283 research outputs found

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Queueing-Theoretic End-to-End Latency Modeling of Future Wireless Networks

    Get PDF
    The fifth generation (5G) of mobile communication networks is envisioned to enable a variety of novel applications. These applications demand requirements from the network, which are diverse and challenging. Consequently, the mobile network has to be not only capable to meet the demands of one of these applications, but also be flexible enough that it can be tailored to different needs of various services. Among these new applications, there are use cases that require low latency as well as an ultra-high reliability, e.g., to ensure unobstructed production in factory automation or road safety for (autonomous) transportation. In these domains, the requirements are crucial, since violating them may lead to financial or even human damage. Hence, an ultra-low probability of failure is necessary. Based on this, two major questions arise that are the motivation for this thesis. First, how can ultra-low failure probabilities be evaluated, since experiments or simulations would require a tremendous number of runs and, thus, turn out to be infeasible. Second, given a network that can be configured differently for different applications through the concept of network slicing, which performance can be expected by different parameters and what is their optimal choice, particularly in the presence of other applications. In this thesis, both questions shall be answered by appropriate mathematical modeling of the radio interface and the radio access network. Thereby the aim is to find the distribution of the (end-to-end) latency, allowing to extract stochastic measures such as the mean, the variance, but also ultra-high percentiles at the distribution tail. The percentile analysis eventually leads to the desired evaluation of worst-case scenarios at ultra-low probabilities. Therefore, the mathematical tool of queuing theory is utilized to study video streaming performance and one or multiple (low-latency) applications. One of the key contributions is the development of a numeric algorithm to obtain the latency of general queuing systems for homogeneous as well as for prioritized heterogeneous traffic. This provides the foundation for analyzing and improving end-to-end latency for applications with known traffic distributions in arbitrary network topologies and consisting of one or multiple network slices.Es wird erwartet, dass die fünfte Mobilfunkgeneration (5G) eine Reihe neuartiger Anwendungen ermöglichen wird. Allerdings stellen diese Anwendungen sowohl sehr unterschiedliche als auch überaus herausfordernde Anforderungen an das Netzwerk. Folglich muss das mobile Netz nicht nur die Voraussetzungen einer einzelnen Anwendungen erfüllen, sondern auch flexibel genug sein, um an die Vorgaben unterschiedlicher Dienste angepasst werden zu können. Ein Teil der neuen Anwendungen erfordert hochzuverlässige Kommunikation mit niedriger Latenz, um beispielsweise unterbrechungsfreie Produktion in der Fabrikautomatisierung oder Sicherheit im (autonomen) Straßenverkehr zu gewährleisten. In diesen Bereichen ist die Erfüllung der gestellten Anforderungen besonders kritisch, da eine Verletzung finanzielle oder sogar personelle Schäden nach sich ziehen könnte. Eine extrem niedrige Ausfallwahrscheinlichkeit ist daher von größter Wichtigkeit. Daraus ergeben sich zwei wesentliche Fragestellungen, welche diese Arbeit motivieren. Erstens, wie können extrem niedrige Ausfallwahrscheinlichkeiten evaluiert werden. Ihr Nachweis durch Experimente oder Simulationen würde eine extrem große Anzahl an Durchläufen benötigen und sich daher als nicht realisierbar herausstellen. Zweitens, welche Performanz ist für ein gegebenes Netzwerk durch unterschiedliche Konfigurationen zu erwarten und wie kann die optimale Konfiguration gewählt werden. Diese Frage ist insbesondere dann interessant, wenn mehrere Anwendungen gleichzeitig bedient werden und durch sogenanntes Slicing für jeden Dienst unterschiedliche Konfigurationen möglich sind. In dieser Arbeit werden beide Fragen durch geeignete mathematische Modellierung der Funkschnittstelle sowie des Funkzugangsnetzes (Radio Access Network) adressiert. Mithilfe der Warteschlangentheorie soll die stochastische Verteilung der (Ende-zu-Ende-) Latenz bestimmt werden. Dies liefert unterschiedliche stochastische Metriken, wie den Erwartungswert, die Varianz und insbesondere extrem hohe Perzentile am oberen Rand der Verteilung. Letztere geben schließlich Aufschluss über die gesuchten schlimmsten Fälle, die mit sehr geringer Wahrscheinlichkeit eintreten können. In der Arbeit werden Videostreaming und ein oder mehrere niedriglatente Anwendungen untersucht. Zu den wichtigsten Beiträgen zählt dabei die Entwicklung einer numerischen Methode, um die Latenz in allgemeinen Warteschlangensystemen für homogenen sowie für priorisierten heterogenen Datenverkehr zu bestimmen. Dies legt die Grundlage für die Analyse und Verbesserung von Ende-zu-Ende-Latenz für Anwendungen mit bekannten Verkehrsverteilungen in beliebigen Netzwerktopologien mit ein oder mehreren Slices

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks

    Full text link
    Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the network edge, thereby meeting the latency requirements of many emerging mobile applications and saving backhaul network bandwidth. Although many existing works have studied computation offloading policies, service caching is an equally, if not more important, design topic of MEC, yet receives much less attention. Service caching refers to caching application services and their related databases/libraries in the edge server (e.g. MEC-enabled BS), thereby enabling corresponding computation tasks to be executed. Because only a small number of application services can be cached in resource-limited edge server at the same time, which services to cache has to be judiciously decided to maximize the edge computing performance. In this paper, we investigate the extremely compelling but much less studied problem of dynamic service caching in MEC-enabled dense cellular networks. We propose an efficient online algorithm, called OREO, which jointly optimizes dynamic service caching and task offloading to address a number of key challenges in MEC systems, including service heterogeneity, unknown system dynamics, spatial demand coupling and decentralized coordination. Our algorithm is developed based on Lyapunov optimization and Gibbs sampling, works online without requiring future information, and achieves provable close-to-optimal performance. Simulation results show that our algorithm can effectively reduce computation latency for end users while keeping energy consumption low

    Statistical Tools and Methodologies for Ultrareliable Low-Latency Communications -- A Tutorial

    Full text link
    Ultra-reliable low-latency communication (URLLC) constitutes a key service class of the fifth generation and beyond cellular networks. Notably, designing and supporting URLLC poses a herculean task due to the fundamental need to identify and accurately characterize the underlying statistical models in which the system operates, e.g., interference statistics, channel conditions, and the behavior of protocols. In general, multi-layer end-to-end approaches considering all the potential delay and error sources and proper statistical tools and methodologies are inevitably required for providing strong reliability and latency guarantees. This paper contributes to the body of knowledge in the latter aspect by providing a tutorial on several statistical tools and methodologies that are useful for designing and analyzing URLLC systems. Specifically, we overview the frameworks related to i) reliability theory, ii) short packet communications, iii) inequalities, distribution bounds, and tail approximations, iv) rare events simulation, vi) queuing theory and information freshness, and v) large-scale tools such as stochastic geometry, clustering, compressed sensing, and mean-field games. Moreover, we often refer to prominent data-driven algorithms within the scope of the discussed tools/methodologies. Throughout the paper, we briefly review the state-of-the-art works using the addressed tools and methodologies, and their link to URLLC systems. Moreover, we discuss novel application examples focused on physical and medium access control layers. Finally, key research challenges and directions are highlighted to elucidate how URLLC analysis/design research may evolve in the coming years.Comment: Accepted in IEEE Proceedings of the IEEE. 40 pages, 20 figures, 11 table
    corecore