110 research outputs found

    Relatively computably enumerable reals

    Full text link
    A real X is defined to be relatively c.e. if there is a real Y such that X is c.e.(Y) and Y does not compute X. A real X is relatively simple and above if there is a real Y <_T X such that X is c.e.(Y) and there is no infinite subset Z of the complement of X such that Z is c.e.(Y). We prove that every nonempty Pi^0_1 class contains a member which is not relatively c.e. and that every 1-generic real is relatively simple and above.Comment: 5 pages. Significant changes from earlier versio

    Kolmogorov complexity and computably enumerable sets

    Full text link
    We study the computably enumerable sets in terms of the: (a) Kolmogorov complexity of their initial segments; (b) Kolmogorov complexity of finite programs when they are used as oracles. We present an extended discussion of the existing research on this topic, along with recent developments and open problems. Besides this survey, our main original result is the following characterization of the computably enumerable sets with trivial initial segment prefix-free complexity. A computably enumerable set AA is KK-trivial if and only if the family of sets with complexity bounded by the complexity of AA is uniformly computable from the halting problem

    Computably enumerable Turing degrees and the meet property

    Get PDF
    Working in the Turing degree structure, we show that those degrees which contain computably enumerable sets all satisfy the meet property, i.e. if a is c.e. and b < a, then there exists non-zero m < a with b ^m = 0. In fact, more than this is true: m may always be chosen to be a minimal degree. This settles a conjecture of Cooper and Epstein from the 80s

    Multiple Permitting and Bounded Turing Reducibilities

    Get PDF
    We look at various properties of the computably enumerable (c.e.) not totally ω-c.e. Turing degrees. In particular, we are interested in the variant of multiple permitting given by those degrees. We define a property of left-c.e. sets called universal similarity property which can be viewed as a universal or uniform version of the property of array noncomputable c.e. sets of agreeing with any c.e. set on some component of a very strong array. Using a multiple permitting argument, we prove that the Turing degrees of the left-c.e. sets with the universal similarity property coincide with the c.e. not totally ω-c.e. degrees. We further introduce and look at various notions of socalled universal array noncomputability and show that c.e. sets with those properties can be found exactly in the c.e. not totally ω-c.e. Turing degrees and that they guarantee a special type of multiple permitting called uniform multiple permitting. We apply these properties of the c.e. not totally ω-c.e. degrees to give alternative proofs of well-known results on those degrees as well as to prove new results. E.g., we show that a c.e. Turing degree contains a left-c.e. set which is not cl-reducible to any complex left-c.e. set if and only if it is not totally ω-c.e. Furthermore, we prove that the nondistributive finite lattice S7 can be embedded into the c.e. Turing degrees precisely below any c.e. not totally ω-c.e. degree. We further look at the question of join preservation for bounded Turing reducibilities r and r′ such that r is stronger than r′. We say that join preservation holds for two reducibilities r and r′ if every join in the c.e. r-degrees is also a join in the c.e. r′-degrees. We consider the class of monotone admissible (uniformly) bounded Turing reducibilities, i.e., the reflexive and transitive Turing reducibilities with use bounded by a function that is contained in a (uniformly computable) family of strictly increasing computable functions. This class contains for example identity bounded Turing (ibT-) and computable Lipschitz (cl-) reducibility. Our main result of Chapter 3 is that join preservation fails for cl and any strictly weaker monotone admissible uniformly bounded Turing reducibility. We also look at the dual question of meet preservation and show that for all monotone admissible bounded Turing reducibilities r and r′ such that r is stronger than r′, meet preservation holds. Finally, we completely solve the question of join and meet preservation in the classical reducibilities 1, m, tt, wtt and T

    Open questions about Ramsey-type statements in reverse mathematics

    Get PDF
    Ramsey's theorem states that for any coloring of the n-element subsets of N with finitely many colors, there is an infinite set H such that all n-element subsets of H have the same color. The strength of consequences of Ramsey's theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey's theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey's theorem.Comment: 15 page
    • …
    corecore