), so both of the writes to a happen-before both of

the reads, although the writes race with each other.

In such circumstances, the assumption above does hold:

there are no accesses to a, b, c that happen concurrently with

the reads of a. However, Java permits the outcome b = 1, c

= 2, allowing the two reads to read from the two different

writes. Concretely, this can happen if the compiler optimises

b = a to b = 2 without making the same change to c = a.

This situation can occur due to aliasing, if only the first read

from b = a is statically known to be the same location as

that written by a = 2. A concrete example triggering this

behaviour under both Java 8 and 9 appears in appendix D of

the technical report [11].

So, the effect of data races in Java is not bounded in time,
because the memory model permits reads to return inconsis-

tent values because of a data race that happened in the past.

Surprisingly, non-sequential behaviour can also occur be-

cause of data races in the future, as in the following example.

We assume the prior definition of class C {int x;}.

Example 3. C c = new C(); c.x = 42; a = c.x;

Assumption There are no other accesses to a.

Expected result Afterwards, a = 42.

Possible result Afterwards, a , 42. (C++, Java)

Explanation Here, we know that there cannot be any data

races in the past on the location c.x, since c is a newly-

allocated object, to which no other thread could yet have

a reference. So, we might imagine that this fragment will

always set a to 42, regardless of what races are present in

the rest of the program.

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

In fact, it is possible for a to get a value other than 42, be-

cause of subsequent data races. Consider this pair of threads:

C c = new C();

c.x = 42;

a = c.x;

g = c; g.x = 7;
The read of c.x and the write of g performed by the first

thread operate on separate locations, so the Java memory

model permits them to be reordered. This can cause the read

of c.x to return 7, as written by the second thread.

So, providing local DRF requires us to prevent loads being

reordered with later stores, which constrains both compiler

optimisations and compilation to weakly-ordered hardware.

We examine the performance cost of these constraints in

detail in §8, and revisit the topic in §9.1.

2.3 Global and Local DRF
We propose a local DRF property which states that data races

are bounded in space and time: accesses to variables are not

affected by data races on other variables, data races in the

past, or data races in the future. In particular, the following

intuitive property holds:

If a location a is read twice by the same thread,
and there are no concurrent writes to a, then both
reads return the same value.

We formally state the local DRF theorem for our model

in §4, after introducing the operational semantics in §3. De-

tailed proofs appear in the appendix. Thanks to the local

DRF theorem, we can prove that each of the examples above

has the expected behaviour (see §5).

Using the standard global DRF theorems, we are able to

prove that each of the three examples above have the ex-

pected behaviour, but only under the stronger assumption

that there are no data races on any variables at any time dur-

ing the program’s execution. Local DRF allows us to prove

the same results, but under more general assumptions that

are robust to the presence of data races in other parts of the

program.

3 A Simple Operational Model
Here, we introduce the formal memory model for which we

prove local DRF in §4. Our model is an small-step operational

one, where memory consists of locations ℓ ∈ L, divided into

atomic locations A, B, . . . and nonatomic locations a, b, . . . , in
which may be stored values x ,y ∈ V .

The program interacts withmemory by performing actions
ϕ on locations. There are two types of action: write x , which
writes the value x to a location, and read x , which reads

a location, resulting in the value x . We write ℓ : ϕ for the

action ϕ applied to the location ℓ.
Memory itself is represented by a store S . Under a sequen-

tially consistent semantics, the store simply maps locations

to values. Our semantics is not sequentially consistent, and

the form of stores is more complex, since there is not neces-

sarily a single value that a read of a location must return.

Instead, our stores map nonatomic locations a to histories
H , which are finite maps from timestamps t to values x .
Following Kang et al. [13], we take timestamps to be rational

numbers rather than integers: they are totally ordered but

dense, with a timestamp between any two others. Again

following Kang et al., we equip every thread with a frontier
F , which is a map from nonatomic locations to timestamps.

Intuitively, each thread’s frontier records, for each nonatomic

location, the latest write known to the thread. More recent

writes may have occurred, but are not guaranteed to be

visible.

Atomic locations, on the other hand, are mapped by the

store to a pair (F ,x), containing a single value x rather than a

history. Additionally, atomic locations carry a frontier, which

is merged with the frontiers of threads that operate on the

location. In this way, nonatomic writes made by one thread

can become known to another by communicating via an

atomic location.

The core of the semantics is thememory operation relation

C; F
ℓ:ϕ
−−→→ C ′

; F ′

which specifies that when a thread with frontier F performs

an action ϕ on location ℓ containing contents C , then the

new contents of the location will beC ′
and the thread’s new

frontier will be F ′
.

There are four cases, for read and write, atomic and non-

atomic actions, shown in fig. 1c. When reading a nonatomic

variable, rule Read-NA specifies that threads may read an

arbitrary element of the history, as long as it is not older

than the timestamp in the thread’s frontier.

Dually, when writing to a nonatomic location, ruleWrite-

NA specifies that the timestamp of the new entry in the

location’s history must be later than that in the thread’s

frontier. Note a subtlety here: the timestamp need not be

later than everything else in the history, merely later than

any other write known to the writing thread.

Atomic operations (rules Read-AT and Write-AT) are

standard sequential operations, except that they also involve

updating frontiers. During atomic writes, the frontiers of

the location and the thread are merged, while during atomic

reads the frontier of the location is merged into that of the

thread, but the location is unmodified. The join operation

F1 ⊔ F2 combines two frontiers F1, F2 by choosing the later

timestamp for each location.

The program itself consists of expressions e, e ′. Our seman-

tics ofmemory does not specify the exact form of expressions,

but we assume they are equipped with a small-step transition

relation . A step may or may not involve performing an

action, giving two distinct types of transition:

e
ϵ
e ′ e

ℓ:ϕ
e ′

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

Location l ∈ L

Atomic locations A,B, . . . ∈ L

Nonatomic locations a,b, . . . ∈ L

Timestamp t ∈ Q
Values x ,y ∈ V

Thread id i
Expression e, e ′

Machine M B ⟨S, P⟩
Store S B a 7→ H ⊎ A 7→ (F ,x)

History H B t 7→ x
Frontier F B a 7→ t
Program P B i 7→ (F , e)

(a) Syntax and configurations

(Silent)

e
ϵ
e ′

⟨S, P[i 7→ (F , e)]⟩ −→
〈
S, P[i 7→ (F , e ′)]

〉
(Memory)

e
ℓ:ϕ

e ′ S(ℓ); F
ℓ:ϕ
−−−→→ C ′

; F ′

⟨S, P[i 7→ (F , e)]⟩ −→
〈
S[ℓ 7→ C ′], P[i 7→ (F ′, e ′)]

〉
(b)Machine steps

(Read-NA) H ; F
a: read H (t)
−−−−−−−−−−→→ H ; F

if F (a) ≤ t , t ∈ dom(H)

(Write-NA) H ; F
a:write x

−−−−−−−−−−→→ H [t 7→ x]; F [a 7→ t]
if F (a) < t , t < dom(H)

(Read-AT) (FA,x); F
A: read x

−−−−−−−−−−→→ (FA,x); FA ⊔ F

(Write-AT) (FA,y); F
A:write x

−−−−−−−−−−→→ (FA ⊔ F ,x); FA ⊔ F

(c) Memory operations

Figure 1. Operational semantics

where ϵ represents silent transitions, those that do not access
memory. The only condition that we do assume of these

transitions is that read transitions are not picky about the

value being read, that is:

Proposition 4. If e ℓ:read x
e ′, then for everyy, e

ℓ:read y
ey

for some ey .

We don’t require that ey not get stuck later, just that the

read itself can progress.

The operational semantics is a small-step relation on ma-
chine configurations M = ⟨S, P⟩, consisting of a store S and

a program P , which consists of a finite set of threads, repre-
sented as a finite map from thread identifier i to a pair of a

frontier F and an expression e .
The two types of transitions in this small-step relation

are shown in fig. 1b, and correspond to the two types of

transitions for expressions. If a thread i with state (F , e) can

take a silent step by e
ϵ

e ′, then its new state is (F , e ′)

(rule Silent). Otherwise, if it can step by e
ℓ:ϕ

e ′, then
the memory operation relation determines the thread’s new

frontier and the new contents of ℓ (ruleMemory).

3.1 Initial States
For simplicity, we assume that all locations are initially set to

some arbitrary value v0 ∈ V . The initial state of a program

whose threads are the expressions ei (for i drawn from some

finite set of thread indices I) is the machine configuration:

M0 =

〈
(a 7→ (0 7→ v0), A 7→ (F0,v0) for a, A ∈ L),
(i 7→ F0, ei for i ∈ I)

〉

The initial frontier F0 maps all locations a to the timestamp

0. In other words, we assume an initial write of v0 to every

location, with timestamp 0 (for nonatomic locations), and

we assume that these initial writes are part of every thread’s

frontier at startup.

3.2 Traces
We write a machine step T from a machine state M to a

machine stateM ′
asM

T
−→ M ′

.

Definition 5 (Trace). A trace

Σ = M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

is a finite sequence of machine transitions starting from the
initial state.

We do not have any requirement that traces lead to final

states. Every prefix of a trace is a trace.

4 Formalising Local DRF
Next, we state and prove the local DRF theorem for themodel,

which states that all data-race-free parts of programs have

sequential behaviour. More specifically, we show that if there

are no ongoing data races on some set L of locations, then

accesses to L will have sequential behaviour, at least until a

data race on L occurs.

We need several intermediate definitions before we can

prove local DRF. First, to specify what “sequential behaviour”

means, we introduce weak transitions, and second, to specify
what “no ongoing data races” means we introduce L-stability.

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

4.1 Weak Transitions
Our is close to a sequential model of memory, only differing

during transitions Read-NA andWrite-NA. We make this

precise by defining weak transitions:

Definition 6 (Weak transition). A weak transition is a ma-
chine step performing a memory operation of one of the fol-
lowing forms:

• H ; F
a:read x
−−−−−−→→ H ; F when H (t) , x for the largest times-

tamp t ∈ dom(H). Informally, this read does not witness
the latest write in that location.

• H ; F
a:write x
−−−−−−→→ H [t 7→ x]; F ′ when t is not greater than

the largest timestamp t ′ ∈ H . Informally, this write is
not the latest write to that location.

Memory operations which are not weak are either opera-

tions on atomic values, or operations on nonatomic values

which access the element of history with the largest times-

tamp. So, a sequence of machine steps involving no weak

transitions is sequentially consistent: one may ignore all

frontiers and discard all elements of histories but the last,

and recover a simple sequential semantics. We take this as

our definition of sequential consistency:

Definition 7 (Sequentially consistent traces). A trace is se-
quentially consistent if it includes no weak transitions.

4.2 Data Races and Happens-Before
Intuitively, a data race occurs whenever a nonatomic location

is used by multiple threads without proper synchronisation.

To define what “proper synchronisation” means, we intro-

duce the happens-before relation.

Definition 8 (Happens-before). Given a trace

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

the happens-before relation is the smallest transitive relation
which relates Ti ,Tj , i < j if

• Ti and Tj occur on the same thread
• Ti is a write andTj is a read or write, to the same atomic
location.

Definition 9 (Conflicting transitions). In a given trace, two
transitions Ti and Tj are conflicting if they access the same
nonatomic location and at least one is a write.

Definition 10 (Data race). Given a trace

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

we say that it there is a data race between two conflicting
transitions Ti and Tj if i < j and Ti does not happen-before Tj .

4.3 L-stability
Definition 11 (L-sequential transitions). Given a set L of lo-
cations, a transition is L-sequential if it is not a weak transition,
or if it is a weak transition on a location not in L.

If we take L to be the set of all nonatomic locations, then L-
sequential transitions are exactly the sequentially consistent

transitions.

Definition 12 (L-stable). A machineM is L-stable if, for all
traces that include M:

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ M

T ′
1

−→ M ′
1

T ′
2

−→ . . .
T ′
n

−−→ M ′
n

in which the transitions T ′
i are L-sequential, then there is no

data race between Ti and T ′
j , for any i, j.

Intuitively, M is L-stable if there are no data races on

locations in L in progress when the program reaches stateM .

There may be data races before reachingM (as in example 2),

there may be data races after reachingM (as in example 3),

but there are no data races between one operation beforeM
and one operation afterwards.

4.4 The Local DRF Theorem
Theorem13 (Local DRF). Given an L-stable machine stateM
(not necessarily the initial state), and a sequence of L-sequential
machine transitions:

M
T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

then either:

• all possible transitionsMn
T ′

−→ M ′ are L-sequential, or

• there is a non-weak transition Mn
T ′

−→ M ′, accessing a
location in L, with a data race between some Ti and T ′

5 Reasoning with Local DRF
Here, we give several examples of reasoning with the local

DRF theorem. First, we use it to prove the standard global

DRF result, justifying our claim to be more general. Second,

we use it to show that the examples of §2 have the expected

semantics, and do not exhibit the odd behaviours of the C++

and Java models.

The standard global DRF theorem is that data-race-free

programs have sequential semantics, which we formalise as

follows:

Theorem 14 (DRF). Suppose that a given program is data-
race-free. That is, suppose that all sequentially consistent traces
starting from the initial machine state contain no data races.
Then all traces starting from the initial state are sequentially
consistent traces.

Proof. Suppose we have a non-sequentially-consistent trace,
whose first weak transition is T ′

:

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

T ′

−→ M ′

Applying local DRF with L as the set of all locations, either:

• T ′
is L-sequential, contradicting that T ′

is weak; or

• There is a sequential transition racing with some Ti ,
contradicting that the program is data-race-free.

□

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

Next, we recall the example fragments from §2:

1. b = a + 10;

2. b = a; c = a;

3. C c = new C(); c.x = 42; a = c.x;

Sequentially, we would expect these fragments to result

in the following:

1. Afterwards, b = a + 10

(assuming no other accesses to a or b)

2. Afterwards, b = c

(assuming no concurrent accesses to a, b or c)

3. Afterwards, a = 42

(assuming no other accesses to a)

Despite the global DRF theorems, we saw that these frag-

ments do not always have sequential behaviour in C++ and

Java, due to:

1. Data races on a third location c (C++ only)

2. Prior data races on a

3. Subsequent data races on a

However, we can apply local DRF to show that these frag-

ments have the expected results. A good rule of thumb when

applying local DRF to a fragment of code is to choose L to

contain every location accessed by the fragment, giving:

1. L = {a, b}
2. L = {a, b, c}
3. L = {a, c, c.x}
Next, we must argue that the machine state before exe-

cuting these fragments is always L-stable. This is true for
fragments 1 and 2 since our assumptions imply that there

are no concurrent accesses to locations in L before executing

these fragments. For fragment 3, there are no concurrent

accesses to a before executing the fragment due to our as-

sumption. There are no concurrent accesses to c or c.x since
c is a newly allocated object.

Local DRF then states that the fragments will have sequen-

tial behaviour at least until the next data race on L. Since
the fragments themselves contain no data races on L, this
implies that they will have the expected behaviour.

6 Axiomatic Semantics
As well as the operational model of §3, we provide an ax-

iomatic model and use it to verify our compilation schemes

to hardware (sections 7.2 and 7.3), characterise allowed in-

struction reorderings by compiler optimisations (§7.1), and

for comparison with other memory models (§9.2).

Instead of traces of a machine state, the axiomatic se-

mantics represents program behaviour by a set of events
E = (k, ℓ,ϕ), where k is an event identifier, ℓ is a location and

ϕ is an action. We say that E is a read event with value x if

ϕ = read x , and similarly for write events.
The event identifiers k are of one of two forms: either a

pair (i,n), indicating the nth event performed in program

order by thread i , or else IWℓ , indicating the initial write of
v0 to location ℓ performed before program start.

(Silent-G)

e
ϵ
e ′

⟨G, P[i 7→ (n, e)]⟩ −→
〈
G, P[i 7→ (n, e ′)]

〉
(Memory-G)

e
ℓ:ϕ

e ′

⟨G, P[i 7→ (n, e)]⟩ −→〈
G ∪ {((i,n), ℓ,ϕ)}, P[i 7→ (n + 1, e ′)]

〉
Figure 2. Generating events from programs

In the axiomatic semantics, events are generated from

program execution, building a finite set of events G (called

an event graph) according to the rules in fig. 2. In these rules,

the program P is a finite map of thread identifiers i to pairs

(n, e), where e is the current expression of the thread and n
is the number of events already produced by that thread.

The initial event graphG0 contains only the initial writes,

corresponding to the initial machine stateM0:

G0 = {(IWℓ, ℓ,v0) | ℓ ∈ L}

The event graphsG generated by the rules of fig. 2 include

all possible executions of the program, as well as many non-

sensical executions. The axiomatic semantics then restricts

the possible event graphs to the consistent executions.
The definition of consistent executions is done in two

stages. First, we define the intermediate notion of candidate
execution, which is an event graph G equipped with binary

relations po (program order), rf (reads-from) and co (coher-
ence), such that the following conditions hold:

• po relates events with identifiers (i1,n1) and (i2,n2) if
i1 = i2 and n1 < n2.

• If EW rf ER , then EW is a write event and ER is a read

event, both having the same location and value.

• For every read event ER ∈ G, there is a unique event
EW ∈ G such that EW rf ER .

• If E1 co E2, then E1 and E2 are write events to the same

location.

• For each location ℓ, co is a strict (irreflexive) total order
on write events to that location.

In any candidate execution, we define the relation hb to
be the smallest transitive relation including the following:

• E1 hb E2 whenever E1 is an initial write and E2 is not.
• E1 hb E2 whenever E1 po E2.
• E1 hb E2 whenever E1 and E2 access the same atomic

location, and either E1 co E2 or E1 rf E2.
We also define fr (from-reads) so that E1 fr E2 if there

exists an event E ′
such that E ′ rf E1 and E ′ co E2. Intuitively,

E1 fr E2 if E1 reads a value which is later overwritten by E2.
The relation frat is fr restricted to atomic locations.

A consistent execution is a candidate execution satisfying:

Causality There are no cycles in hb ∪ rf ∪ frat

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

CoWW There are no E1,E2 such that E1 hb E2, E2 co E1
CoWR There are no E1,E2 such that E1 hb E2, E2 fr E1

6.1 Relating the Operational and Axiomatic
Semantics

Next, we show that the operational semantics (traces) and

axiomatic semantics (consistent executions) do in fact define

the same memory model. First, we define the function |−|

which maps traces to event graphs:

|∅| = G0

|M0 · · ·Mn︸ ︷︷ ︸
Σ

Tn+1
−−−→ Mn+1 | = |Σ|

if the transition Tn+1 is Silent, and

|M0 · · ·Mn︸ ︷︷ ︸
Σ

Tn+1
−−−→ Mn+1 | = |Σ| ∪ {((i,m), ℓ,ϕ}

if the transition Tn+1 uses Memory with ℓ,ϕ and Σ contains

m prior memory operation steps on thread i .
If Σ is a trace, then the events of |Σ| correspond to the

memory operation steps (fig. 1c) of Σ. For an event E ∈ |Σ|
(other than an initial write), we write T (E) for the corre-

sponding transition in Σ. For two such events E1,E2 ∈ |Σ|,
we write E1 <Σ E2 if the transition T (E1) occurs before the
transition T (E2) in the trace Σ. From any Σ, we construct a
candidate execution (|Σ|, poΣ, rfΣ, coΣ) as follows:

• poΣ is the largest subset of <Σ relating only events on

the same thread.

• rfΣ,A relates EW to ER whenever ER is a read of A (Read-
AT), and EW is the most recent (by <Σ) write to A
(Write-AT), or IWA if no such write exists.

• rfΣ,a relates EW to ER whenever ER is a read of a (Read-
NA), and EW is the unique write to a (Write-NA) with

the same timestamp, or IWa if no such write exists.

• rfΣ =
⋃

ℓ rfℓ
• coΣ,A is the largest subset of <Σ relating only events

writing to A.
• coΣ,a orders the write events to a by timestamp. Note

that this might disagree with <Σ.
• coΣ =

⋃
ℓ coℓ

The relationship between the operational and axiomatic se-

mantics consists of a pair of theorems:

Theorem 15 (Soundness of axiomatic semantics). For all Σ,
(|Σ|, poΣ, rfΣ, coΣ) is a consistent execution.

Theorem 16 (Completeness of axiomatic semantics). Every
consistent (G, po, rf, co) is (|Σ|, poΣ, rfΣ, coΣ) for some Σ.

7 Compilation
We now show that our memory model can be compiled

efficiently to the x86 and ARMv8 memory models, and define

the optimisations that are valid for a compiler to do.

This section will involve reasoning about relations be-

tween events, so we introduce some concise notation. We

write R1;R2 for relational composition, so that E (R1;R2) E
′

if there is some E ′′
such that E R1 E

′′
and E ′′ R2 E

′
. We write

R−1
for the transpose of R, so that E R−1 E ′

if E ′ R E. We

write 1 for the identity relation, and R? for R ∪ 1, and R+ for
the transitive closure of R. Note that R1?;R2 = (R1;R2) ∪ R2.

In our memory model, not all of the po relation is rele-

vant, which is an important property for both compiler and

hardware optimisations. For instance, there is no constraint

that two nonatomic reads must be done in program order. To

explain this formally, we define several subsets of po for the

parts of program order that are relevant, and show that the

memory model can be defined using only those parts. We

define several subsets of po, relating events E1 and E2 when:

• poat−: E1 is an atomic read or write.

• po−at : E2 is an atomic write.

• poat−at : E1 is an atomic read or write and E2 is an

atomic write.

• poRW : E1 is a read and E2 is a write (not necessarily to

the same location).

• pocon : E1 and E2 access the same location, and at least

one is a write.

Because hardware models treat communication within

a single processor and communication between processors

differently, the rf relation is split into internal and external
parts:

rfi = rf ∩ po rfe = rf\po

and likewise for co and fr.
Informally, happens-before arises from initial writes, pro-

gram order, or program order combined with several steps

of communication via atomic operations. We define the re-

lation hbinit to describe happens-before from initial writes,

relating E1 and E2 when E1 is an initial write and E2 is not.
We define the relation hbcom to describe the communication

via atomic operations, as:

po−at; ((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat−

These relations characterise the hb relation precisely:

Theorem 17. For any candidate execution, hb = hbinit ∪
hbcom ∪ po.

To show the correctness of reordering and compilation, we

use an alternative characterisation of consistent executions:

Theorem 18. A candidate execution is consistent iff it satis-
fies the following conditions:

Causality There are no cycles in the following relation:

hbcom ∪ poat− ∪ po−at ∪ poRW ∪ rfe ∪ freat

Coherence The following relation is irreflexive:

(hbinit ∪ hbcom ∪ pocon); (fr ∪ co)

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

7.1 Compiler Optimisations
In this section, we reason about the correctness of compiler

optimisations in terms of valid reorderings and peephole op-

timisations. Theorem 18 characterises consistent executions,

but refers only to certain subrelations of po, and never to the
entire program order relation. Since theorem 18 refers only

to the nonexistence of certain cycles, optimisations which

introduce extra program order edges between events are

permissible, since they cannot cause forbidden behaviours

to become allowed. Therefore, any optimisation which does

not shrink these subrelations of po is permissible, which

characterises the constraints on optimisations:

• poat−: Operations must not be moved before prior

atomic operations.

• po−at : Operations must not be moved after subsequent

atomic writes.

• poRW : Prior reads must not be moved after subsequent

writes.

• pocon : Conflicting operations must not be reordered.

Furthermore, certain transformations involving adjacent

operations on the same location are permissible. We reason

about the correctness of peephole optimisations by arguing

that the effect of the transformation is explained by our op-

erational semantics (§3). In the following, a,b,c are distinct

nonatomic locations, r1,r2 are registers and x,y are values.

Sequentialisation: [P || Q] ⇒ [P; Q]. Since replacing a

parallel computations with a sequential computation only

adds edges to po, no forbidden cycle can become allowed.

This seemingly-natural optimisation is in fact invalid under

many memory models including C++ and Java [13, 23].

Redundant Load (RL): [r1 = a; r2 = a] ⇒ [r1 = a; r2

= r1]. By Read-NA, if the read of a yields x , then there is

a write of value x at some timestamp t in a’s history. The
second read is allowed to read the same write.

Store Forwarding (SF): [a = x; r1 = a] ⇒ [a = x; r1

= x]. By Write-NA, the write of x to a is included in a’s
history. The subsequent read is allowed to read this write.

Dead Store (DS): [a = x; a = y]⇒ [a = y]. ByWrite-NA,

the first write is included in a’s history. But the write only
affects the current thread’s frontier. ByRead-NA, every other

thread is allowed to see the prior write to this location; such

a write always exists due to initial write on every location.

Hence, no other thread is obligated to see the first write.

Following the second write, write of y to a is included in the

history and the current thread’s frontier. Any subsequent

reads ofa in this threadmust see the secondwrite (Read-NA).

Hence, no threads may witness the first write.

We can combine reordering and peephole optimisations

to describe common compiler optimisations. Let poRR , poWR
and poWW be the program order relations between reads,

write to reads and writes, respectively.

Table 1. Compilation to x86-TSO

Operation Implementation

Nonatomic read mov R, [x]
Nonatomic write mov [x], R

Atomic read mov R, [x]
Atomic write (lock) xchg R, [x]a

a
The lock prefix is implicit on the xchg instruction.

Common Subexpression Elimination: [r1 = a*2; r2 =

b; r3 = a*2]
r eorder
======⇒ [r1 = a*2; r3 = a*2; r2 = b]

RL
==⇒

[r1 = a*2; r2 = r1; r3 = b], where the first step involves

relaxing poRR , which is permitted by the memory model.

Loop-Invariant Code Motion: [while (...) { a = b; r1

= c*c; ...}]
r eorder
======⇒ [r2 = c*c; while (...) { a = b; r1

= r2; ...}], which involves relaxing poRR and poWR , both

of which are permitted.

Dead Store Elimination: [a = 1; b = c; a = 2]
r eorder
======⇒

[b = c; a = 1; a = 2]
DS
==⇒ [b = c; a = 2], where the first

step relaxes poWW and poWR , both of which are permitted.

Constant Propagation: [a = 1; b = c; r = a]
r eorder
======⇒

[b = c; a = 1; r = a]
SF
==⇒ [b = c; a = 1; r = 1], where

the first step relaxes poWW and poWR , both of which are

permitted.

Furthermore, if a program fragment satisfies the local DRF

property, then the compiler is free to apply any optimisations

valid for sequential programs, not just the ones permitted

by the memory model, to that program fragment.

On the other hand, any compiler optimisation that breaks

the load-to-store ordering is disallowed. For example, con-

sider redundant store elimination optimisation: [r1 = a; b

= c; a = r1]
r eorder
======⇒ [r1 = a; a = r1; b = c] ⇒ [r1 = a;

b = c]. The first step relaxes poRW which is disallowed.

7.2 Compilation to x86-TSO
The first compilation target is the x86-TSO model [22], for

which we use the axiomatic presentation of Alglave et al. [6].

The compilation model is shown in table 1.

One wrinkle is that the hardware model for x86 has read-

modify-write instructions (such as the xchg we are using

for atomic stores), and our software model does not. Rather

than adopting a new event type for RMW instructions, we

adopt an encoding used by Wickerson et al. [24] and sepa-

rate RMWs into a pair of a read and a write, with a marker

indicating they are part of the same operation. Formally, we

say that (G, po, rf, co, rmw) is an x86-candidate execution if

(G, po, rf, co) is a candidate execution, and rmw is a subset

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

Definitions of sets of events:
M = all events R = read events W = write events

WA = atomic write events (those with a rmw-predecessor)

Definitions of relations:

poloc = po ∩ {E1,E2 | E1,E2 access same location}

poghb = po ∩ ((W ×W) ∪ (R ×M))

implied = po ∩ ((W ×WA) ∪ (WA × R))

ghb = implied ∪ poghb ∪ rfe ∪ fr ∪ co

Conditions:

acyclic(poloc ∪ rf ∪ fr ∪ co)

acyclic(ghb)

rmw ∩ (fre; coe) = ∅

Figure 3. Axiomatic model of x86-TSO

of po relating reads to writes, with no operations in program

order between the read and the write.

An x86-candidate execution is x86-consistent if it satisfies
the rules of fig. 3. In particular, the axiom rmw ∩ (fre; coe)
ensures that RMW instructions such as xchg are atomic, by

ensuring that there can be no intervening write between the

read and the write part of the operation. Of course, there

are many other features supported by the hardware not

modelled by these rules: fences, non-temporal stores, self-

modifying code, and so on. We use a simplified hardware

model that does not include these, since they are not used

by our compilation scheme.

Soundness of compilationmeans that every behaviour that

the hardware model allows of a compiled program is allowed

by the software model of the original program. Formally, we

say that a candidate execution (G, po, rf, co) is compiled to

an x86-candidate execution (G ′, po′, rf ′, co′, rmw′) if there

are functions ϕ fromG toG ′
and ϕWA from the atomic writes

of G to G ′
such that:

• ϕ(E) has the same action type (read or write) as E
• ϕ(E1) po′ ϕ(E2) iff E1 po E2
• ϕ(E1) rf ′ ϕ(E2) iff E1 rf E2
• ϕ(E1) co′ ϕ(E2) iff E1 co E2
• ϕWA(EW) rmw′ ϕ(EW) for atomic writes EW

This definition encodes the scheme of table 1, in particular

by mapping atomic writes to read-modify-write instructions.

Theorem 19 (Soundness of compilation to x86). If (G, po,
rf, co) is compiled to (G ′, po′, rf ′, co′, rmw′), and the latter is
an x86-consistent execution, then the former is a consistent
execution.

7.3 Compilation to ARMv8 (AArch64)
Compilation to the ARMv8 architecture is more subtle than

to x86, due to the complexities introduced by the relaxed

memory ordering of ARM processors [21]. The main issue is

that the ARMv8 architecture admits load-buffering, allowing
cycles in po ∪ rf. The classic example is as follows:

ldr R0, [x]

mov R1 ,#1

str R1 ,[y]

ldr R0, [y]

mov R1 ,#1

str R1 ,[x]

Even though x and y are both initially zero, it is possible for

both processors to end with R0 = 1, having read each other’s

writes, since the stores may be executed ahead of the loads.

As we saw in example 3, such behaviour is incompatible

with local DRF as it causes data races in the future to affect

computations now. Our compilation scheme must introduce

enough dependencies that the processor is prevented from

performing such reorderings.

There are several ways to accomplish this. Two simple

ones are to insert a branch after loads, or to insert a dmb ld

barrier before stores, shown in tables 2a and 2b respectively.

We benchmark both of these approaches in §8, and find the

overhead to be small.

The second unusual aspect of our compilation scheme is

that we compile atomic stores as atomic exchanges, rather

than simply using the stlr instruction directly. Our atom-

ics make stronger guarantees than those provided by the

stlr and ldar instructions on ARMv8. These instructions

were designed to implement the C++ SC atomics, which have

some curious behaviours with no simple operational explana-

tion (see §9.2). In particular, ordering is preserved between

nonatomic loads and subsequent atomic loads (for which

we add dmb ld on atomic loads), between atomic stores and

subsequent nonatomic stores (for which we add dmb st on

atomic stores), and between atomic stores and subsequent

nonatomic loads (for which we code atomic stores as ex-

changes). In each case, the full dmb barrier would suffice [20],

but the versions chosen are cheaper.

Formally, an ARM-candidate execution is the same as an

x86-candidate execution, except that events are annotated

withwhether they are atomic (ldar, stlr, ldaxr, stlxr) or not

(ldr, str). A candidate execution (G, po, rf, co) is compiled to

an ARM-candidate execution (G ′, po′, rf ′, co′, rmw′) if there

are functions ϕ fromG toG ′
and ϕWA from the atomic writes

of G to G ′
such that:

• ϕ(E) has the same action type (read or write) as E
• ϕ(E) is atomic iff E operates on an atomic location

• If E1 poRW E2, then ϕ(E1) (dep ∪ bob) ϕ(E2)
• ϕ(E1) po′ ϕ(E2) iff E1 po E2
• ϕ(E1) rf ′ ϕ(E2) iff E1 rf E2
• ϕ(E1) co′ ϕ(E2) iff E1 co E2
• ϕWA(EW) rmw′ ϕ(EW) for atomic writes EW

The definition is similar to the case for x86, with the addi-

tional complication of needing to preserve read-to-write or-

dering, by ensuring that poRW ⊆ obs (by inserting branches,

dmb ld, or another means).

An ARM-candidate execution is ARM-consistent if it sat-
isfies the rules of fig. 4, which is an abridged version of the

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

Table 2. Compilation to ARMv8 (AArch64)

Operation Implementation

Nonatomic read ldr R, [x]; cbz R, L; L:

Nonatomic write str R, [x]

Atomic read dmb ld; ldar R, [x]

Atomic write L: ldaxr; stlxr; cbnz L; dmb st

(a) Compilation scheme 1

Operation Implementation

Nonatomic read ldr R, [x]

Nonatomic write dmb ld; str R, [x]

Atomic read dmb ld; ldar R, [x]

Atomic write L: ldaxr; stlxr; cbnz L; dmb st

(b) Compilation scheme 2

multi-copy atomic ARMv8 specification. Ignoring the [. . .]
markers, these rules define a weaker model than the full

specification, by omitting several ordering guarantees made

by the architecture. This simplified model is enough to es-

tablish soundness for our compilation scheme, and readers

interested in the full model are referred to Pulte et al. [20].

The soundness theorem parallels that for x86:

Theorem 20 (Soundness of compilation to ARMv8).
If (G, po, rf, co) is compiled to (G ′, po′, rf ′, co′, rmw′), and the
latter is an ARM-consistent execution, then the former is a
consistent execution.

8 Performance Evaluation
We now quantify the performance impact of our memory

model by evaluating a large suite of sequential OCaml bench-

marks. Each compiler variant we consider is the stock OCaml

compiler (trunk snapshot as of 2017-09-18) with patches to

emit the necessary instruction sequences for enforcing our

memory model on the target architecture. We focus on quan-

tifying the cost of nonatomic accesses on ARM and POWER

architectures, since nonatomics in our memory model are

free on x86. We leave the evaluation of the performance of

our atomics for future work.

Our aim is to evaluate the suitability of the memory model

to be the default one in Multicore OCaml [12], a parallel ex-

tension of OCaml with thread-local minor heaps and shared

major heap. The compiler variants used in our evaluation

are stock OCaml with memory model patches but not the

parallel runtime, so that we can quantify the performance

impact of the memory model in isolation.

The ARM machine (AArch64) is a 2 socket, 96-core 2.5GHz

Cavium ThunderX 64-bit ARMv8 server with 32Kb of L1

data cache, 78Kb of L1 instruction cache, and 16Mb shared

L2 cache. The POWER machine (PowerPC) is a 2-core 3425

Definitions of sets of events:
M = all events

R = reads, ldr, ldar or ldaxr
W = writes, str, stlr or stlxr
Acq = load-acquires, ldar or ldaxr
Rel = store-releases, stlr or stlxr

Definitions of relations:

ctrl = events in program order,

separated by a branch dependent on the first

dmbld = events in program order, separated by dmb ld

dmbst = events in program order, separated by dmb st

obs = rfe ∪ fre ∪ coe

dob = addr ∪ (ctrl ∩ (M ×W)) ∪ [. . .]

aob = rmw ∪ [. . .]

bob = (po ∩ (Acq ×M)) ∪ (po ∩ (M × Rel))

∪ (dmbld ∩ (R ×M)) ∪ (dmbst ∩ (W ×W))

∪ (po ∩ (Rel × Acq)) ∪ [. . .]

ob = obs ∪ dob ∪ aob ∪ bob

Conditions:

acyclic(poloc ∪ rf ∪ fr ∪ co)

acyclic(ob)

rmw ∩ (fre; coe) = ∅

Figure 4. Axiomatic model of ARMv8 (abridged)

MHz IBM pSeries virtualised server with 64Kb L1 data cache

and 32K L1 instruction cache.

TheOCaml benchmarks include amix of workloads includ-

ing parsers (menhir, jsontrip, setrip), utilities (cpdf), static

analysis (frama-c) and numerical benchmarks (lexifi-g2gpp,

k-means, minilight, almabench, etc.). The benchmarks were

run one after the other, with the other available cores run-

ning rnd_access to simulate a loaded machine. Figure 5a

shows the memory access distribution of the benchmarks.

8.1 Initialising Stores and Immutable Loads
The Multicore OCaml heap layout with thread-local minor

heaps and a shared major heap offers the opportunity to

optimise initialising stores and loads from immutable fields.

New objects in Multicore OCaml are allocated in a thread-

local minor heap with large objects allocated directly in

the major heap. Such objects are initialised with initialising

stores before the program gets a reference to those objects.

Hence, a thread will see its own initialising stores to the

objects it allocated. However, in a multi-threaded setting,

we need to explicitly ensure that a thread does witness the

initialising stores from a different thread.

In Multicore OCaml, objects in the thread-local minor

heap may become shared when a thread explicitly promotes
the object to the shared heap in response to a request from

a different thread. Thread-local objects may also become

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

M
em

or
y

Ac
ce

ss
 D

is
tri

bu
tio

n
(%

)

0

25

50

75

100

al
m

ab
en

ch
 (2

9.
4)

rn
d_

ac
ce

ss
 (1

06
.2

)
se

tri
p

(1
19

.6
3)

se
tri

p-
sm

al
lb

uf
 (1

19
.3

6)
le

vin
so

n-
du

rb
in

 (1
54

.8
)

cp
df

-tr
an

sf
or

m
 (3

7.
46

)
jso

nt
rip

-s
am

pl
e

(1
45

.4
9)

m
in

ilig
ht

 (1
56

.1
)

cp
df

-s
qu

ee
ze

 (5
9.

38
)

cp
df

-re
fo

rm
at

 (7
7.

58
)

cp
df

-m
er

ge
 (6

2.
16

)
sim

pl
e_

ac
ce

ss
 (3

9.
38

)
lu

-d
ec

om
po

sit
io

n
(1

44
.2

4)
fra

m
a-

c-
id

ct
 (5

7.
67

)
na

ive
-m

ul
til

ay
er

 (1
46

.3
3)

le
xifi

-g
2p

p
(6

5.
67

)

qr
-d

ec
om

po
sit

io
n

(1
46

.6
2)

bd
d

(1
26

.0
3)

fft
 (7

3.
25

)
m

en
hi

r-s
ta

nd
ar

d
(7

0.
6)

fra
m

a-
c-

de
fla

te
 (5

1.
14

)
m

en
hi

r-f
an

cy
 (7

7.
16

)
m

en
hi

r-s
ql

 (1
22

.6
8)

kb
 (1

18
.9

1)
kb

-n
o-

ex
c

(1
19

.8
3)

k-
m

ea
ns

 (1
45

.4
1)

du
ra

nd
-k

er
ne

r-a
be

rth
 (1

38
.7

8)
se

qu
en

ce
 (1

63
.0

9)
se

qu
en

ce
-c

ps
 (1

44
.8

2)

Load immutable field Initialising store Load mutable field Assignment

(a) Memory access characteristics, with access rate (millions/sec) in parentheses

N
or

m
al

ize
d

Ti
m

e

0

0.5

1

1.5

2

2.5

3

3.5

al
m

ab
en

ch
rn

d_
ac

ce
ss

se
tri

p
se

tri
p-

sm
al

lb
uf

le
vin

so
n-

du
rb

in
cp

df
-tr

an
sf

or
m

jso
nt

rip
-s

am
pl

e
m

in
ilig

ht
cp

df
-s

qu
ee

ze
cp

df
-re

fo
rm

at
cp

df
-m

er
ge

sim
pl

e_
ac

ce
ss

lu
-d

ec
om

po
sit

io
n

fra
m

a-
c-

id
ct

na
ive

-m
ul

til
ay

er
le

xifi
-g

2p
p

qr
-d

ec
om

po
sit

io
n

bd
d fft

m
en

hi
r-s

ta
nd

ar
d

fra
m

a-
c-

de
fla

te
m

en
hi

r-f
an

cy
m

en
hi

r-s
ql kb

kb
-n

o-
ex

c
k-

m
ea

ns
du

ra
nd

-k
er

ne
r-a

be
rth

se
qu

en
ce

se
qu

en
ce

-c
ps

Branch after mutable load (BAL)
“dmb ld” before assignment (FBS)
Strong release/acquire (SRA)

(b) Performance on AArch64: The baseline is trunk OCaml (as on 2017-09-18)

N
or

m
al

ize
d

Ti
m

e

0

0.25
0.5

0.75

1
1.25

1.5

1.75
2

2.25

2.5

al
m

ab
en

ch
rn

d_
ac

ce
ss

se
tri

p
se

tri
p-

sm
al

lb
uf

le
vin

so
n-

du
rb

in
cp

df
-tr

an
sf

or
m

jso
nt

rip
-s

am
pl

e
m

in
ilig

ht
cp

df
-s

qu
ee

ze
cp

df
-re

fo
rm

at
cp

df
-m

er
ge

sim
pl

e_
ac

ce
ss

lu
-d

ec
om

po
sit

io
n

fra
m

a-
c-

id
ct

na
ive

-m
ul

til
ay

er
le

xifi
-g

2p
p

qr
-d

ec
om

po
sit

io
n

bd
d fft

m
en

hi
r-s

ta
nd

ar
d

fra
m

a-
c-

de
fla

te
m

en
hi

r-f
an

cy
m

en
hi

r-s
ql kb

kb
-n

o-
ex

c
k-

m
ea

ns
du

ra
nd

-k
er

ne
r-a

be
rth

se
qu

en
ce

se
qu

en
ce

-c
ps

Branch after mutable load (BAL)
“lwsync” before assignment (FBS)
Strong release/acquire (SRA)

(c) Performance on 64-bit PowerPC: The baseline is trunk OCaml (as on 2017-09-18)

Figure 5. Performance results

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

shared after they are promoted to the major heap at the end

of a minor collection followed by assigning the object to a

shared variable. We issue a full fence (dmb ish on AArch64)

and (sync on PowerPC) at the end of a promotion and minor

GC, which ensures the visibility of initialising stores by a

different thread. We also issue a full fence after initialising

large objects in the major heap and after initialising globals

at the start of the program. We leave the proof of correctness

of initialising stores for future work. As a result, initialising

stores in OCaml are practically free in our memory model.

Multicore OCaml statically distinguishes mutable from

immutable fields. Immutable fields have initialising stores

but have no further assignments. Due to our compilation of

initialising stores, loads from immutable fields can be com-

piled as plain loads. The benchmarks in fig. 5a are arranged

in the order of increasing functionalness: a program that per-

forms fewer loads of mutable fields and assignments is said

to be more functional than a program which does more.

8.2 Assignments and Mutable Loads
We are now left only with imperative operations: assign-

ments to and loads from mutable fields. As we saw in §7.3,

we can enforce our memory model on AArch64 by either com-

piling loads of mutable fields as a dependent branch after

load (BAL, as per table 2a), [r <- ldr; cbz r, L; L:], or

a fence before store (FBS, as per table 2b) that orders prior

loads before the store ([dmb ld; str]). On PowerPC, the equiv-

alent instruction sequences are [r <- ld; cmpi r, 0; beq

L; L:] and [lwsync; st]2.

For the sake of comparison, we also include strong re-

lease/acquire (SRA) [14], which is strictly stronger than

the compilation models presented above. We enforce SRA

by compiling all mutable loads as load acquire ([ldar] on

AArch64 and [r <- ld; cmpi r, 0; beq L; L: isync]

on PowerPC) and assignments are store release ([stlr] on

AArch64 and [lwsync; st] on PowerPC).

8.3 Results
We compare the performance of the different compilation

schemes against vanilla OCaml (snapshot on 2017-09-18),

which compiles loads and stores without any decorations.

The results are presented in fig. 5b and fig. 5c. The results

show that on average, BAL, FBS and SRA are 2.5%, 0.6% and

85.3% slower than the baseline on AArch64 and 2.9%, 26.0%

and 40.8% slower on PowerPC. The low overheads for BAL and

FBS on AArch64 illustrate that the memory model is suitable

for compiling Multicore OCaml while permitting modular

reasoning in the presence of races.

Recall from §7.3 that our goal is to prevent load-buffering

behaviours (i.e poRW reorderings). BAL precisely avoids this

2lwsync is not a precise equivalent of ARM’s dmb ld, but both have the

effect of preserving load-to-store ordering.

reordering permitting the processor to reorder other oper-

ations, and is the optimal compilation scheme in terms of

reorderings allowed. dmb ld orders prior reads before sub-

sequent operations avoiding RR and RW reorderings. How-

ever, FBS for AArch64 only inserts the fence before stores,

and allows all RR reorderings. Compared to dmb ld, lwsync

is stronger since it also avoids WW reordering in addition

to RR and RW reorderings. Hence, the performance impact

of FBS is greater on PowerPC.

SRA is slower on AArch64 due to our compilation model

for floating-point loads and stores. AArch64 does not have

the floating-point equivalent of stlr and ldar instructions.

Hence, we compile floating point loads and stores as dmb

ld after and dmb st before the operations, correspondingly.

This is the reason for marked slowdown of SRA compiled

numerical benchmarks on AArch64. On PowerPC, enforcing

SRA for floating-point memory accesses are no worse than

integer accesses modulo the floating-point comparison for

loads. Hence, the performance impact is moderated. How-

ever, the performance impact is still high compared to the

optimal compilation scheme, BAL.

The results show that some of the benchmarks such as

BAL and FBS versions of sequence and menhir-standard on

AArch64 run faster than the baseline version. We hypothe-

sised that this was due to instruction cache effects. We tested

this hypothesis by padding loads and stores with nop in-

structions in the baseline compiler to match the instruction

length in BAL and FBS, which did indeed produce the same

performance improvement as the BAL and FBS cases.

9 Related Work and Discussion
9.1 Load-buffering and Out-of-thin-air
Our model prohibits loads from being reordered after later

stores, meaning that it is impossible for the following exam-

ple to yield a = 1, b = 1 (all variables start as 0):

x = a;

b = 1;

a = b;

However, weakly-ordered architectures (e.g. POWER and

ARM) allow this outcome, which is why our compilation

scheme requires introduction of dependencies. They do not,

however, allow a = 1, b = 1 in the following example, as it

would involve constructing a value “out of thin air”:

if (a == 1)

b = 1;

a = b;

If all current compiler and hardware optimisations are to be

preserved, then it is necessary to distinguish between these

two classes of load-buffering behaviours. This has proven

remarkably difficult for software models, due particularly

to the difficulty of defining a notion of “dependence” which

survives compiler optimisations [7].

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

We do not attempt to make this distinction, since as ex-

ample 3 showed, even load-to-store reordering without de-

pendence breaks local DRF. Our model simply bans all load-

buffering behaviour instead. This straightforward approach

to side-stepping out-of-thin-air has been proposed before, by

Boehm and Demsky [10]. It was not adopted for C++ (which

currently allows even the out-of-thin-air behaviour above)

on performance grounds. At least in our setting of OCaml,

the performance impact of this approach is low (§8).

9.2 Comparison to Other Memory Models
C++ Due to the “catch-fire” semantics of data races in C++,

a direct comparison with our model is not particularly en-

lightening. However, it is instructive to compare against C++,

if we replace all nonatomic accesses with relaxed atomics,

and use SC atomics for atomic accesses, which ensures races

have well-defined behaviour. Apart from load-buffering (see

above), there are two major differences.

The first is that our model has weaker coherence than

that provided by C++ relaxed atomics. C++ ensures that if a

relaxed atomic write by another thread has been observed

by this thread, subsequent reads of the same variable will

also observe the write. This stronger coherence property is

provided by most hardware models, but invalidates common

optimisations such as CSE by requiring compiler to treat

reads as side-effecting operations [19].

The second major difference is that our atomic writes have

stronger semantics, which is why we use atomic exchanges

instead of stlr on ARMv8. Consider the following, using

an atomic (SC atomic) location A and a nonatomic (relaxed)

location b:

x = b;

A = 1;

A = 2;

b = 1;

In our model, if A = 2 afterwards, then x = 0. This is clear

from the operational semantics: the step x = b must precede

A = 1, which must precede A = 2 and b = 1. However, in C++

the outcome A = 2 and x = 1 is possible. In C++, SC atomic

events are totally ordered, so x = b must happen-before A =

1, which must precede in the SC ordering A = 2, which must

happen-before b = 1. However, these two orderings do not

compose, and in particular x = b does not happen-before b

= 1, and it is permissible for x = b to read-from b = 1.

This behaviour cannot be explained operationally without

either allowing reads to read from future writes, or allowing

atomic locations to contain multiple or incoherent values, so

it is not permitted in our simple operational model. However,

this means that we must choose an alternative compilation

scheme on ARMv8 and similar architectures.

Java Since the primitives memory operations provided by

Java (nonatomic fields and volatile fields with sequentially

consistent semantics) match ours, a direct comparison is

possible. The most notable differences are again, the lack of

load buffering in our model, as well as the lack of coherence

properties in Java [16]. It is this lack of coherence which

causes the effect of example 2, in which data races occurring

in the past do not resolve to a single value.

Promising Semantics The semantics of Kang et al. [13]

accounts for a large fragment of the C++ memory model,

including release-acquire, relaxed and nonatomic accesses,

while introducing a novel “promise” mechanism to give an

operational interpretation to load-buffering behaviours. Im-

portantly, the semantics is well-defined even in the presence

of data races. In fact, our operational semantics (§3) is a

simplified version of this semantics (omitting promises).

We suspect that a weaker version of local DRF holds for

this model, which defends the programmer against data races

in the past or on other variables. Data races in the future

(example 3) still appear, since the purpose of the promising

mechanism is explicitly to permit load-buffering.

Strong Release-Acquire The SRA model of Lahav, Gian-

narakis and Vafeiadis [14] enforces release-acquire semantics

on all accesses. This is a strong memory model, and has an

operational semantics based on message-passing. We con-

jecture that the local DRF property holds in their model.

Unfortunately, the strength of release-acquire accesses make

them efficiently implementable only on strongly-ordered

machines like x86 (see §8.3). In an appendix, Lahav et al.

sketch an extension of their model with nonatomic locations,

although these use catch-fire semantics for races.

Sequential Consistency SC is certainly a well-behaved

memory model, and trivially has the local DRF property.

Sadly, its implementation on commodity architectures is ex-

pensive, requiring even more fences than SRA. Marino et

al. argue that SC can be made affordable by cooperation be-

tween an SC-preserving optimising compiler and a hardware

extension for detecting SC violations [17, 18].

Other Languages Relaxed memory models are currently

being proposed for other high-level languages (JavaScript [2],

WebAssembly [4], Go [1], Rust [5], Swift [3]), but only have

the complex C++ or Java memory models as guidelines. We

believe that our memory model could serve as a reasonable

template for such high-level languages. In particular, adapt-

ing C++ memory model for a safe language proves to be

especially difficult as it is not immediately obvious how to

exclude out-of-thin-air behaviours without paying the cost of

expensive barriers and excluding compiler optimisations [8].

Our model prohibits out-of-thin-air behaviours at a small

sequential performance cost.

10 Conclusions and Future Work
Our memory model is simpler than prevalent mainstream

models and enjoys strong reasoning principles even in the

presence of data races, while remaining efficiently imple-

mentable even on relaxed architectures.We intend thismodel

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

to be the basis of the multicore implementation for the

OCaml programming language, and hope it is of interest

to the designers of other safe languages.

In future work, we plan to extend our currently spartan

model with other types of atomics. In particular, release-

acquire atomics would be a useful extension: they are strong

enough to describe many parallel programming idioms, yet

weak enough to be relatively cheaply implementable. Two

routes to this suggest themselves: by extending our opera-

tional model with release-acquire primitives in the style of

Kang et al. [13], or by extending the SRA model of Lahav et

al. [14] with load-buffering-free nonatomics.

Acknowledgments
We thank JohnWickerson,Mark Batty, Scott Owens, François

Pottier, Luc Maranget, Gabriel Scherer, Aleksey Shipilev and

Doug Lea for their useful comments on earlier versions of

the memory model, as well as Peter Sewell, Shaked Flur, and

the Cambridge Relaxed Memory Concurrency group for help

understanding the ARM hardware models, and Suresh Jagan-

nathan, Gowtham Kaki, Jens Palsberg, and the anonymous

reviewers for their feedback on earlier drafts of this paper.

Portions of this research were funded via a Royal Commis-

sion for the Exhibition of 1851 research fellowship, and by

Jane Street and VMWare. We also thank IBM and Packet.net

for their generous hosting of PowerPC and ARM hardware.

References
[1] 2014. The Go Memory Model. (2014). https://golang.org/ref/mem
[2] 2016. ECMAScript Sharedmem: Formal memory model proposal track-

ing. (2016). https://github.com/tc39/ecmascript_sharedmem/issues/
133

[3] 2017. Concurrency in Swift. (2017). https://github.com/apple/swift/
blob/master/docs/proposals/Concurrency.rst

[4] 2017. WebAssembly Threads. (2017). https://github.com/
WebAssembly/design/issues/1073

[5] 2018. Rust Atomics. (2018). https://doc.rust-lang.org/beta/nomicon/
atomics.html

[6] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010.

Fences in Weak Memory Models. In Proceedings of the 22nd Interna-
tional Conference on Computer Aided Verification (CAV’10). Springer-
Verlag, 258–272. https://doi.org/10.1007/978-3-642-14295-6_25

[7] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-

Pharabod, and Peter Sewell. 2015. The Problem of Programming Lan-
guage Concurrency Semantics. Springer Berlin Heidelberg, 283–307.

https://doi.org/10.1007/978-3-662-46669-8_12
[8] Mark Batty and Peter Sewell. 2014. The Thin-air Problem. (2014).

https://www.cl.cam.ac.uk/~pes20/cpp/notes42.html

[9] Hans-J. Boehm. 2011. How to Miscompile Programs with “Benign”

Data Races. In Proceedings of the 3rd USENIX Conference on Hot Topics
in Parallelism (HotPar’11). USENIX Association. http://dl.acm.org/
citation.cfm?id=2001252.2001255

[10] Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding

Out-of-thin-air Results. In Proceedings of the Workshop on Memory Sys-
tems Performance and Correctness (MSPC ’14). ACM, Article 7, 6 pages.

https://doi.org/10.1145/2618128.2618134
[11] Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018.

Bounding Data Races in Space and Time (extended version). Technical
Report. University of Cambridge, Computer Laboratory.

[12] Stephen Dolan, Leo White, and Anil Madhavapeddy. 2014. Multicore

OCaml. OCaml Workshop. (2014).

[13] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A Promising Semantics for Relaxed-memory Con-

currency. In Proc. POPL ’17. ACM, 175–189. https://doi.org/10.1145/
3009837.3009850

[14] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming

Release-acquire Consistency. SIGPLAN Not. 51, 1 (Jan. 2016), 649–662.
https://doi.org/10.1145/2914770.2837643

[15] Chris Lattner. 2012. Random LLVM Notes. (2012). http://www.nondot.
org/sabre/LLVMNotes/MemoryUseMarkers.txt

[16] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java

Memory Model. In Proc. POPL ’05. ACM, 378–391. https://doi.org/10.
1145/1040305.1040336

[17] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musu-

vathi, and Satish Narayanasamy. 2010. DRFX: A Simple and Efficient

Memory Model for Concurrent Programming Languages. In Proc. PLDI
’10. ACM, 351–362. https://doi.org/10.1145/1806596.1806636

[18] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musu-

vathi, and Satish Narayanasamy. 2011. A Case for an SC-preserving

Compiler. SIGPLAN Not. 46, 6 (June 2011), 199–210. https://doi.org/10.
1145/1993316.1993522

[19] William Pugh. 1999. Fixing the Java Memory Model. In Proceedings
of the ACM 1999 Conference on Java Grande (JAVA ’99). ACM, 89–98.

https://doi.org/10.1145/304065.304106
[20] Chirstopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar,

and Peter Sewell. 2018. Simplifying ARM Concurrency: Multicopy-

atomic Axiomatic and Operational Models for ARMv8. In Proc. POPL
’18.

[21] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek

Williams. 2011. Understanding POWER Multiprocessors. In Proc. PLDI
’11. ACM, 175–186. https://doi.org/10.1145/1993498.1993520

[22] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,

and Magnus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Pro-

grammer’s Model for x86 Multiprocessors. Commun. ACM 53, 7 (July

2010), 89–97. https://doi.org/10.1145/1785414.1785443
[23] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin

Morisset, and Francesco Zappa Nardelli. 2015. Common Compiler

Optimisations Are Invalid in the C11 Memory Model and What We

Can Do About It. In Proc. POPL ’15. ACM, 209–220. https://doi.org/10.
1145/2676726.2676995

[24] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constan-

tinides. 2017. Automatically comparing memory consistency models.

In Proc. POPL ’17. 190–204. http://dl.acm.org/citation.cfm?id=3009838

https://golang.org/ref/mem
https://github.com/tc39/ecmascript_sharedmem/issues/133
https://github.com/tc39/ecmascript_sharedmem/issues/133
https://github.com/apple/swift/blob/master/docs/proposals/Concurrency.rst
https://github.com/apple/swift/blob/master/docs/proposals/Concurrency.rst
https://github.com/WebAssembly/design/issues/1073
https://github.com/WebAssembly/design/issues/1073
https://doc.rust-lang.org/beta/nomicon/atomics.html
https://doc.rust-lang.org/beta/nomicon/atomics.html
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-662-46669-8_12
https://www.cl.cam.ac.uk/~pes20/cpp/notes42.html
http://dl.acm.org/citation.cfm?id=2001252.2001255
http://dl.acm.org/citation.cfm?id=2001252.2001255
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2914770.2837643
http://www.nondot.org/sabre/LLVMNotes/MemoryUseMarkers.txt
http://www.nondot.org/sabre/LLVMNotes/MemoryUseMarkers.txt
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1806596.1806636
https://doi.org/10.1145/1993316.1993522
https://doi.org/10.1145/1993316.1993522
https://doi.org/10.1145/304065.304106
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2676726.2676995
http://dl.acm.org/citation.cfm?id=3009838

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

A Proof of Local DRF
Given a transitionT of some trace, write F (T) for the frontier
of the thread performing T before the operation, and F ′(T)
for the frontier afterwards. We order frontiers pointwise.

Lemma 21. For all transitions T , F (T) ≤ F ′(T).

Proof. Case analysis. F ′(T) is always one of F (T), F [a 7→ t]
for some t > F (a) or FA ⊔ F (T), all of which are ≥ F (T). □

Lemma 22. Given a trace

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

then if Ti happens-before Tj , F ′(Ti) ≤ F ′(Tj).

Proof. Induction on the happens-before relation, giving two

cases:

• Ti and Tj are on the same thread. By lemma 21, fron-

tiers grow monotonically within a thread.

• Ti is a write andTj is a read or write to the same atomic

location. Ti modifies the location’s frontier to F ′(Ti),
and by inspecting fig. 1c, we see that the frontiers asso-

ciated with an atomic location grow monotonically, so

F ′(Tj) contains the location’s frontier, which is above

F ′(Ti).

□

There is a sort of converse of this lemma for nonatomic

writes:

Lemma 23. For any nonatomic location a and trace

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ Mn

then if t ∈ dom F (Tj)(a) where t > 0, then there is some tran-
sition Ti which is a write to the same location a at timestamp
t , such that Ti happens-before Tj .

Proof. By induction on j. Let Tk (k < j) be the transition on

the same thread prior to Tj , so that F ′(Tk) = F (Tj) and Tk
happens-before Tj . Since t ∈ dom F ′(Tk)(a), either

• Tk is a write at timestamp t , in which case we choose

i = k
• t ∈ dom F (Tk)(a), in which case we use the inductive

hypothesis.

• Tk is an atomic operation. Then let Tm be the previ-

ous atomic write to the same location, so that t ∈

dom F (Tm)(a) and the inductive hypothesis applies.

□

As a technicality, we must argue that the semantics is

never obliged to perform weak transitions:

Lemma 24. If M
T1
−→ M1 for some weak transition T , then

M
T2
−→ M2 for some non-weak T2 of the same type (read or

write) accessing the same location, and some machine state
M2.

Proof. IfT1 is a write, pickT2 by choosing a sufficiently large

timestamp. IfT2 is a read, choose a different action that reads

the value with the largest timestamp, and choose a different

expression transition by proposition 4. □

Proof of theorem 13

Proof. Consider an arbitrary trace includingM :

M0

T1
−→ M1

T2
−→ . . .

Tn
−−→ M

T ′
1

−→ M ′
1

T ′
2

−→ . . .
T ′
n

−−→ M ′
n

T ′

−→ M ′

in which the transitions T ′
i are assumed to be L-sequential

(and the others are not). We must show that either T ′
is L-

sequential, or else that there exists someM ′
n

T ′′

−−→ M ′′
with a

data race between some T ′
i and T

′′
.

Suppose T ′
is not L-sequential, and is therefore a weak

transition acting on a nonatomic location a in L. LetH be the

history of a inM ′
n . SinceT

′
is weak, H contains a timestamp

t such that F ′(T ′)(a) < t . Let T ′′
be the non-weak transition

given by lemma 24 which accesses the same location as T ′
.

Timestamp t was added to H by some transition T , which
must have been a write action to location a. If T happens-

before T ′
, then lemma 22 implies t = F ′(T)(a) ≤ F ′(T ′)(a), a

contradiction.

So, T does not happen-before T ′
but conflicts with T ′

, so

there is a data race betweenT andT ′
. L-stability ofM implies

that T cannot be Ti for any i , so it must be some T ′
i , making

T ′′
a non-weak transition with a data race on a ∈ L. □

B Proof of equivalence between
operational and axiomatic models

Given a trace Σ, wewrite hbΣ and frΣ for the relations defined
on the candidate execution (|Σ|, poΣ, rfΣ, coΣ).

Lemma 25. Excluding initial writes, the relations rfΣ, poΣ
and coΣ,A, frΣ,A for atomic locations A are subsets of <Σ.

Proof. Immediate from definition for all but frΣ,A. Suppose
E1 frΣ,A E2, so there is some write E ′

where E ′ rfΣ,A E1,
E ′ coΣ,A E2. If E2 <Σ E1, then E

′
would not be the latest write

before E1, contradicting the definition of rfΣ,A, so E1 <Σ
E2. □

The operational semantics defines a happens-before re-

lation (definition 8), which coincides with the axiomatic se-

mantics’ version:

Lemma 26. For all non-initial E1,E2 ∈ |Σ|, E1 hbΣ E2 iff
T (E1) happens-before T (E2).

Proof. Both definitions agree on program order, but happens-

before refers to the order of atomic operations in the trace

while while hbΣ uses the relations rfΣ and coΣ. For an atomic

location A, relations rfΣ,A, coΣ,A and frΣ,A relate writes to

later operations on the same atomic location, so hb implies

happens-before. Conversely, if E1 is a write and E2 another
operation to the same atomic location, where E1 <Σ E2, then
we must show that E1 hbΣ E2, which we do by case analysis

on the type of E2:

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

• E2 is a write, so E1 coΣ E2 since E1 <Σ E2.
• E2 is a read. Let EW be the unique write such that

EW rfΣ E2, which by definition is the last write be-

fore E2 (ordered by <Σ). Therefore, either EW = E1 so
E1 rfΣ E2, or E1 coΣ EW rf E2.

□

Proof of theorem 15
Wemust show that the candidate execution (|Σ|, poΣ, rfΣ, coΣ)

satisfies Causality, CoWW and CoWR.

Causality When EW is an initial write, there are no events

E ′ hb EW nor E ′ rfΣ EW , and there are no E ′ frΣ EW
since this would imply some other write E ′

W being a co-
predecessor of an initial write. Therefore, initial writes can-

not appear in cycles of hbΣ ∪ rfΣ ∪ frΣ,at.
For events other than initial writes, poΣ, rfΣ, coΣ,A and

frΣ,A (for A atomic location) are all subsets of <Σ (lemma 25),

so a cycle in hbΣ ∪ rfΣ ∪ frΣ,at implies one in <Σ.

CoWW Since E2 coΣ E1, both are writes to some location.

We may assume they are writes to a nonatomic location

a, since coΣ,A ⊆ hbΣ and hbΣ has no cycles by Causality.

Let t1, t2 be the timestamps of T (E1),T (E2). By definition of

Write-NA, F ′(T (E1)) = t1 and F ′(T (E2)) = t2. By definition

of coΣ, t2 < t1. Since E1 hbΣ E2, then by lemmas 22 and 26,

t1 = F ′(T (E1)) ≤ F ′(T (E2)) = t2 < t1, a contradiction.

CoWR As before, we may assume that E2 is a read and

E1 is a write to a nonatomic location a. Let E ′
be the write

such that E ′ rfΣ E2, E
′ coΣ E1. E1 is not initial since it has

a coΣ-predecessor, so let t1 be its timestamp. Let t ′ be the
timestamp of E ′

(taken to be 0 if E ′
is initial), and note that

by definition of Read-NA, F ′(T (E2)) ≤ t ′, and by definition

of coΣ, t ′ < t1. Since E1 hbΣ E2, then by lemmas 22 and 26,

t1 = F ′(T (E1)) ≤ F ′(T (E2)) ≤ t ′ < t1, a contradiction.

Given a consistent execution (G, po, rf, co), define its re-
striction to a subsetG ′ ⊆ G to be (G ′, poG′, rfG′, coG′), where

the relation RG′ restricts R to relate only elements of G ′
.

Lemma 27. If (G, po, rf, co) is a consistent execution, and
E ∈ G is an event such that there is no E ′ where E rf E ′,
then the restriction of the execution to G\{E} is a consistent
execution.

Proof. The restriction is a candidate execution because the

conditions on po and co are true in subsets, and the con-

ditions on rf cannot be violated if there are no events that

read from E. The restriction is consistent because the axioms

Causality, CoWW and CoWR specify the nonexistence of cer-

tain cycles in relations, so cannot be made false by removing

events. □

Proof of theorem 16
We proceed by induction on the number of events (other

than initial writes) in G, noting |∅| = G0 for the base case.

Otherwise,G has n + 1 events other than initial writes. By

Causality, the transitive closure of hb∪ rf∪ frat has no cycles
and is therefore a strict partial order, and by finiteness and

nonemptiness ofG it has an element E which is maximal, in

that there is no E ′
such that E hb E ′

or E rf E ′
or E frat E ′

.

LetG ′ = G\{E}. By lemma 27, the restriction of (G, po, rf, co)
to G ′

is a consistent execution of size n, so by the induc-

tive hypothesis there is a trace Σ′
such that |Σ′ | = G ′

and

(G ′, poΣ′, rfΣ′, coΣ′) is consistent.
E is not an initial write, so let ((i,n), ℓ,ϕ) = E. E has no

po-successors (since po ⊆ hb), so n is the number of po-
prior events on thread i , so we can extend the trace Σ′

with

a transition corresponding to E (possibly preceded by some

silent steps), if we can construct a memory operation for E.
We do so by case analysis on whether ℓ is atomic, and on ϕ:

• ℓ atomic, ϕ = write x : Rule Write-AT always applies.

• ℓ atomic, ϕ = read x : Let EW ∈ G ′
be the unique event

such that EW rf E. In order to apply Read-AT, we must

ensure that there is no intervening write E ′
W ∈ G ′

such that EW <Σ′ E
′
W . By totality of co, EW co E ′

W or

E ′
W co EW . If EW co E ′

W , then E frat E ′
W , contradicting

the fact that E has no frat-successors. If E ′
W co EW ,

then E ′
W hb EW , so E ′

W <Σ′ EW , a contradiction.

• ℓ nonatomic, ϕ = write x : Choose a timestamp t
greater than that of any coΣ-predecessors of Σ and

smaller than that of any coΣ-successors, which always

exists since timestamps are unique and the rationals

are dense. In order to apply Write-NA, we need that

F (T (E))(ℓ) < t . Suppose instead that F (T (E))(ℓ) > t
(it cannot be equal, since writes choose distinct times-

tamps). Then by lemma 23 there is some write event

EW with timestamp t ′ > t which happens-before E.
But then E coΣ EW and EW hbΣ E (by lemma 26), a

violation of CoWW.

• ℓ nonatomic, ϕ = read x : Let EW ∈ G ′
be the unique

event such that EW rf E, and let t be the timestamp

of EW (0 if EW is initial). In order to apply Read-NA,

we must ensure that F (T (E))(ℓ) ≤ t . Suppose instead
that F (T (E))(ℓ) > t . Then by lemma 23 there is some

other write event E ′
W with timestamp t ′ > t which

happens-before E. But then E frΣ E ′
W and E ′

W hbΣ E
(by lemma 26), a violation of CoWR.

C Proofs about compilation
Proof of theorem 17

Proof. In concise notation, hb is:

hb = (hbinit ∪ po ∪ rfat ∪ coat)+

This includes hbinit ∪ hbcom ∪ po. The difficult case is to

show the converse, which we do by showing (i), that:

hbinit ∪ po ∪ rfat ∪ coat ⊆ hbinit ∪ hbcom ∪ po

and (ii), that hbinit ∪ hbcom ∪ po is transitive.

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

(i) First, note that since rfiat ⊆ po, po ∪ rfat = po ∪ rfeat,
and likewise for co, so it suffices to prove:

hbinit ∪ po ∪ rfeat ∪ coeat ⊆ hbinit ∪ hbcom ∪ po

This holds since rfeat ∪ coeat ⊆ hbcom.

(ii) We must show

(hbinit∪hbcom∪po); (hbinit∪hbcom∪po) ⊆ hbinit∪hbcom∪po

The relations hbinit, hbcom and po do not relate initial

events on the right, so (hbinit ∪ hbcom ∪ po); hbinit = ∅,

and hbinit; (hbcom ∪ po) ⊆ hbinit. So, it suffices to show:

(hbcom ∪ po); (hbcom ∪ po) ⊆ hbcom ∪ po

By definition of hbcom and transitivity of po, we have po; hbcom ⊆

hbcom and hbcom; po ⊆ hbcom, so it suffices that:

hbcom; hbcom ⊆ hbcom

Expanding the definition of hbcom,

hbcom; hbcom ⊆

po−at; ((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat−;

po−at; ((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat− ⊆

po−at; ((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat−at;

((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat− ⊆

po−at; ((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat− =

hbcom

□

Proof of theorem 18
The original Causality axiom is:

acyclic(hb ∪ rf ∪ frat)

Expanding hb by theorem 17, this is:

acyclic(hbinit ∪ hbcom ∪ po ∪ rf ∪ frat)

Since rfi, fri ⊆ po, this is:

acyclic(hbinit ∪ hbcom ∪ po ∪ rfe ∪ freat)

An initial write has no predecessors by hbinit, hbcom, po,
rfe, or fre, so edges of hbinit cannot be part of a Causality-
breaking cycle, making this equivalent to:

acyclic(hbcom ∪ po ∪ rfe ∪ freat)

Consider a pair of events E1 po E2 in a cycle of these rela-

tions. We assume that the next and previous elements in the

cycle are on different threads (extending the po-segment by

transitivity, if necessary). All of the relations other than rfe
use atomic events, so either one of E1 or E2 is atomic, or else

we have EW rfe E1 po E2 rfe ER , in which case E1 is a read
and E2 is a write, making Causality equivalent to:

hbcom ∪ po
at− ∪ po−at ∪ poRW ∪ rfe ∪ freat

The original Coherence axioms (CoWW and CoWR), com-

bined, are:

irreflexive(hb; (fr ∪ co))

By theorem 17, this is equivalent to:

irreflexive((hbinit ∪ hbcom ∪ po); (fr ∪ co)

But if E1(fr ∪ co)E2, then E1 and E2 access the same location

and at least one is a write, so this is equivalent to:

irreflexive((hbinit ∪ hbcom ∪ pocon); (fr ∪ co)

Both proofs of soundness of the compilation scheme (to

x86 and to ARM) are done in the same style, by showing that

cycles forbidden in the software model by the Causality and

Coherence rules are part of cycles forbidden in the machine

model.

To remove some clutter, we leave the map ϕ from the

candidate execution to the machine candidate execution im-

plicit in the proofs below, allowing us to conflate po, rf and
co with their counterparts in the machine model, since the

hypotheses of theorems 19 and 20 ensure they must agree.

Proof of theorem 19 (Compilation to x86)
Causality for x86

Proof. Expanding the definition of hb, the Causality axiom

states:

acyclic(hbinit ∪ po ∪ coat ∪ frat ∪ rf)
or equivalently,

acyclic(hbinit ∪ po ∪ coeat ∪ freat ∪ rfe)

since coi, fri, rfi ⊆ po. As before, hbinit cannot take part in
such a cycle, so this is equivalently:

acyclic(po ∪ coeat ∪ freat ∪ rfe)

We show that there are no such cycles by showing that

any cycle would induce a cycle in ghb, which is forbidden in

the x86 model (fig. 3). coat ∪ frat ∪ rf is included in ghb, so
the difficult case is po.
Consider some E1 po E2, part of such a cycle. Since po is

transitive, we may assume that this edge is preceded and

followed by a non-po edge.
Since E1 is preceded by coeat, freat or rfe, it must be an

atomic write (WA), or a possibly-nonatomic read (R). If it is
an atomic write, then E1 (poghb ∪ implied) E2, while if it is
a read, then E1 poghb E2. Either way, E1 ghb E2. □

Coherence for x86
We use the formulation of Coherence from theorem 18.

Splitting it into three cases, we must show that these three

relations are irreflexive:

hbinit; (fr ∪ co)

hbcom; (fr ∪ co)

pocon; (fr ∪ co)

The first is easy since initial writes cannot have co-predecessors.
To prove the second, we first note that po

at− ⊆ ghb and

po−at ⊆ ghb, so hbcom ⊆ ghb and so if therewereE (hbcom; (fr∪
co)) E, then ghb would have a cycle. The third is easy since

’18, August 2018, Cambridge, UK Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy

cycles in poloc ∪ rf ∪ fr ∪ co are not allowed, and pocon ⊆

poloc.

Proof of theorem 20 (Compilation to ARMv8)
Causality for ARMv8

Proof. Expanding the definition of hb, the Causality axiom

states:

acyclic(hbinit ∪ po ∪ coat ∪ frat ∪ rf)
or equivalently,

acyclic(hbinit ∪ po ∪ coeat ∪ freat ∪ rfe)

since coi, fri, rfi ⊆ po. As before, hbinit cannot take part in
such a cycle, so this is equivalently:

acyclic(po ∪ coeat ∪ freat ∪ rfe)

We show that there are no such cycles by showing that

any cycle would induce a cycle in ob, which is forbidden in

the ARMv8 model (fig. 4). coat ∪ frat ∪ rf is included in ob
(via obs), so the difficult case is po.

Consider some E1 po E2, part of such a cycle. Since po is
transitive, we may assume that this edge is preceded and

followed by a non-po edge.
Since E1 is preceded by coeat, freat or rfe, it must be an

atomic write (Rel), or a possibly-nonatomic read (R). Since
E2 is followed by coeat, freat or rfe, it must be an atomic write

(Rel), an atomic read (Acq) or a possibly-nonatomic write.

This gives six cases:

• E1 ∈ Rel,E2 ∈ Rel: (E1,E2) ∈ po ∩ (M × Rel) ⊆ ob
• E1 ∈ Rel,E2 ∈ Acq: (E1,E2) ∈ po ∩ (Rel × Acq) ⊆ ob
• E1 ∈ Rel,E2 ∈ W: (E1,E2) ∈ dmbst ∩ (W ×W) ⊆ ob
• E1 ∈ R,E2 ∈ Rel: (E1,E2) ∈ po ∩ (M × Rel) ⊆ ob
• E1 ∈ R,E2 ∈ Acq: (E1,E2) ∈ dmbld ∩ (R ×M) ⊆ ob
• E1 ∈ R,E2 ∈ W: (E1,E2) ∈ dep ∪ bob ⊆ ob

□

Coherence for ARMv8

Proof. Weuse the formulation of Coherence from theorem 18.

Splitting it into three cases, we must show that these three

relations are irreflexive:

hbinit; (fr ∪ co)

hbcom; (fr ∪ co)

pocon; (fr ∪ co)

The first is easy since initial writes cannot have co-predecessors,
and the third is easy since cycles in poloc ∪ rf ∪ fr ∪ co are
not allowed, and pocon ⊆ poloc. The second case is the hard

case.

We show that hbcom; (fr ∪ co) ⊆ ob+, which the ARMv8

model states cannot have cycles. By definition, hbcom is

po−at; ((coeat ∪ rfeat); poat−at)
∗
; (coeat ∪ rfeat); poat−

Since po−at ⊆ po∩(M ×Rel) ⊆ bob ⊆ ob, we have hbcom ⊆

ob+; (coeat ∪ rfeat), so it suffices to show that:

(coeat ∪ rfeat); poat−; (fr ∪ co) ⊆ ob+

Since fr ∪ co ⊆ fre ∪ coe ∪ po ⊆ ob ∪ po, it is sufficient to

show that:

(coeat ∪ rfeat); poat−; (ob ∪ po) ⊆ ob+

Since po
at−; po ⊆ po

at−, it also suffices that:

(coeat ∪ rfeat); poat− ⊆ ob+

If E1 poat− E2, then E1 is either an atomic write or an atomic

read. Only writes have coe-predecessors, and only reads have
rfe-predecessors, so our goal splits into two cases:

coeat; (po ∩ (Rel ×M)) ⊆ ob+

rfeat; (po ∩ (Acq ×M)) ⊆ ob+

The second case is easy, since (po ∩ (Acq × M)) ⊆ ob. In
the first case, consider E1 coeat E2. Let EW be the latest co-
predecessor of E2 which is not on the same thread as E2.
(In other words, EW is the write just before the chain of co-
edges enters E2’s thread). We have E1 co? EW coe E2. Also,
E1 ob? EW : trivially, if E1 = EW , by coe ⊆ ob if E1 and EW
are on different threads, or by po ∩ (M × Rel) ⊆ ob if they

are on the same thread.

Let E ′
W be the atomic write immediately after EW in co-

herence order, which is on the same thread as E2 (and might

well be the same event), and let E ′
R be its associated ldaxr

event, immediately preceding E ′
W , so that E ′

R rmw E ′
W .

Since E ′
R and E ′

W are a read-modify-write pair, and EW is

the immediate co-predecessor of E ′
W , EW rfe E ′

R . Let E3 now
be some event in program order after E2, and therefore after

E ′
R in program order as well. We now have:

E1 ob? EW rfe E ′
R (po ∩ (Acq ×M)) E3

so E1 ob+ E3.
□

D Example 2 in Java
The Java example below exhibits a failure to bound data races

in time (Example 2). Occasionally, this program prints b = 2,

c = 1, although it depends on the precise compiler options in

use. We reproduced the example using javac Example2.java

&& java -XX:TieredStopAtLevel=1 Example2 on both Java 8

(1.8.0_162) and Java 9 (9.0.1).

Bounding Data Races in Space and Time ’18, August 2018, Cambridge, UK

import java.util.concurrent.CyclicBarrier;

public class Example2 {

static class A { int x; }

A a, a2;

volatile boolean flag;

void reset() {

a = a2 = new A();

flag = false;

}

void p() {

a.x = 1;

flag = true;

}

void q() {

A a = this.a, a2 = this.a2;

a.x = 2;

boolean f = flag;

int b = a.x;

int c = a2.x;

if (f && b != c)

System.out.println ("b = " + b + ", c = " + c);

}

public static void main(String [] args) throws Exception {

final Example2 ex = new Example2 ();

final CyclicBarrier barrier = new CyclicBarrier (2, () -> { ex.reset (); });

final int ITER = 100000000;

Thread t = new Thread () {

public void run() {

for (int i=0; i<ITER; i++) {

try { barrier.await (); }

catch (Exception e) { throw new RuntimeException(e); }

ex.p();

}

}

};

t.start ();

for (int i=0; i<ITER; i++) {

barrier.await ();

ex.q();

}

t.join ();

}

}

	Abstract
	1 Introduction
	2 Reasoning Beyond Data-Race Freedom
	2.1 Bounding Data Races in Space
	2.2 Bounding Data Races in Time
	2.3 Global and Local DRF

	3 A Simple Operational Model
	3.1 Initial States
	3.2 Traces

	4 Formalising Local DRF
	4.1 Weak Transitions
	4.2 Data Races and Happens-Before
	4.3 L-stability
	4.4 The Local DRF Theorem

	5 Reasoning with Local DRF
	6 Axiomatic Semantics
	6.1 Relating the Operational and Axiomatic Semantics

	7 Compilation
	7.1 Compiler Optimisations
	7.2 Compilation to x86-TSO
	7.3 Compilation to ARMv8 (AArch64)

	8 Performance Evaluation
	8.1 Initialising Stores and Immutable Loads
	8.2 Assignments and Mutable Loads
	8.3 Results

	9 Related Work and Discussion
	9.1 Load-buffering and Out-of-thin-air
	9.2 Comparison to Other Memory Models

	10 Conclusions and Future Work
	Acknowledgments
	References
	A Proof of Local DRF
	B Proof of equivalence between operational and axiomatic models
	C Proofs about compilation
	D Example 2 in Java

