INAUGURAL-DISSERTATION
 zur
 Erlangung der Doktorwürde
 der
 Naturwissenschaftlich-Mathematischen Gesamtfakultät

der
Ruprecht-Karls-Universität
Heidelberg
vorgelegt von

Nadine Losert
aus Worms

Tag der mündlichen Prüfung: \qquad

Multiple Permitting and
 Bounded Turing Reducibilities

Acknowledgements

First of all, I am deeply grateful to my advisor, Klaus Ambos-Spies, for his help and guidance during my work on this thesis, for his patience and for being a kind and considerate supervisor. He taught me about many aspects of computability theory and gave ideas to almost every result included here.

I am also thankful to Rodney G. Downey for many interesting discussions, for explaining all kinds of constructions and for volunteering to be the second reviewer of this thesis. Vielen Dank!

I would like to thank the rest of the Heidelberg Logic Group: Wolfgang Merkle for giving interesting new points of view on many constructions and for stimulating and helping develop our intensively discussed "modular approach" which yielded the universal similarity property; thanks to the secretaries Anja Kamp and Anke Sopka for helping with literally any problem; and to my fellow doctoral students Nan Fang, Thorsten Kräling, Martin Monath and Ivan Titov for interesting discussions about mathematics and life. Special thanks to Martin and Nan for the proof reading. All remaining mistakes are my responsibility, of course.

I owe many thanks to various members of the computability and randomness community. Thanks to Frank Stephan for welcoming me in Singapore and for interesting conversations about learning; to Noam Greenberg, who by asking one single question led to the genesis of more or less all of the second chapter of this thesis; to Liang Yu for helping dive deeper into the topic of maximal pairs; and to Douglas Cenzer for his encouragement during my very first conference.

On a private note, I am deeply thankful to my family, especially to my wonderful parents and grandparents (Danke, liebe Großeltern, ihr seid toll!) for always being there for me and to my great boyfriend Rainer for always being by my side. Thanks to my fabulous friends and "homies" and to "my" children, participants and my colleagues at Lebenshilfe for making me forget about mathematics once in a while.

Abstract

We look at various properties of the computably enumerable (c.e.) not totally ω-c.e. Turing degrees. In particular, we are interested in the variant of multiple permitting given by those degrees. We define a property of left-c.e. sets called universal similarity property which can be viewed as a universal or uniform version of the property of array noncomputable c.e. sets of agreeing with any c.e. set on some component of a very strong array. Using a multiple permitting argument, we prove that the Turing degrees of the left-c.e. sets with the universal similarity property coincide with the c.e. not totally ω-c.e. degrees. We further introduce and look at various notions of socalled universal array noncomputability and show that c.e. sets with those properties can be found exactly in the c.e. not totally ω-c.e. Turing degrees and that they guarantee a special type of multiple permitting called uniform multiple permitting. We apply these properties of the c.e. not totally ω-c.e. degrees to give alternative proofs of well-known results on those degrees as well as to prove new results. E.g., we show that a c.e. Turing degree contains a left-c.e. set which is not cl-reducible to any complex left-c.e. set if and only if it is not totally ω-c.e. Furthermore, we prove that the nondistributive finite lattice \mathcal{S}_{7} can be embedded into the c.e. Turing degrees precisely below any c.e. not totally ω-c.e. degree.

We further look at the question of join preservation for bounded Turing reducibilities r and r^{\prime} such that r is stronger than r^{\prime}. We say that join preservation holds for two reducibilities r and r^{\prime} if every join in the c.e. r-degrees is also a join in the c.e. r^{\prime}-degrees. We consider the class of monotone admissible (uniformly) bounded Turing reducibilities, i.e., the reflexive and transitive Turing reducibilities with use bounded by a function that is contained in a (uniformly computable) family of strictly increasing computable functions. This class contains for example identity bounded Turing (ibT-) and computable Lipschitz (cl-) reducibility. Our main result of Chapter 3 is that join preservation fails for cl and any strictly weaker monotone admissible uniformly bounded Turing reducibility. We also look at the dual question of meet preservation and show that for all monotone admissible bounded Turing reducibilities r and r^{\prime} such that r is stronger than r^{\prime}, meet preservation holds. Finally, we completely solve the question of join and meet preservation in the classical reducibilities $1, \mathrm{~m}$, tt , wtt and T .

Zusammenfassung

Wir betrachten verschiedene Eigenschaften der aufzählbaren nicht vollständig ω-aufzählbaren (not totally ω-c.e.) Turing-Grade. Wir interessieren uns insbesondere für die Varianten des multiplen Permittings, die diese Grade ermöglichen. Wir definieren eine Eigenschaft links-aufzählbarer Mengen, die wir universelle Ähnlichkeitseigenschaft (universal similarity property) nennen und die man als universelle oder uniforme Version jener Eigenschaft Array-nichtberechenbarer aufzählbarer Mengen, mit jeder aufzählbaren Menge auf einer Komponente eines Very-Strong-Arrays übereinzustimmen, auffassen kann. Mithilfe eines multiplen Permitting-Arguments beweisen wir, dass die Turing-Grade der links-aufzählbaren Mengen mit der universellen Ähnlichkeitseigenschaft mit den aufzählbaren nicht vollständig ω-aufzählbaren Turing-Graden übereinstimmen. Weiterhin definieren und betrachten wir verschiedene Begriffe der sogenannten universellen Array-Nichtberechenbarkeit (universal array noncomputability) und zeigen, dass aufzählbare Mengen mit diesen Eigenschaften genau in den aufzählbaren nicht vollständig ω-aufzählbaren Turing-Graden liegen und dass sie eine spezielle Art des multiplen Permittings ermöglichen, die wir uniformes multiples Permitting (uniform multiple permitting) nennen. Wir wenden diese Eigenschaften der aufzählbaren nicht vollständig ω-aufzählbaren Turing-Grade an, um alternative Beweise bekannter Ergebnisse, die diese Grade betreffen, zu führen und um neue Ergebnisse zu beweisen. Beispielsweise zeigen wir, dass ein aufzählbarer Turing-Grad genau dann eine links-aufzählbare Menge enthält, die nicht cl-reduzierbar auf eine komplexe links-aufzählbare Menge ist, wenn er nicht vollständig ω-aufzähbar ist. Außerdem beweisen wir, dass der nichtdistributive endliche Verband \mathcal{S}_{7} genau unterhalb jedes aufzählbaren nicht vollständig ω-aufzählbaren Grades in die aufzählbaren Turing-Grade eingebettet werden kann.

Wir betrachten außerdem die Frage nach der Join-Erhaltung für beschränkte Turing-Reduzierbarkeiten r und r^{\prime} sodass r stärker als r^{\prime} ist. Join-Erhaltung gilt für zwei Reduzierbarkeiten r und r^{\prime}, wenn jeder Join in den aufzählbaren r-Graden auch ein Join in den aufzählbaren r^{\prime} Graden ist. Wir betrachten die Klasse der monotonen zulässigen (uniform) beschränkten TuringReduzierbarkeiten, das heißt, der reflexiven und transitiven Turing-Reduzierbarkeiten, deren UseFunktion durch eine Funktion beschränkt ist, die in einer (uniform berechenbaren) Familie streng monoton steigender berechenbarer Funktionen liegt. Diese Klasse enthält zum Beispiel die ibTReduzierbarkeit und die cl-Reduzierbarkeit. Das Hauptergebnis des dritten Kapitels besagt, dass Join-Erhaltung für cl und eine echt stärkere monotone zulässige uniform beschränkte TuringReduzierbarkeit nicht gelten kann. Wir gehen auch auf die duale Frage nach der Meet-Erhaltung ein und zeigen, dass diese für alle monotonen zulässigen beschränkten Turing-Reduzierbarkeiten r und r^{\prime} gilt, sodass r stärker als r^{\prime} ist. Abschließend beantworten wir die Frage nach der Join- und Meet-Erhaltung in den klassischen Reduzierbarkeiten 1 , m , tt , wtt und T vollständig.

Contents

1 Preliminaries 1
2 Not Totally ω-C.E. Degrees and Multiple Permitting 7
2.1 Introduction 7
2.2 Preliminaries 9
2.3 On Sets with the Universal Similarity Property 14
2.3.1 Sets with the Universal Similarity Property and not Totally ω-C.E. Degrees 15
2.3.2 Sets with the Universal Similarity Property and CB-Randomness 23
2.3.3 Sets with the Universal Similarity Property and Maximal Pairs 24
2.3.4 Sets with the Universal Similarity Property and cl-Reducibility to Complex Sets 27
2.4 Notions of Universal Array Noncomputability 28
2.4.1 Basic Definitions and Facts 29
2.4.2 U.a.n.c. Sets and Multiple Permitting 36
2.4.3 On the wtt-Degrees of U.a.n.c. Sets 38
2.4.4 U.a.n.c. Sets and Sets with the Universal Similarity Property 40
2.4.5 On the T-Degrees of U.a.n.c. Sets 47
2.4.6 \quad Embedding the \mathcal{S}_{7}, an Application of Uniform Multiple Permitting 52
3 Join and Meet Preservation for Bounded Turing Reducibilities 81
3.1 Introduction 81
3.2 Preliminaries 83
3.3 Join Preservation in the Classical Strong Reducibilities 84
3.4 Join Preservation in the ubT-Reducibilities 85
3.5 Meet Preservation in the ubT-Reducibilities 92
3.6 Meet Preservation in the Classical Strong Reducibilities 93
3.7 Open Problems 100

Chapter 1

Preliminaries

In this chapter, we give the most general definitions, notation and conventions used and assumed everywhere (unless mentioned otherwise). Further definitions will be given when needed. Familiarity with basic concepts of computability (see e.g. Soare [Soa87] or Downey and Hirschfeldt [DH10]) is assumed.

Natural numbers are denoted by lower case letters like $x, y, z, x_{0}, x_{1}, x_{2}$ or a, b, c Letters s, t, u mostly refer to stages of constructions or approximations while letters f, g, h mostly denote total functions and lower case Greek letters like φ, ψ stand for partial functions. Finite strings are denoted by lower case Greek letters like σ, τ. Sets of natural numbers are denoted by upper case letters like A, B, C or A_{0}, A_{1}, A_{2}. We denote Turing functionals with upper case Greek letters (e.g., $\Phi, \Psi)$ and their use functions with the corresponding lower case Greek letters (e.g., φ, ψ).

We identify a set A of natural numbers with its characteristic function $A: \omega \rightarrow\{0,1\}$ as well as with its characteristic sequence $A=A(0) A(1) A(2) \ldots . . A \upharpoonright n$ denotes the finite string $A(0) A(1) \ldots A(n-1)$ or, depending of the context, the finite set $A \cap\{0, \ldots, n-1\}$. Unless stated otherwise, we assume that $e, n, s, t, x, y, z \geq 0$ and that $i \leq 1$.

We begin with reviewing the definition of computable approximations and enumerations.
Definition 1. (a) A computable approximation of a set A is a sequence $\left\{A_{s}\right\}_{s \geq 0}$ of finite sets A_{s} such that $\lim _{s \rightarrow \infty} A_{s}(x)=A(x)$ for all $x \geq 0$ and such that there is a computable function f with $A_{s}=D_{f(s)}$ for all $s \geq 0$, i.e., $f(s)$ is the canonical index of A_{s}.
(b) A function $\hat{f}: \omega \times \omega \rightarrow \omega$ is a computable approximation of a unary function f if \hat{f} is computable and $\lim _{s \rightarrow \infty} \hat{f}(x, s)=f(x)$ holds for all $x \geq 0$. If the choice of \hat{f} is clear from the context, we let $f_{s}(x)=\hat{f}(x, s)$ for all x and s.
(c) A computable enumeration of a set A is a computable approximation of A such that for all x and $s, A_{s+1}(x) \geq A_{s}(x)$ holds.

Unless mentioned otherwise, in the following, without loss of generality (w.l.o.g.) we assume that for a given computable approximation $\left\{A_{s}\right\}_{s \geq 0}$ of a set $A, A_{s} \subseteq\{0, \ldots, s-1\}$ holds for all s.

We turn to looking at universal functions and sets.
Definition 2. (a) An n 1-ary partial computable function φ is universal for the n-ary partial computable functions (an n-universal partial computable function) if, for every n-ary partial
computable function ψ, there is an index e such that for all $x_{0}, \ldots x_{n-1}, \varphi_{e}\left(x_{0}, \ldots, x_{n-1}\right)=$ $\varphi\left(e, x_{0}, \ldots, x_{n-1}\right)=\psi\left(x_{0}, \ldots, x_{n-1}\right)$ holds.
(b) A c.e. set W is universal for the (unary) computably enumerable sets (a universal computably enumerable set) if for every c.e. set A, there is an index e such that $W_{e}=\{x:\langle e, x\rangle \in W\}=$ A.

In the following, we sometimes use the term universal function to refer to a unary universal partial computable function. Unless mentioned otherwise, φ denotes the standard universal function obtained by goedelization of the unary Turing machines (for more details, refer to [oa87]). We let φ_{e} denote the e th branch of φ, i.e., $\varphi_{e}(x)=\varphi(e, x)$ for all e and x. Note that each φ_{e} is a unary partial computable function. We may approximate φ in stages, i.e., we let $\varphi_{e, s}(x)=\varphi_{e}(x)$ if $\varphi_{e}(x)$ is defined within the first s steps and $\varphi_{e, s}(x) \uparrow$ otherwise for all e, s and x. W.l.o.g., we assume that for all e, x and s, if $\varphi_{e, s}(x) \downarrow$, then $e, x, \varphi_{e}(x)<s$ holds. We may now use the universal function φ to define a universal c.e. set by letting $W=\left\{\langle e, x\rangle: \varphi_{e}(x) \downarrow\right\}$. An approximation to W is given by $W_{e, s}=\left\{x: \varphi_{e, s}(x) \downarrow\right\}$.

We now give the definition of Turing functionals.
Definition 3. (a) An oracle Turing machine is a Turing machine (for the formal definition of a Turing machine see Soa87, pp. 11-13]) with an additional read-only tape which we call the oracle tape.
(b) A Turing functional is a partial function $\Phi_{M}: \operatorname{POWER}(\omega) \times \omega \rightarrow \omega$ computed by an oracle Turing machine M depending on the oracle set.
(c) The partial function computed by M with the oracle A is denoted by $\Phi_{M}^{A}: \omega \rightarrow \omega$.
(d) We define the use function φ of a Turing functional Φ by

$$
\varphi^{X}(x)= \begin{cases}y+1 & \text { if } \Phi^{X}(x) \downarrow \text { and } y \text { is the greatest oracle query in the computation } \\ 0 & \text { if } \Phi^{X}(x) \downarrow \text { and there are no oracle queries in the computation } \\ \uparrow & \text { otherwise. }\end{cases}
$$

(e) We let $\left\{\Phi_{e}\right\}_{e \geq 0}$ be a standard enumeration of the Turing functionals obtained by goedelization of the oracle Turing machines and we let φ_{e} be the use function of Φ_{e}.

We use computable enumerations of the functionals and of the corresponding use functions which are denoted by an additional index s given by the stage of the enumeration. So, for instance, $\Phi_{e, s}^{X}$ is the result of computing Φ_{e}^{X} for s steps and $\varphi_{e, s}^{X}$ is the corresponding use. Formally, we define:

$$
\begin{aligned}
\Phi_{e, s}^{X}(x) & = \begin{cases}\Phi_{e}^{X}(x) & \text { if the computation of } \Phi_{e}^{X}(x) \text { converges in } \leq s \text { steps } \\
\uparrow & \text { otherwise. }\end{cases} \\
\varphi_{e, s}^{X}(x) & = \begin{cases}\varphi_{e}^{X}(x) & \text { if the computation of } \Phi_{e}^{X}(x) \text { converges in } \leq s \text { steps } \\
\uparrow & \text { otherwise. }\end{cases}
\end{aligned}
$$

We assume that if $\Phi_{e, s}^{X}(x)$ is defined then $e, x, \Phi_{e, s}^{X}(x), \varphi_{e, s}^{X}(x)<s$. Recall the well-known use principle that we will explicitly and implicitly use in many constructions.

Lemma 4. For all sets A and B and for all Turing functionals Φ, the following holds.

$$
\begin{gathered}
\Phi^{A}(x) \downarrow \& B \upharpoonright \varphi^{A}(x)=A \upharpoonright \varphi^{A}(x) \\
\Downarrow \\
\Phi^{B}(x)=\Phi^{A}(x) \& \varphi^{B}(x)=\varphi^{A}(x)
\end{gathered}
$$

In the course of the following chapters, we look at the following reducibilities.
Definition 5. (a) A set A is one-one (1-) reducible to a set $B\left(A \leq_{1} B\right)$ (via f) if there is a computable one-to-one function f such that $x \in A$ if and only if $f(x) \in B$.
(b) A set A is many-one (m-) reducible to a set $B\left(A \leq_{\mathrm{m}} B\right)$ (via f) if there is a computable function f such that $x \in A$ if and only if $f(x) \in B$.
(c) A set A is truth-table (tt -) reducible to a set $B\left(A \leq_{\mathrm{tt}} B\right)$ (via g and h) if there are computable functions $g: \omega \rightarrow \omega^{*}$ and $h: \omega \times\{0,1\}^{*} \rightarrow\{0,1\}$ such that for all x, if $g(x)=y_{0}, \ldots, y_{n}$, then $A(x)=h\left(x, B\left(y_{0}\right), \ldots, B\left(y_{n}\right)\right)$.
(d) A set A is Turing (T-) reducible to a set $B\left(A \leq_{\mathrm{T}} B\right)$ if there is a Turing functional Φ such that $\Phi^{B}(x)=A(x)$ for all $x \geq 0$.
(e) A set A is f-bounded Turing $(f-\mathrm{T})$ reducible to a set $B\left(A \leq_{f-\mathrm{T}} B\right)$ if there is a Turing functional Φ such that $\Phi^{B}(x)=A(x)$ and $\varphi^{B}(x) \leq f(x)+1$ for all x.
(f) A set A is weak truth-table (wtt-) reducible to a set $B\left(A \leq_{\mathrm{wtt}} B\right)$ if A is f-bounded Turing reducible to B for some computable function f.
(g) A set A is linearly bounded Turing (lbT-) reducible to a set $B\left(A \leq_{\mathrm{lbT}} B\right)$ if A is f-bounded Turing reducible to B for a linearly bounded function f, i.e., for a function f satisfying $f(x) \leq$ $k_{0} x+k_{1}$ for some numbers $k_{0}, k_{1}>0$ and all numbers $x \geq 0$.
(h) A set A is $(\mathrm{i}+k)$-bT reducible to a set $B\left(A \leq_{(\mathrm{i}+k) \mathrm{bT}} B\right)$ if A is f-bounded Turing reducible to B for $f(x)=x+k(k \geq 0)$.
(i) A set A is computably Lipschitz (cl-) reducible to a set $B\left(A \leq_{\mathrm{cl}} B\right)$ if A is $(\mathrm{i}+k)$-bT-reducible to B for some $k \geq 0$.
(j) A set A is identity bounded Turing (ibT-) reducible to a set $B\left(A \leq_{\mathrm{ibT}} B\right)$ if A is f-bounded Turing reducible to B for the identity function $f(x)=x$.
(k) We call the r-reducibilities for $r=\mathrm{ibT}$, cl strongly bounded Turing reducibilities.

Convention: In the following, r will, if not stated otherwise, refer to any of the reducibilities $r=1, \mathrm{~m}, \mathrm{tt}, \mathrm{T}$, wtt, lbT , cl, ibT. For reducibilities \leq_{r} which are preorderings (i.e., reflexive and transitive), we define r-equivalence by

$$
A={ }_{r} B \Leftrightarrow\left(A \leq_{r} B \& B \leq_{r} A\right) .
$$

Then $=_{r}$ is an equivalence relation. We call the equivalence class of a set A under $=_{r}$ the r-degree of A :

$$
\operatorname{deg}_{r}(A)=\left\{B: B={ }_{r} A\right\} .
$$

An r-degree is c.e. if it contains a c.e. set. The partial ordering of the c.e. r-degrees is denoted by $\left(\mathbf{R}_{r}, \leq\right)$ and c.e. r-degrees are denoted by bold face lowercase letters ($\left.\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots\right)$. For $r \in$ $\{\mathrm{tt}, \mathrm{T}, \mathrm{wtt}, \mathrm{lbT}, \mathrm{cl}, \mathrm{ibT}\}$, we let $\mathbf{0}_{r}$ denote the r-degree of the computable sets. If the reducibility r is clear from the context, we sometimes write $\mathbf{0}$ for $\mathbf{0}_{r}$. We slightly abuse notation by writing $f \leq_{r}$ a and $A \leq_{r}$ a for a function f, a set A and an r-degree a when we mean $\operatorname{deg}_{r}(f) \leq \mathbf{a}$ and $\operatorname{deg}_{r}(A) \leq \mathbf{a}$, respectively. We will sometimes only use degree to refer to a Turing degree.

A property P of (c.e.) sets is called r-invariant if for all (c.e.) sets A and B such that $P(A)$ and $A={ }_{r} B$ hold, $P(B)$ holds, as well. An r-degree a bounds a set A if $A \leq_{r}$ a holds. For a class \mathcal{C} of sets of natural numbers and a reducibility r, we call a set A-hard for \mathcal{C} if $B \leq_{r} A$ holds for all $B \in \mathcal{C}$ and we call A-complete for \mathcal{C} if A is r-hard for \mathcal{C} and $A \in \mathcal{C}$. An r-degree is r-hard (r-complete) for \mathcal{C} if it contains a set which is r-hard (r-complete) for \mathcal{C}. In the following, we simply say r-hard and r-complete instead of r-hard and r-complete for the class of the c.e. sets, respectively.

We further recall the definitions of meets, joins and (semi-) lattices, lattice embeddings as well as maximal and minimal pairs.

Definition 6. Let $\left(\mathcal{P}, \leq_{\mathcal{P}}\right)$ be a partial ordering.
(a) Two elements $a_{0}, a_{1} \in \mathcal{P}$ have a greatest lower bound or meet if there is an element $b \in \mathcal{P}$ such that $b \leq_{\mathcal{P}} a_{0}, a_{1}$ and such that for all $c \in \mathcal{P}$ with $c \leq_{\mathcal{P}} a_{0}, a_{1}, c \leq_{\mathcal{P}} b$ holds. We then write $a_{0} \wedge a_{1}=b$.
(b) Two elements $a_{0}, a_{1} \in \mathcal{P}$ have a least upper bound or join if there is an element $b \in \mathcal{P}$ such that $a_{0}, a_{1} \leq_{\mathcal{P}} b$ and such that for all $c \in \mathcal{P}$ with $a_{0}, a_{1} \leq_{\mathcal{P}} c, b \leq_{\mathcal{P}} c$ holds. We then write $a_{0} \vee a_{1}=b$.
(c) A partial ordering is a lower semilattice if every pair of elements has a meet and it is an upper semilattice if every pair of elements has a join.
(d) A partial ordering is a lattice if it is a lower semilattice and an upper semilattice.
(e) An upper semilattice $(\mathcal{U}, \leq \mathcal{U})$ is distributive if for all elements a_{0}, a_{1} and b of \mathcal{U}, if $b \leq \mathcal{U} a_{0} \vee a_{1}$, then there are elements $b_{0}, b_{1} \in \mathcal{U}$ such that $b_{0} \leq_{\mathcal{U}} a_{0}, b_{1} \leq_{\mathcal{U}} a_{1}$ and $b=b_{0} \vee b_{1}$ hold and it is nondistributive otherwise.
(f) A lattice $\left(\mathcal{L}, \leq_{\mathcal{L}}\right)$ is modular if for all elements a, b and c of \mathcal{L}, if $a \leq_{\mathcal{L}} c$, then $a \vee(b \wedge c)=$ $(a \vee b) \wedge c$.

Note that every distributive lattice is modular.
Definition 7. Let $\left(\mathcal{L}, \leq_{\mathcal{L}}\right)$ be a lattice and let $\left(\mathcal{U}, \leq_{\mathcal{U}}\right)$ be an upper semilattice. A function p : $\mathcal{L} \rightarrow \mathcal{U}$ is called a lattice embedding (of \mathcal{L} into \mathcal{U}) if p is one-to-one and the following hold for all $a, a_{0}, a_{1}, b \in \mathcal{L}$.
(i) $a \leq_{\mathcal{L}} b$ if and only if $p(a) \leq_{\mathcal{U}} p(b)$.
(ii) If $a_{0} \wedge a_{1}=b$, then $p\left(a_{0}\right) \wedge p\left(a_{1}\right)=p(b)$ and if $a_{0} \vee a_{1}=b$, then $p\left(a_{0}\right) \vee p\left(a_{1}\right)=p(b)$.

A lattice embedding $p: \mathcal{L} \rightarrow \mathcal{U}$ is zero-preserving if \mathcal{L} has a least element a and $p(a)$ is the least element of \mathcal{U}.

For a lattice $\left(\mathcal{L}, \leq_{\mathcal{L}}\right)$ and an upper semilattice $\left(\mathcal{U}, \leq_{\mathcal{U}}\right)$, we say that \mathcal{L} can be embedded into \mathcal{U} if there is a lattice embedding of \mathcal{L} into \mathcal{U} and, for $c \in C$, we say that \mathcal{L} can be embedded into \mathcal{U} below c or that c bounds a (lattice) embedding of \mathcal{L} if there is a lattice embedding p of \mathcal{L} into \mathcal{U} such that $p(a) \leq_{\mathcal{U}} c$ for all $a \in \mathcal{L}$.

Definition 8. For a reducibility r, two c.e. (left-c.e.) r-degrees \mathbf{a}_{0} and \mathbf{a}_{1} are called a maximal pair in the c.e. (left-c.e.) r-degrees or an r-maximal pair in the c.e. (left-c.e.) degrees if they do not have a common upper bound, i.e., if there is no c.e. (left-c.e.) r-degree \mathbf{b} such that $\mathbf{a}_{0}, \mathbf{a}_{1} \leq \mathbf{b}$ holds. If, for two c.e. (left-c.e.) sets A_{0} and $A_{1}, \operatorname{deg}_{r}\left(A_{0}\right)$ and $\operatorname{deg}_{r}\left(A_{1}\right)$ form a maximal pair in the c.e. (left-c.e.) r-degrees, we also call A_{0} and A_{1} an r-maximal pair in the c.e. (left-c.e.) sets.

Definition 9. For a reducibility r, two nonzero c.e. r-degrees \mathbf{a}_{0} and \mathbf{a}_{1} are called a minimal pair in the (c.e.) r-degrees or an r-minimal pair if $\mathbf{a}_{\mathbf{0}} \wedge \mathbf{a}_{\mathbf{1}}=\mathbf{0}_{r}$. If, for two noncomputable c.e. sets A_{0} and A_{1}, deg ${ }_{r}\left(A_{0}\right)$ and $\operatorname{deg}_{r}\left(A_{1}\right)$ form a minimal pair in the (c.e.) r-degrees, we also call A_{0} and A_{1} an r-minimal pair.

Finally, for some constructions, we use the full binary tree $T=\{0,1\}^{<\omega}$ to model guesses about requirements. Here, the elements of T are called nodes and $|\alpha|$ denotes the length of node α. For nodes α and β, α is below β and β is above $\alpha(\alpha \sqsubset \beta)$ if α is a proper initial segment of β. We write $\alpha \sqsubseteq \beta$ if $\alpha \sqsubset \beta$ or $\alpha=\beta$. We say that α is to the left of β and β is to the right of $\alpha\left(\alpha<_{\mathrm{L}} \beta\right)$ if there is a node γ such that $\gamma 0 \sqsubseteq \alpha$ and $\gamma 1 \sqsubseteq \beta$. Finally, we say that α is less than β ($\alpha<\beta$ or $\beta>\alpha)$ if $\alpha<_{\mathrm{L}} \beta$ or $\alpha \sqsubset \beta$.

Chapter 2

Not Totally ω-C.E. Degrees and Multiple Permitting

2.1 Introduction

Permitting arguments are widely used in all kinds of constructions in computability theory. If we wish to construct a set A below a given - or equally constructed - set B, we make sure that the approximation of A can only change below some $x+1$ if the approximation of B changes below $f(x)+1$ for some appropriate computable function f. The most straightforward version of permitting is guaranteed by any approximation of any noncomputable set B. It is argued that, given a strictly increasing computable sequence of numbers x_{0}, x_{1}, \ldots together with a strictly increasing computable sequence of stages s_{0}, s_{1}, \ldots, then for some x_{n}, B has to change below $x_{n}+1$ after stage s_{n}, i.e., permitting has to be given by B for some x_{n} at some point, otherwise the set would be computable. However, this version of permitting is only sufficient if the construction requires one change of the constructed set to make sure a single requirement is met. In more involved constructions, however, we need to successively change A on several numbers or intervals to meet one requirement. Here, we need what is called multiple permitting.

When examining constructions involving multiple permitting, Downey, Jockusch and Stob DJS90 introduced the class of array noncomputable (a.n.c.) c.e. sets and showed that those sets allow certain multiple permitting constructions. They exploited this fact to investigate properties of the c.e. sets which are a.n.c. Building on this approach, many properties where discovered that can be captured with constructions using the multiple permitting given by a.n.c. c.e. sets. E.g., it has been shown by Barmpalias, Downey and Greenberg BDG10 that a c.e. Turing degree a contains a left-c.e. set which is not cl-reducible to any random left-c.e. set if and only if a is a.n.c., i.e., if a contains an a.n.c. c.e. set. This extends the result by Barmpalias and Lewis BL06a] that there exists a left-c.e. set that is not cl-reducible to any random left-c.e. set. The notion of cl-reducibility has been introduced by Downey, Hirschfeldt and LaForte (DHL01, [DHL04) and is closely related to randomness notions. For more background on cl-reducibility, refer to the introduction to Chapter 3.

Another interesting class of degrees related to multiple permitting is the class of the c.e. not
totally ω-c.e. degrees. They were introduced by Downey, Greenberg and Weber DGW07] and are a subclass of the a.n.c. c.e. degrees. They have shown that the c.e. not totally ω-c.e. degrees are exactly the c.e. degrees below which there is a critical triple in the c.e. Turing degrees. Thus, these degrees are definable in the c.e. Turing degrees. The question whether the same holds for the a.n.c. c.e. degrees is open. The c.e. not totally ω-c.e. degrees allow a stronger version of multiple permitting than the one given by the a.n.c. c.e. degrees. This is often referred to as not-totally- ω c.e. permitting and widely used in the literature. E.g., the proof that any c.e. not totally ω-c.e. degree bounds a critical triple in the c.e. Turing degrees uses it. Later, Barmpalias, Downey and Greenberg BDG10 applied it to show that in any c.e. not totally ω-c.e. degree, there is a set which is not wtt-reducible to any hypersimple set. Another application can be found in BDN12, where Brodhead, Downey and Ng show that there is a computably bounded random set in any c.e. not totally ω-c.e. degree.

When analyzing various constructions using not-totally- ω-c.e. permitting mentioned above, we find that they all follow a similar pattern. Usually, a known construction of a set with a certain property is changed in a way that it can be combined with not-totally- ω-c.e. permitting and possibly with coding. Our goal is to isolate the permitting and coding, which hitherto had to be explicitly taken care of, from the actual constructions. We define a property of left-c.e. sets based on an extension of array noncomputability from c.e. sets to the left-c.e. sets called the universal similarity property and prove that any c.e. not totally ω-c.e. degree contains a left-c.e. set with this property. To see this, we use exactly the well-know approach of combining the construction of such a set with not-totally- ω-c.e. permitting and with coding. Then, it can be shown that all left-c.e. sets with the universal similarity property have most of the special properties mentioned above. For that matter, it is enough to analyze the basic constructions and to show that any requirement of the construction can be met within an interval of computably bounded length. This is a modular approach to dealing with c.e. not totally ω-c.e. degrees. The left-c.e. sets with the universal similarity property can thus be viewed as generic sets for the c.e. not totally ω-c.e. degrees.

We exploit this observation to obtain a new result on the c.e. not totally ω-c.e. degrees, namely that they are exactly the c.e. degrees which contain a left-c.e. set which is not cl-reducible to any left-c.e. complex set. This result has been conjectured by Greenberg and it parallels the theorem by Barmpalias, Downey and Greenberg on a.n.c. c.e. degrees and cl-reducibility to random left-c.e. sets. To prove our result, we transfer it to an equivalent theorem on wtt-hard sets and maximal pairs in the left-c.e. ibT-degrees where ibT-reducibility has been introduced by Soare Soa04. For more details, again, refer to the introduction to Chapter 3. Maximal pairs in the c.e. as well as in the left-c.e. ibT-degrees have been extensively studied. The existence of ibT-maximal pairs in the c.e. sets has been shown by Barmpalias and, independently, by Fan and Lu FL05 and the existence of ibT-maximal pairs in the left-c.e. sets has been shown by Yu and Ding [YD04]. Ambos-Spies, Ding, Fan and Merkle ASDFM13] have shown that the Turing degrees containing halves of ibT-maximal pairs in the c.e. sets are just the array noncomputable c.e. degrees (and, similarly, for the wtt-degrees). In contrast to this, Fan and Yu [FY11 have shown that any left-c.e. set is half of an ibT-maximal pair in the left-c.e. sets. The Fan-Yu result implies that there is an ibT-maximal pair in the left-c.e. sets where one of the halves is c.e. This fact had previously been shown by Fan Fan09 already, by using a more direct argument. By an observation of Downey and

Hirschfeldt DH10, however, no pair of c.e. sets is ibT-maximal in the left-c.e. sets. In ASLM, Ambos-Spies, Losert and Monath have extended Fan's result. We combine this extension with the existence of left-c.e. sets with the universal similarity property in c.e. not totally ω-c.e. degrees to prove the already mentioned result that each c.e. not totally ω-c.e. degree contains a left-c.e. set which is not cl-reducible to any complex left-c.e. set.

We will also introduce various notions of universal array noncomputability that demonstrate the fact that the property of a c.e. degree to be not totally ω-c.e. can be viewed as a uniform or universal version of a c.e. degree being a.n.c. We show that the notions coincide with each other up to wtt-equivalence and that the T-degrees of c.e. sets with these notions are exactly the c.e. not totally ω-c.e. T-degrees. We also use the notions of universal array noncomputability to show that the c.e. not totally ω-c.e. degrees capture exactly the notion of uniform multiple permitting which we define based on the formalization of multiple permitting notions by Ambos-Spies in ASa. Finally, we give an application of uniform multiple permitting by showing that the nondistributive finite lattice \mathcal{S}_{7}, which contains a critical triple, can be embedded into the c.e. Turing degrees exactly below every c.e not totally ω-c.e. degree.

The outline of this chapter is as follows. In Section 2.2, we give basic definitions and facts and review important results from the literature on a.n.c. c.e. degrees as well as on c.e. not totally ω-c.e. degrees. In Section 2.3, we show that a c.e. Turing degree contains a left-c.e. set with the universal similarity property if and only if it is not totally ω-c.e. We then apply this result to give an alternative proof of the Brodhead-Downey-Ng result on computably bounded random sets and to prove Greenberg's conjecture using a result on maximal pairs in the left-c.e. ibT-degrees. In Section 2.4 we define several notions of universal array noncomputablity for c.e. sets. We make some basic observations on those notions and see that they capture the notion of uniform multiple permitting. Furthermore, we show that the different notions coincide with each other up to wttequivalence. We proceed to prove that c.e. sets with the various universal array noncomputability properties can be found exactly in the c.e. not totally ω-c.e. T-degrees. Finally, we apply uniform multiple permitting to show that the lattice \mathcal{S}_{7} can be embedded below any c.e. not totally ω-c.e. Turing degree.

2.2 Preliminaries

In this section, we give more background and details on the notions we will have a closer look at in this chapter. Many notions and results in this and in the next section have been developed together with the Heidelberg Logic Group (Klaus Ambos-Spies, Nan Fang, Wolfgang Merkle and Martin Monath) and some of them will appear in the forthcoming paper ASLM by Ambos-Spies, Losert and Monath. We begin with a few basic definitions.

Definition 10. (a) A computable approximation $\left\{A_{s}\right\}_{s \geq 0}$ of a set A is a computable almostenumeration of A if the following holds.

$$
\forall x \forall s\left(x \in A_{s} \backslash A_{s+1} \Rightarrow \exists y<x\left(y \in A_{s+1} \backslash A_{s}\right)\right) .
$$

(b) A set A is almost-computably enumerable (almost-c.e. or a.c.e. for short) if there is a computable almost-enumeration of A.

As one can easily see, a real α is left-c.e. if and only if the set A such that $\alpha=0 . A$ is almostc.e. So we may identify left-c.e. reals, left-c.e. sets and almost-c.e. sets in the following. Recall the following definition of a very strong array by Downey, Jockusch and Stob.

Definition 11 (DJS90). A sequence $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ of finite sets is a very strong array (or v.s.a. for short) if the following hold.

- There is a computable function f such that $F_{n}=D_{f(n)}$, i.e., $f(n)$ is the canonical index of F_{n}.
- $F_{n} \cap F_{m}=\emptyset$ if $n \neq m$.
- $F_{0} \neq \emptyset$ and for all $n \geq 0,\left|F_{n+1}\right|>\left|F_{n}\right|$.

For all n, we call F_{n} a component of \mathcal{F}.
Note that in the original definition in DJS90 the components F_{n} of a very strong array are required to form a partition of the natural numbers. Here, we follow Downey and Hirschfeldt DH10 and drop this requirement. We will later see that this does not make a difference when it comes to defining array noncomputablity. However, we need the following definition of special types of very strong arrays.

Definition 12. Let $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be a v.s.a.
(a) \mathcal{F} is complete (a c.v.s.a.) if $\bigcup_{n \geq 0} F_{n}=\omega$ holds.
(b) \mathcal{F} is a very strong array of intervals (v.s.a.i.) if for all n, F_{n} is an interval and $\max F_{n}<$ $\min F_{n+1}$ holds.
(c) A complete very strong array of intervals (c.v.s.a.i.) is a v.s.a.i. which is complete.

By definition, any v.s.a. is given by a single computable function. This implies that we may uniformly computably enumerate all very strong arrays (together with the initial segments of very strong arrays) as well as the complete very strong arrays of intervals (again, including initial segments) in the following way.

For a given partial function ψ, let $F_{0}^{\psi} \downarrow=D_{\psi(0)}$ if $\psi(0) \downarrow$ and $D_{\psi(0)} \neq \emptyset$ and for given n, let $F_{n+1}^{\psi} \downarrow=D_{\psi(n+1)}$ if F_{n}^{ψ} and $\psi(n+1)$ are defined, $\left|D_{\psi(n+1)}\right|>\left|F_{n}^{\psi}\right|$ and for all $n^{\prime} \leq n$, $D_{\psi(n+1)} \cap F_{n^{\prime}}^{\psi}=\emptyset$. Moreover, for the case of complete very strong arrays of intervals, we let $I_{0}^{\psi} \downarrow=F_{0}^{\psi}$ if $F_{0}^{\psi} \downarrow$ and F_{0}^{ψ} is an interval with $\min F_{0}^{\psi}=0$ and, for $n \geq 0$, we let $I_{n+1}^{\psi} \downarrow=F_{n+1}^{\psi}$ if $I_{n}^{\psi} \downarrow, F_{n+1}^{\psi} \downarrow$ and F_{n+1}^{ψ} is an interval such that $\min F_{n+1}^{\psi}=\max I_{n}^{\psi}+1$. A uniform approximation of the F_{n}^{ψ} is obtained by letting $F_{n, s}^{\psi}=F_{n}^{\psi}$ if $F_{n}^{\psi} \downarrow$ and $\psi_{s}(m) \downarrow$ for all $m \leq n$ and letting $F_{n, s}^{\psi} \uparrow$ otherwise for all n. Similarly for I_{n}^{ψ}.

Now, let $\mathcal{F}^{\psi}=\left\{F_{n}^{\psi}\right\}_{n \geq 0}$ if $F_{n}^{\psi} \downarrow$ for all n (then, \mathcal{F}^{ψ} is a v.s.a.), otherwise let $\mathcal{F}^{\psi}=\left\{F_{n}^{\psi}\right\}_{n<m}$ for the least m such that $F_{m}^{\psi} \uparrow$ (then, \mathcal{F}^{ψ} is an initial segment of a v.s.a.) and define \mathcal{I}^{ψ} analogously. Given a universal function φ, we obtain enumerations $\left\{\mathcal{F}^{\varphi_{e}}\right\}_{e \geq 0}$ and $\left\{\mathcal{I}^{\varphi_{e}}\right\}_{e \geq 0}$ of all very strong arrays and their initial segments and of all complete very strong arrays of intervals and their initial segments, respectively. In the following, if the choice of the universal function φ is clear from the context, we write $F_{n}^{e}, I_{n}^{e}, \mathcal{F}^{e}$ and \mathcal{I}^{e} in place of $F_{n}^{\varphi_{e}}, I_{n}^{\varphi_{e}}, \mathcal{F}^{\varphi_{e}}$ and $\mathcal{I}^{\varphi_{e}}$, respectively.

Definition 13. For a very strong array $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$, two sets A and B are \mathcal{F}-similar (denoted by $A \sim_{\mathcal{F}} B$) if the following holds.

$$
\exists^{\infty} n: A \cap F_{n}=B \cap F_{n} .
$$

We are now ready to define array noncomputability following Downey, Jockusch and Stob.
Definition 14 (DJS90). (a) Given a very strong array \mathcal{F}, a c.e. set A is \mathcal{F}-array noncomputable (\mathcal{F}-a.n.c.) if, for every c.e. set B, A is \mathcal{F}-similar to B.
(b) A c.e. set A is array noncomputable (a.n.c.) if there is a v.s.a. \mathcal{F} such that A is \mathcal{F}-a.n.c.
(c) A c.e. degree \mathbf{a} is array noncomputable (a.n.c.) if there is an a.n.c. c.e. set $A \in \mathbf{a}$.

Note that a c.e. set which is array noncomputable is not computable. The requirement to make a c.e. set a.n.c. may be weakened as follows.

Proposition 15 (DJS90). Let $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be a v.s.a. and let A be a c.e. set such that, for any c.e. set B, the following holds.

$$
\exists n\left(A \cap F_{n}=B \cap F_{n}\right)
$$

Then A is \mathcal{F}-a.n.c.

The property of array noncomputable c.e. sets of being \mathcal{F}-similar to any given c.e. set for some v.s.a. \mathcal{F} has been exploited to prove that a.n.c. c.e. sets have various properties. E.g., they are not maximal (as shown by Downey, Jockusch and Stob in DJS90; for more details, refer there). Moreover, properties of almost-c.e. sets of a.n.c. c.e. degree have been studied in the past, e.g., the following connection between array noncomputability and cl-reducibility to random almost-c.e. sets established by Barmpalias, Downey and Greenberg. We first recall the definition of (Martin-Löf) randomness.

Definition 16. (a) A Martin-Löf test (or ML-test for short) is a uniformly c.e. sequence $\left\{U_{n}\right\}_{n \geq 0}$ of c.e. sets $U_{n} \subseteq\{0,1\}^{*}$ such that, for $n \geq 0, \mu\left(\left[U_{n}\right]\right)<2^{-n}$.
(b) A real $\alpha \in\{0,1\}^{\omega}$ passes an ML-test $\left\{U_{n}\right\}_{n \geq 0}$ if $\alpha \notin \bigcap_{n \geq 0}\left[U_{n}\right]$; and $\left\{U_{n}\right\}_{n \geq 0}$ covers α otherwise.
(c) A set A passes the ML-test $\left\{U_{n}\right\}_{n \geq 0}$ (is covered by $\left\{U_{n}\right\}_{n \geq 0}$) if the characteristic sequence α of A passes the ML-test $\left\{U_{n}\right\}_{n \geq 0}$ (is covered by $\left\{U_{n}\right\}_{n \geq 0}$).
(d) A real α (set A) is (Martin-Löf) random (or (ML-) random for short) if α (A) passes all ML-tests.

Theorem 17 (BDG10). For a c.e. degree a, the following are equivalent.
(i) \mathbf{a} is a.n.c.
(ii) There is an almost-c.e. set in a that is not cl-reducible to any random almost-c.e. set.

As, by Definition 14 array noncomputablity is only defined for c.e. sets (though the definition can be extended; see [DJS96] and a.n.c. c.e. sets are only \mathcal{F}-similar to all c.e. sets for some v.s.a. \mathcal{F}, this cannot be exploited to prove any results on almost-c.e. sets of a.n.c. c.e. degree. We will later review a characterization of the a.n.c. c.e. degrees that has been used to prove results like Theorem 17. However, it seems promising to transfer the similarity property from Definition 14 to the case of almost-c.e. set. This cannot be done in a straightforward way, as it can be shown that for any v.s.a. \mathcal{F}, there is no almost-c.e. set which is \mathcal{F}-similar to all almost-c.e. sets. Therefore, we consider sets that are locally almost-c.e. with respect to a fixed v.s.a. Formally, we have the following definition.

Definition 18. Let $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be a very strong array.
(a) A computable approximation $\left\{A_{s}\right\}_{s \geq 0}$ is \mathcal{F}-compatible if the following hold.

$$
\begin{gathered}
\forall n \forall x \in F_{n} \forall s\left(x \in A_{s} \backslash A_{s+1} \Rightarrow \exists y \in F_{n}\left(y<x \& y \in A_{s+1} \backslash A_{s}\right)\right) \\
\forall x \forall s\left(x \notin \bigcup_{n \geq 0} F_{n} \Rightarrow A_{s}(x) \leq A_{s+1}(x)\right) .
\end{gathered}
$$

(b) A set A is \mathcal{F}-compatibly almost-c.e. (\mathcal{F}-almost-c.e. or \mathcal{F}-a.c.e. for short) if there is an \mathcal{F} compatible computable approximation of A.
(c) A set A is purely \mathcal{F}-compatibly almost-c.e. (purely \mathcal{F}-almost-c.e. or purely \mathcal{F}-a.c.e. for short) if A is \mathcal{F}-a.c.e. and $A \subseteq \bigcup_{n \geq 0} F_{n}$ holds.

Note that for any v.s.a. \mathcal{F}, any \mathcal{F}-compatible computable approximation is a computable almost-enumeration, hence any \mathcal{F}-almost-c.e. set is almost-c.e. Note that the converse is not true, i.e., there is an almost-c.e. set which is not \mathcal{F}-almost-c.e. for any v.s.a. \mathcal{F}. We may now define the following notion of array noncomputability for almost-c.e. sets, paralleling Definition 14.

Definition 19. (a) An almost-c.e. set is array noncomputable for the \mathcal{F}-almost-c.e. sets (\mathcal{F} -a.c.e.-a.n.c.) for a v.s.a. \mathcal{F} if it is \mathcal{F}-similar to any \mathcal{F}-a.c.e set.
(b) An almost-c.e. set is array noncomputable for the almost-c.e. sets (a.c.e.-a.n.c.) if it is \mathcal{F} -a.c.e.-a.n.c. for some v.s.a. \mathcal{F}.
(c) A c.e. degree is array noncomputable for the almost-c.e. sets (a.c.e.-a.n.c.) if it contains an a.c.e.-a.n.c. almost-c.e. set.

Very similarly to Proposition 15, it does not matter whether we require an almost-c.e. set to agree with a given \mathcal{F}-a.c.e. set on infinitely many components of a v.s.a. \mathcal{F} or on just one component to make it \mathcal{F}-a.c.e.-a.n.c.

Proposition 20 (ASLM $)$. Let $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be a v.s.a. and let A be an almost-c.e. set such that, for any \mathcal{F}-a.c.e. set B, the following holds.

$$
\exists n\left(A \cap F_{n}=B \cap F_{n}\right)
$$

Then A is \mathcal{F}-a.c.e.-a.n.c.
It has been shown that the a.c.e.-a.n.c. c.e. degrees coincide with the a.n.c. c.e. degrees.

Theorem 21 ($\widehat{\mathrm{ASLM}})$. A c.e. (wtt- or T-) degree is a.c.e.-a.n.c. if and only if it is a.n.c.
We will later see that this fact can be exploited to give an alternative proof of direction (i) \Rightarrow (ii) of Theorem 17. When studying the Turing degrees bounding critical triples, Downey, Greenberg and Weber introduced the notion of c.e. totally ω-c.e. degrees.

Definition 22 ([DGW07]). (a) A function g is h-c.e. for a function h if there is a computable approximation of g such that following holds.

$$
\forall x \geq 0\left(\left|\left\{s: g_{s+1}(x) \neq g_{s}(x)\right\}\right| \leq h(x)\right) .
$$

(b) A function g is ω-c.e. if there is a computable function h such that g is h-c.e.
(c) A c.e. Turing degree \mathbf{a} is totally ω-c.e. if every function $g \leq_{\mathrm{T}} \mathbf{a}$ is ω-c.e.

Note that, in the above definition, w.l.o.g. we may assume that $g_{0}(x)=0$ for $x \geq 0$ and that h is strictly increasing. In the following we tacitly make these assumptions. The relation between a.n.c. c.e. degrees and c.e. not totally ω-c.e. degrees can be deduced from the following characterization of the array noncomputable c.e. degrees given by Downey, Jockusch and Stob.

Lemma 23 (DJS90, DJS96). The following are equivalent for a c.e. degree a.
(i) \mathbf{a} is a.n.c.
(ii) For every computable function h, there is a function $g \leq_{T}$ a that is not h-c.e.

Note that this implies that every c.e. degree which is not totally ω-c.e is a.n.c. This fact leads to the conjecture that there is a (uniform or universal) characterization of the c.e. not totally ω-c.e. degrees in terms of the similarity properties discussed above. This yields the following definition.

Definition 24. An almost-c.e. set has the universal similarity property (u.s.p.) if it is \mathcal{F}-a.c.e.a.n.c. for every v.s.a. \mathcal{F}.

We will see in the next section that almost-c.e. sets with the universal similarity property can be found exactly in the c.e. not totally ω-c.e. Turing degrees. We will then exploit this fact to prove several theorems on c.e. not totally ω-c.e. degrees using the universal similarity property. For some constructions, it is more convenient to only consider complete very strong arrays of intervals. The following proposition, for which we say that a v.s.a. $\hat{\mathcal{F}}=\left\{\hat{F}_{n}\right\}_{n \geq 0}$ dominates a v.s.a. $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ if, for any number n, there is a number m such that $F_{m} \subseteq \hat{F}_{n}$, shows that for the case of array noncomputability for the almost-c.e. sets, this does not make a difference.

Proposition 25 ($\widehat{\text { ASLM }})$. (a) For any v.s.a. $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ there is a complete very strong array of intervals $\mathcal{I}=\left\{I_{n}\right\}_{n \geq 0}$ which dominates \mathcal{F}.
(b) Let $\hat{\mathcal{F}}=\left\{\hat{F}_{n}\right\}_{n \geq 0}$ and $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be very strong arrays such that $\hat{\mathcal{F}}$ dominates \mathcal{F}. Then any $\hat{\mathcal{F}}$-a.c.e.-a.n.c. almost-c.e. set ($\hat{\mathcal{F}}$-a.n.c. c.e. set) is \mathcal{F}-a.c.e.-a.n.c. (\mathcal{F}-a.n.c.).

2.3 On Sets with the Universal Similarity Property

In this section, we investigate the characteristics of almost-c.e. sets with the universal similarity property. We show that such sets can be found precisely in the c.e. not totally ω-c.e. Turing degrees and use this fact to (re-)prove several results on those degrees.

We start with establishing the existence of almost-c.e. sets with the universal similarity property. For the construction of such sets, it is useful to note that, by Proposition 25, it suffices to consider complete very strong arrays of intervals.

Proposition 26. Let A be an a.c.e. set such that, for any complete v.s.a.i. \mathcal{I}, A is \mathcal{I}-a.c.e.-a.n.c. Then A has the universal similarity property.

In the following we construct an almost-c.e. set with the universal similarity property. This construction will be refined in the next subsection where we show that almost-c.e. sets with the universal similarity property can be found in any c.e. not totally ω-c.e. degree.

Theorem 27. There is an almost-c.e. set with the universal similarity property.
For the proof we need a computable enumeration of the (locally) almost-c.e. sets. Let $\left\{V_{e, s}\right\}_{e, s \geq 0}$ be a computable enumeration of computable almost-enumerations $\left\{V_{e, s}\right\}_{s \geq 0}(e \geq 0)$ such that for every c.v.s.a.i. \mathcal{I} and for every \mathcal{I}-a.c.e. set B, there is an index $e \geq 0$ such that, for the a.c.e. set $V_{e}=\lim _{s \rightarrow \infty} V_{e, s}, V_{e}=B$ holds and the almost-enumeration $\left\{V_{e, s}\right\}_{s \geq 0}$ is \mathcal{I}-compatible. (Note that such an enumeration exists. By standard techniques we can define a computable enumeration $\left\{V_{e, s}\right\}_{e, s \geq 0}$ of computable almost-enumerations $\left\{V_{e, s}\right\}_{s \geq 0}(e \geq 0)$ such that, for any computable almost-enumeration $\left\{B_{s}\right\}_{s \geq 0}$, there is an index e such that the almost-enumeration $\left\{V_{e, s}\right\}_{s \geq 0}$ is a delayed version of $\left\{B_{s}\right\}_{s \geq 0}$, i.e., such that there is a strictly increasing computable sequence $\left\{s_{n}\right\}_{n \geq 0}$ of stages such that $s_{0}=0$ and such that $V_{e, s}=B_{s_{n}}$ for any s and n such that $s_{n} \leq s<s_{n+1}$. So it suffices to note that if a computable almost-enumeration is \mathcal{I}-compatible then so is any delayed version of it.)

Proof of Theorem 27 . Note that, for any c.v.s.a.i. \mathcal{I} and for any \mathcal{I}-a.c.e. set B, there are numbers e_{0} and e_{1} such that $\mathcal{I}^{e_{0}}=\mathcal{I}, V_{e_{1}}=B$ and the computable almost-enumeration $\left\{V_{e_{1}, s}\right\}_{s \geq 0}$ of B is compatible with \mathcal{I}. So, by Proposition 26, in order to construct an almost-c.e. set A with the universal similarity property, it suffices to meet the following requirements for all $e \geq 0$ where $e=\left\langle e_{0}, e_{1}\right\rangle$.

$$
\begin{aligned}
& R_{e}: \text { If } \mathcal{I}^{e_{0}} \text { is a c.v.s.a.i. and } V_{e_{1}} \text { is } \mathcal{I}^{e_{0}} \text {-almost-c.e. via }\left\{V_{e_{1}, s}\right\}_{s \geq 0} \\
& \text { then there is a number } n \text { such that } A \cap I_{n}^{e_{0}}=V_{e_{1}} \cap I_{n}^{e_{0}} .
\end{aligned}
$$

An a.c.e. set A meeting these requirements can be constructed by a standard finite injury argument using the following basic strategy for meeting a single requirement R_{e} (where the computable almost-enumeration $\left\{A_{s}\right\}_{s \geq 0}$ is defined such that $A_{s} \subseteq \omega \upharpoonright s$).

At the stage $s+1$ at which the attack on R_{e} is started, appoint $x_{e}=s+1$ as a follower (note that x_{e} is not in A_{s}). Then wait for a stage $s^{\prime}>s$ such that, for some $n<s^{\prime}, I_{n, s^{\prime}}^{e_{0}} \downarrow$ and $x_{e}<\min I_{n}^{e_{0}}$. (Note that such a stage s^{\prime} must exist if the hypothesis of R_{e} holds.) At the least such stage $s^{\prime}+1$ (if any) and for the least corresponding n, put x_{e} into A_{s+1} and let
$A_{s+1} \cap I_{n}^{e_{0}}=V_{e_{1}, s^{\prime}+1} \cap I_{n}^{e_{0}}$. (By $x_{e}<\min I_{n}^{e_{0}}$, this is compatible with making $\left\{A_{s}\right\}_{s \geq 0}$ a computable almost-enumeration.) Moreover, initialize all lower priority requirements (thereby ensuring that these requirements do not interfere with the definition of A on $I_{n}^{e_{0}}$). Finally, at any stage $s^{\prime \prime}>s^{\prime}$ such that $V_{e_{1}, s^{\prime \prime}+1} \cap I_{n}^{e_{0}} \neq V_{e_{1}, s^{\prime \prime}} \cap I_{n}^{e_{0}}$ correct A on $I_{n}^{e_{0}}$ by letting $A_{s^{\prime \prime}+1} \cap I_{n}^{e_{0}}=V_{e_{1}, s^{\prime \prime}+1} \cap I_{n}^{e_{0}}$, provided that, up to this stage, the almost-enumeration $\left\{V_{e_{1}, s}\right\}_{s \geq 0}$ of $V_{e_{1}}$ is consistent with the assumption that $V_{e_{1}}$ is $\mathcal{I}^{e_{0}}$-a.c.e. via $\left\{V_{e_{1}, s}\right\}_{s \geq 0}$. (Note that, by the latter restriction, the definition of $A_{s^{\prime \prime}+1}$ is compatible with making $\left\{A_{s}\right\}_{s \geq 0}$ a computable almost-enumeration.)

Obviously, this finitary strategy ensures that, assuming that the hypothesis of R_{e} holds and that R_{e} is not injured after stage $s, A \cap I_{n}^{e_{0}}=V_{e_{1}} \cap I_{n}^{e_{0}}$ for n as above whence requirement R_{e} is met. The actual construction of A, a standard finite injury argument coordinating the above finitary strategies for meeting the individual requirements, is straightforward.

2.3.1 Sets with the Universal Similarity Property and not Totally ω-C.E. Degrees

We now combine the basic construction of an almost-c.e. set with the universal similarity property with the not-totally- ω-c.e. permitting technique (see Downey, Greenberg and Weber DGW07 as well as Barmpalias, Downey and Greenberg BDG10) in order to show that any c.e. not totally ω c.e. Turing degree contains an a.c.e. set with this property. Note that not-totally- ω-c.e. permitting is a stronger variant of multiple permitting than the one given by the a.n.c. c.e. degrees.

Theorem 28. Let \mathbf{a} be a c.e. Turing degree which is not totally ω-c.e. There is an almost-c.e. set $A \in \mathbf{a}$ which has the universal similarity property.

Proof. Fix a c.e. set $C \in \mathbf{a}$ and let $\left\{C_{s}\right\}_{s \geq 0}$ be a computable enumeration of C (where w.l.o.g. $C_{s+1} \backslash C_{s} \neq \emptyset$ for all s). It suffices to give a computable almost-enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of an almost-c.e. set A such that A has the universal similarity property and $A={ }_{\mathrm{T}} C$.

Just as in the proof of Theorem 27, in order to ensure that A has the universal similarity property, it suffices to meet the requirements

$$
\begin{aligned}
& R_{e}: \text { If } \mathcal{I}^{e_{0}} \text { is a c.v.s.a.i. and } V_{e_{1}} \text { is } \mathcal{I}^{e_{0}} \text {-almost-c.e. via }\left\{V_{e_{1}, s}\right\}_{s \geq 0} \\
& \text { then there is a number } n \text { such that } A \cap I_{n}^{e_{0}}=V_{e_{1}} \cap I_{n}^{e_{0}} .
\end{aligned}
$$

for all $e \geq 0$ where, here and in the following, $e=\left\langle e_{0}, e_{1}\right\rangle$. The strategy to meet requirement R_{e} is the one given in the proof of Theorem 27 above. The strategy has to be adjusted, however, since we have to ensure that $A \leq_{\mathrm{T}} C$ and $C \leq_{\mathrm{T}} A$.

In order to guarantee $A \leq_{\mathrm{T}} C$, the changes of A required by the strategy for meeting R_{e} have to be permitted by C. Since, for a single follower, this permission might not be given, now a finite sequence of followers x and corresponding intervals $I_{n}^{e}-$ in the following denoted by $x_{e, k}$ and $J_{e, k}$, respectively - is used, where a new follower is appointed if, for the existing followers $x_{e, k}$ and the associated intervals $J_{e, k}$, the attacks are blocked, i.e., $x_{e, k}$ is not allowed to enter A or A is not allowed to change on the associated interval $J_{e, k}$ - since the required permission by C is not given. In order to formalize the permitting-constraint and in order to argue that - despite of this constraint - the strategy for meeting R_{e} remains finitary and succeeds, we have to exploit that
$\mathbf{a}=d e g_{\mathrm{T}}(C)$ is not totally ω-c.e. By the latter fix a total function $g \leq_{\mathrm{T}} C$ which is not ω-c.e. Let Γ be a Turing functional such that $g=\Gamma^{C}$ and fix the computable approximation of g such that $g_{s}(x)=\Gamma_{s}^{C_{s}}(x)$ if the right hand side is defined and $g_{s}(x)=0$ otherwise (for all $x, s \geq 0$).

Then $x_{e, k}$ is allowed to enter A at stage $s+1$ or A is allowed to change on the associated interval $J_{e, k}$ at stage $s+1$ only if $g_{s+1}(k) \neq g_{s}(k)$ where $x_{e, k}$ is the $(k+1)$ st follower of R_{e} (in order of magnitude) at the end of stage s. As we will argue below, this constraint suffices to ensure $A \leq_{\mathrm{T}} C$ while, on the other hand, the fact that (by choice of g) the number of stages s with $g_{s+1}(k) \neq g_{s}(k)$ is not computably bounded in k guarantees that one of the attacks on R_{e} will succeed.

In order to guarantee $C \leq_{\mathrm{T}} A$ we use a movable marker γ. The markers $\gamma(e)$ are put down in order and if $\gamma(e)$ is put down at stage $s+1$ then $\gamma(e)$ is put down on $s+1$. Once put down, $\gamma(e)$ may be lifted later. Eventually, however, $\gamma(e)$ reaches a final position, i.e., is put down and not lifted later. Lifting a marker is subject to the following constraints. First (for technical convenience), if $\gamma(e)$ is lifted at stage $s+1$ then all markers $\gamma\left(e^{\prime}\right)$ with $e^{\prime}>e$ (defined at stage s) are simultaneously lifted in order to guarantee that the numbers for which the markers are defined form an initial segment of ω. Second (and crucially), $\gamma(e)$ may be lifted at stage $s+1$ only if A is changing on $\gamma(e)$ or a smaller number. The latter ensures that A controls the moves of γ (assuming that A is almost-c.e. via $\left\{A_{s}\right\}_{s \geq 0}$). In particular, A can tell whether the position of a marker attained at some stage is permanent or not whence A can compute the final position of any marker and the stage at which it is attained first. So, in order to compute C from A it suffices to ensure that if e enters C at stage $s+1$ and the marker $\gamma(e)$ is defined at stage s then $\gamma(e)$ is lifted at stage $s+1$ (whence $C(e)=C_{s^{\prime}}(e)$ for the stage s^{\prime} at which $\gamma(e)$ is put down on its final position). Finally, we ensure that if $\gamma(e)$ is defined at stage s then $\gamma(e)$ is not in A_{s} whence we may lift $\gamma(e)$ at stage $s+1$ by enumerating $\gamma(e)$ into A at stage $s+1$.

More formally, by letting $\gamma(e, s)$ denote the position of $\gamma(e)$ at stage s, we define a partial computable function $\gamma: \omega^{2} \rightarrow \omega$ with computable domain (where $\gamma(e, s)$ is specified at stage s of the construction) having the following properties (for $e, e^{\prime}, s \geq 0$).
$\left(\gamma_{1}\right) \gamma(e, 0) \uparrow$.
$\left(\gamma_{2}\right)$ If $\gamma(e, s+1) \neq \gamma(e, s)$ then either $\gamma(e, s) \uparrow$ and $\gamma(e, s+1)=s+1$ or $\gamma(e, s) \downarrow, \gamma(e, s+1) \uparrow$ and $A_{s+1} \upharpoonright \gamma(e, s)+1 \neq A_{s} \upharpoonright \gamma(e, s)+1$.
$\left(\gamma_{3}\right)$ If $\gamma(e, s) \downarrow$ and $e^{\prime}<e$ then $\gamma\left(e^{\prime}, s\right) \downarrow$ and $\gamma\left(e^{\prime}, s\right)<\gamma(e, s)$.
$\left(\gamma_{4}\right)$ If $\gamma(e, s) \downarrow$ then $\gamma(e, s) \notin A_{s}$.
$\left(\gamma_{5}\right) \gamma^{*}(e)=\lim _{s \rightarrow \infty} \gamma(e, s) \in \omega$ exists.
$\left(\gamma_{6}\right)$ If $e \in C_{s+1} \backslash C_{s}$ then $\gamma(e, s+1) \uparrow$.

Claim 1. Assume that $\left\{A_{s}\right\}_{s \geq 0}$ is a computable almost-enumeration of A and that γ has the above properties. Then $C \leq_{\mathrm{T}} A$.

Proof. Given $e, C(e)$ is computed from A (uniformly in e) as follows. Using A as an oracle find the least stage s such that $\gamma(e, s) \downarrow$ and $A_{s} \upharpoonright \gamma(e, s)+1=A \upharpoonright \gamma(e, s)+1$. By $\left(\gamma_{5}\right)$, such a stage exists and, by $\left(\gamma_{2}\right)$ and $\left(\gamma_{6}\right), C_{s}(e)=C(e)$.

In order to avoid conflicts between the strategy for meeting the requirements R_{e} and the coding of C into A using the movable marker γ, we put down a marker at stage $s+1$ only if no follower is appointed at stage $s+1$ and vice versa. So no follower is a marker position and vice versa. Moreover, by giving marker $\gamma(e)$ higher priority than requirement $R_{e^{\prime}}$ for $e^{\prime} \geq e$, by initialization we can ensure that no marker sits in an interval currently associated with a lower priority follower. On the other hand, an interval $J_{e^{\prime}, k}$ associated with a higher priority follower $x_{e^{\prime}, k}\left(e^{\prime}<e\right)$ cannot be completely cleared from all lower priority markers $\gamma(e)$. At the stage where $J_{e^{\prime}, k}$ becomes associated with $x_{e^{\prime}, k}$ no number enters A whence (by $\left(\gamma_{2}\right)$) we must not lift any marker. Once $R_{e^{\prime}}$ starts to let A mimic $V_{e_{1}^{\prime}}$ on $J_{e^{\prime}, k}$, however, the enumeration of $x_{e^{\prime}, k}$ into A allows to lift the lower priority markers $\gamma(e)$ in $J_{e^{\prime}, k}$. Hence - as soon as it becomes relevant - the interval $J_{e^{\prime}, k}$ will be cleared of all coding markers.

So all in all (up to finite injuries in terms of initializing a requirement respectively lifting a marker) the coding of C into A does not interfere with the strategy for meeting the requirements R_{e} and vice versa.

Having explained the basic features of the proof and having introduced some of the required notions, we now turn the formal construction. An index e is eligible at stage $s+1$ if the enumeration of $\mathcal{I}^{e_{0}}$ and the almost-enumeration of $V_{e_{1}}$ up to stage $s+1$ do not contradict the assumption that $V_{e_{1}}$ is $\mathcal{I}^{e_{0}}$-a.c.e., i.e., if there are no $n, t \leq s$ such that $I_{n, s+1}^{e_{0}} \downarrow, V_{e_{1}, t+1} \cap I_{n}^{e_{0}} \neq V_{e_{1}, t} \cap I_{n}^{e_{0}}$ and $x \notin V_{e_{1}, t+1}$ for the least $x \in I_{n}^{e_{0}}$ such that $V_{e_{1}, t+1}(x) \neq V_{e_{1}, t}(x)$. Note that e is eligible at all stages $s+1 \geq 1$ if the hypothesis of R_{e} holds. Moreover, if e is not eligible at stage $s+1$ then e is not eligible at all stages $t>s$. We now turn to the construction of A where we let A_{s} denote the finite part of A constructed by the end of stage s.

Construction.

Stage 0 . Stage 0 is vacuous. I.e., $A_{0}=\emptyset, \gamma(x, 0) \uparrow$ for all x and no requirement has a follower at the end of stage s.

Stage $s+1$. A requirement R_{e} requires attention at stage $s+1$ if $e<s, e$ is eligible at stage $s+1$ and one of the following holds.
(i) No follower is assigned to R_{e} at the end of stage s.
(ii) (i) does not hold, $x_{e, 0}<\cdots<x_{e, n}(n \geq 0)$ are the followers assigned to R_{e} at the end of stage s and there is a number $k<n$ such that, for the interval $J_{e, k}$ associated with $x_{e, k}, A_{s} \cap J_{e, k} \neq V_{e, s+1} \cap J_{e, k}$ and $g_{s}(k) \neq g_{s+1}(k)$.
(iii) (i) and (iii) do not hold, $x_{e, 0}<\cdots<x_{e, n}(n \geq 0)$ are the followers assigned to R_{e} at the end of stage s, for all $k<n, A_{s} \cap J_{e, k} \neq V_{e, s+1} \cap J_{e, k}$ holds where $J_{e, k}$ is the interval associated with $x_{e, k}$, and there is a number $m \leq s$ such that $I_{m, s+1}^{e_{0}} \downarrow$ and $x_{e, n}<\min I_{m}^{e_{0}}$.

Let c_{s} be the least element of $C_{s+1} \backslash C_{s}$. Fix $e<s$ minimal such that at least one of the following holds
(I) $e=c_{s}$.
(II) $\gamma(e, s)$ is undefined.
(III) R_{e} requires attention.
and perform the following corresponding action.

1. If (I) holds then put $\gamma(e, s)$ into A (if defined). Furthermore, for all $e^{\prime} \geq e$, let $\gamma\left(e^{\prime}, s+\right.$ 1) \uparrow and initialize requirement $R_{e^{\prime}}$, i.e., cancel all followers (and the intervals associated with them) assigned to requirement $R_{e^{\prime}}$ at the end of stage s.
2. If (I) does not hold, but (II) holds, let $\gamma(e, s+1)=s+1$. Furthermore, for all $e^{\prime} \geq e$, initialize requirement $R_{e^{\prime}}$.
3. If (I) and (II) do not hold, but (III) holds, perform the following action according to the clause via which R_{e} requires attention.
(i) Appoint $x_{e, 0}=s+1$ as a follower to R_{e}.
(ii) For all k that make Clause (iii) in the definition of requiring attention true, let $A_{s+1} \cap J_{e, k}=V_{e_{1}, s+1} \cap J_{e, k}$ and, in case $x_{e, k} \notin A_{s}$, put $x_{e, k}$ into A. Furthermore, for the least number y such that $A_{s+1}(y) \neq A_{s}(y)$ by this action and for any $e^{\prime}>e$ such that $y \leq \gamma\left(e^{\prime}, s\right) \downarrow$, let $\gamma\left(e^{\prime}, s+1\right) \uparrow$.
(iii) For the least m that makes Clause (iiii) in the definition of requiring attention true, associate the interval $J_{e, n}=I_{m}^{e_{0}}$ with the follower $x_{e, n}$ of R_{e}. Furthermore, appoint $x_{e, n+1}=s+1$ as a further follower to R_{e}.

In any of the subcases (i) - (iii) say that R_{e} receives attention or becomes active. Furthermore, for all $e^{\prime}>e$, initialize $R_{e^{\prime}}$. Finally, unless $\gamma\left(c_{s}, s\right) \uparrow$ or case (ii) applies and $\gamma\left(c_{s}, s+1\right)$ is made undefined by the action there, put $\gamma\left(c_{s}, s\right)$ into A and, for all $e^{\prime \prime} \geq c_{s}$, let $\gamma\left(e^{\prime \prime}, s+1\right) \uparrow$.
(If not explicitly stated otherwise, any parameter depending on the stage is unchanged at stage $s+1$.)

This completes the construction. Note that the construction ensures that the followers of R_{e} are appointed in order of magnitude and that the greatest follower is the unique follower which has not yet an interval associated with it. In the remainder of the proof we show that the construction is correct

Verification.

Note that the construction is effective. In order to show that A has the required properties, we prove a series of claims. Before we turn to these claims, however, we first make some observations on the construction to be used in the proofs of the claims. If not stated otherwise these observations follow from the construction and the fact that $\max I_{n}^{e}<s$ if $I_{n, s}^{e} \downarrow$ (recall that $I_{n, s}^{e}=D_{\varphi_{e, s}(n)}$ and $\varphi_{e, s}(n)<s$ by convention) by straightforward inductions on s.

If a follower x is appointed at stage $s+1$ then $x=s+1$ and no marker is put down at stage $s+1$ and if a marker $\gamma(e)$ is put down at stage $s+1$ then $\gamma(e, s+1)=s+1$ and no follower is appointed at stage $s+1$. Moreover, at any stage $s+1$ at most one follower is appointed and at most one marker is put down. So a number which becomes a follower in the course of the construction does not become a marker position and vice versa; and followers for different requirements and marker positions for different arguments differ. Moreover, by effectivity of the construction, we can tell
whether a number will ever become a follower or a marker position. Another consequence of the above is that any follower x existing at stage s and any marker $\gamma(e, s)$ defined at stage s is $\leq s$. Similarly, for any interval J associated with some follower x at stage s, max $J<s$. Since a follower is not put into A at the stage where it is appointed and since a marker is not put into A at the stage where it is put down, it follows that $A_{s} \subseteq \omega \upharpoonright s$.

If requirement R_{e} has at least one follower at the end of stage s then we let $x_{e, 0}[s]<x_{e, 1}[s]<$ $\cdots<x_{e, n}[s](n \geq 0)$ be the followers of R_{e} at the end of stage s in order of magnitude and, for $k<n$, we let $J_{e, k}[s]$ be the interval associated with $x_{e, k}[s]$. (In the following we omit [s] if the stage s is clear from context.) Note that, for $s \leq s^{\prime}$ and $k \leq n, x_{e, k}[s]=x_{e, k}\left[s^{\prime}\right]$ unless R_{e} is initialized at a stage t with $s<t \leq s^{\prime}$ (since followers are appointed in increasing order). Now given s, for $k \leq n, x_{e, k}$ is appointed at stage $x_{e, k} \leq s$ and $x_{e, k} \notin A_{x_{e, k}}$. Moreover, $x_{e, n}$ is the only follower of R_{e} at the end of stage s which is not yet associated with an interval. For $k<n, J_{e, k}$ becomes associated with $x_{e, k}$ at stage $x_{e, k+1}$ and

$$
\begin{equation*}
x_{e, k}<\min J_{e, k} \leq \max J_{e, k}<x_{e, k+1} \tag{2.1}
\end{equation*}
$$

 if $e^{\prime}<e$ and $x_{e, n}<x$ if $e<e^{\prime}$. It follows that, for any follower x existing at stage s and any interval J which is associated with any follower at stage s, it holds that $x \notin J$. By disjointness of the sets of followers and marker positions, this implies that a follower x of R_{e} can be enumerated into A at stage $s+1$ only if R_{e} requires attention via Clause (ii) at stage $s+1$ and $x=x_{e, k}$ for some $k<n$ that makes Clause (ii) in the definition of requiring attention true. It follows that if $s+1$ is the first stage after appointment of $x_{e, k}$ at which this happens then $x_{e, k} \in A_{s+1} \backslash A_{s}$ (note that $x_{e, k}[t]=x_{e, k}$ for all t with $\left.x_{e, k} \leq t \leq s\right)$.

Finally observe that, by effectivity of the construction, the partial marker function γ is computable and has computable domain. Moreover, conditions $\left(\gamma_{1}\right)-\left(\gamma_{4}\right)$ and $\left(\gamma_{6}\right)$ hold. (Condition $\left(\gamma_{5}\right)$ will be established in Claim 3 below.) Correctness of $\left(\gamma_{1}\right),\left(\gamma_{3}\right)$ and $\left(\gamma_{6}\right)$ is immediate by construction and so is the first part of $\left(\gamma_{2}\right)$, while the second part of $\left(\gamma_{2}\right)$ is immediate by construction assuming $\left(\gamma_{4}\right)$. So it suffices to show $\left(\gamma_{4}\right)$. For a proof of $\left(\gamma_{4}\right)$ fix $\gamma(e, s)$ such that $\gamma(e, s) \downarrow$ and $\gamma(e, s)$ is enumerated into A at stage $s+1$. We have to show that $\gamma(e, s+1) \uparrow$. If $\gamma(e, s)$ is enumerated into A for the sake of coding then this is immediate. Since $\gamma(e, s)$ cannot be a follower, this only leaves the case that a requirement $R_{e^{\prime}}$ receives attention via Clause (ii) at stage $s+1$, there is a number k that makes Clause (ii) in the definition of requiring attention true and $\gamma(e, s) \in J_{e^{\prime}, k}$. Now, if $e^{\prime}<e$ then, by construction, $\gamma(e, s+1) \uparrow$ as required. The case that $e \leq e^{\prime}$, however, cannot occur. By construction, $\gamma(e, s)$ becomes defined at stage $\gamma(e, s)$ and at this stage $R_{e^{\prime}}$ is initialized. So $x_{e^{\prime}, k}$ is appointed after this stage whence $\gamma(e, s)<x_{e^{\prime}, k}<\min J_{e^{\prime}, k}$ contrary to assumption.

Claim 2. A is a.c.e. via $\left\{A_{s}\right\}_{s \geq 0}$.
Proof. By effectivity of the construction, it suffices to show that, for any number which is extracted from A at some stage a lesser number is enumerated into A at the same stage. Note that a number y can be extracted from A at stage $s+1$ only if a requirement R_{e} receives attention via Clause (ii) and y is in the interval $J_{e, k}$ for some number k that makes Clause (ii) in the definition of requiring
attention true. So, given such s, e and k such that

$$
\begin{equation*}
A_{s+1} \cap J_{e, k} \neq A_{s} \cap J_{e, k} \tag{2.2}
\end{equation*}
$$

holds, it suffices to show that there is a number $x<\min J_{e, k}$ such that $x \in A_{s+1} \backslash A_{s}$ or that, for $x=\mu z \in J_{e, k}\left(A_{s}(z) \neq A_{s+1}(z)\right), x \in A_{s+1}$.

Now, if $s+1$ is the least stage after the appointment of the follower $x_{e, k}$ at which R_{e} receives attention via Clause (ii) and k makes Clause (ii) in the definition of requiring attention true then, as observed above, $x_{e, k} \notin A_{s}$ whence $x_{e, k}$ is put into A_{s+1} by construction. (Note that $x_{e, k}\left[s^{\prime}\right]=x_{e, k}$ for $x_{e, k} \leq s^{\prime} \leq s$.) Hence, by $x_{e, k}<\min J_{e, k}, x=x_{e, k}$ will do.

So w.l.o.g. we may assume that there is at least one stage t such that $x_{e, k}<t+1<s+1$ and such that R_{e} receives attention via Clause (ii) at stage $t+1$ and k makes Clause (ii) in the definition of requiring attention true at this stage. Let t^{\prime} be the least such t and let $t^{\prime \prime}$ be the greatest such t. (Note that, by choice of $t^{\prime}, J_{e, k}$ becomes associated with $x_{e, k}$ at a stage $\leq t^{\prime}$ whence max $J_{e, k} \leq t^{\prime}$.) Then, at stage $t^{\prime}+1$, the interval $J_{e, k}$ is cleared of all markers. Namely, by minimality of $t^{\prime}, x_{e, k}$ is enumerated into A at stage $t^{\prime}+1$ and all markers $\gamma\left(e^{\prime}, t^{\prime}\right)$ with $e^{\prime}>e$ which are defined at stage t^{\prime} and $\geq x_{e, k}$ are lifted. On the other hand, for no $e^{\prime \prime} \leq e, \gamma\left(e^{\prime \prime}\right)$ is put down at any stage s^{\prime} with $x_{e, k}<s^{\prime} \leq s$ since otherwise the follower $x_{e, k}$ would be canceled at stage s^{\prime}. Hence any marker $\gamma\left(e^{\prime}, s^{\prime}\right)$ defined at stage $s^{\prime} \geq t^{\prime}$ is either less than $x_{e, k}$ or greater than t^{\prime}. So, by $x_{e, k}<\min J_{e, k} \leq \max J_{e, k} \leq t^{\prime}$,

$$
\begin{equation*}
\forall e^{\prime} \forall s^{\prime} \geq t^{\prime}\left(\gamma\left(e^{\prime}, s^{\prime}\right) \downarrow \Rightarrow \gamma\left(e^{\prime}, s^{\prime}\right) \notin J_{e, k}\right) \tag{2.3}
\end{equation*}
$$

holds. It follows that

$$
A_{t^{\prime \prime}+1} \cap J_{e, k}=A_{s} \cap J_{e, k}
$$

holds. Namely, no coding marker put into A after stage $t^{\prime \prime}$ is in $J_{e, k}$ (by 2.3) and $t^{\prime} \leq t^{\prime \prime}$); no requirement of higher priority than R_{e} acts at any stage s^{\prime} with $t^{\prime \prime}+1 \leq s^{\prime} \leq s$ (since R_{e} is not initialized at such a stage); any lower priority requirement changes A only on numbers $>\max J_{e, k}$ after stage $t^{\prime \prime}$ (since the requirement is initialized at stage $t^{\prime \prime}+1>\max J_{e, k}$); and finally, by maximality of $t^{\prime \prime}$ and by $\sqrt{2.2}$, any action of R_{e} at a stage s^{\prime} with $t^{\prime \prime}+1<s^{\prime} \leq s$ will not change A on $J_{e, k}$. Since, by choice of $t^{\prime \prime}$ and s and by construction, A and $V_{e_{1}}$ agree on $J_{e, k}$ at stage $t^{\prime \prime}+1$ and $s+1$, it follows that

$$
A_{s} \cap J_{e, k}=V_{e_{1}, t^{\prime \prime}+1} \cap J_{e, k} \& A_{s+1} \cap J_{e, k}=V_{e_{1}, s+1} \cap J_{e, k}
$$

So, in order to show that the least change of A on $J_{e, k}$ at stage $s+1$ is positive, it suffices to show, that $x_{0} \in V_{e_{1}, s+1}$ where x_{0} is the least number $x \in J_{e, k}$ such that $V_{e_{1}, s+1}(x) \neq V_{e_{1}, t^{\prime \prime}+1}(x)$. But, since R_{e} requires attention at stage $s+1$, e is eligible at stage $s+1$. Since $J_{e, k}=I_{m}^{e_{0}}$ for some m where the right hand side is defined by stage $t^{\prime}<s$, it follows that that the finite sequence $\left\{V_{e_{1}, s^{\prime}} \cap J_{e, k}\right\}_{s^{\prime} \leq s+1}$ must be the initial segment of a computable almost-enumeration. So $x_{0} \in V_{e_{1}, s+1}$ must hold, which completes the proof of Claim 2.

Claim 3. For any $e \geq 0, \gamma(e)=\lim _{s \rightarrow \infty} \gamma(e, s) \in \omega$ exists and requirement R_{e} requires attention only finitely often.

Proof. The proof is by induction on e. Fix e and, by inductive hypothesis, assume the claim to be correct for $e^{\prime}<e$. Let s_{0} be the greatest stage s such that $s=0$ or $C_{s+1} \upharpoonright e+1 \neq C_{s} \upharpoonright e+1$ or $\gamma\left(e^{\prime}, s+1\right) \neq \gamma\left(e^{\prime}, s\right)$ for some $e^{\prime}<e$ or $R_{e^{\prime}}$ requires attention at stage $s+1$ for some $e^{\prime}<e$. Note that such a stage s_{0} exists by inductive hypothesis.

First we show that $\gamma^{*}(e)=\lim _{s \rightarrow \infty} \gamma(e, s) \in \omega$ exists. By choice of s_{0}, at any stage $s+1$ such that $s>s_{0}$, condition (I) fails for $e^{\prime} \leq e$ and conditions (II) and (III) fail for $e^{\prime}<e$. It follows that $\gamma(e)$ is not lifted after stage $s_{0}+1$. Moreover, if $\gamma\left(e, s_{0}+1\right) \uparrow$ then $\gamma(e)$ is put down at stage $s_{0}+2$. So, in any case, $\gamma(e, s)=\gamma\left(e, s_{0}+2\right) \downarrow$ for all $s \geq s_{0}+2$ whence $\gamma^{*}(e)=\gamma\left(e, s_{0}+2\right)$.

It remains to show that R_{e} requires attention only finitely often. For a contradiction assume that this is not the case. We show that there is a computable approximation $\left\{\tilde{g}_{n}\right\}_{n \geq 0}$ of g for which the number of mind changes is computably bounded whence g is ω-c.e. contrary to choice of g.

Let $s_{1}=s_{0}+1$ if $\gamma\left(e, s_{0}+1\right) \downarrow$ and let $s_{1}=s_{0}+2$ otherwise. Then, by choice of s_{0}, either R_{e} is initialized at stage s_{1} or $s_{1}=1$. So, in either case, R_{e} does not have any followers at the end of stage s_{1}. Moreover, R_{e} receives attention whenever it requires attention after stage s_{1} and R_{e} is not initialized after stage s_{1}. By the latter, any R_{e}-follower existing at a stage $>s_{1}$ is permanent (hence, if $x_{e, k}[s]$ is defined for some $s>s_{1}$ then $x_{e, k}\left[s^{\prime}\right]=x_{e, k}[s]$ for all $s^{\prime} \geq s$).

Note that, by choice of s_{1}, a follower of R_{e} is appointed at stage $s_{1}+1$ since R_{e} requires attention via (i) at this stage. In fact there are infinitely many R_{e}-followers appointed after stage s_{1}. Namely, assume that there are only finitely many followers appointed and fix $s_{2}>s_{1}$ minimal such that no follower is appointed after stage s_{2}. Then, for any $s \geq s_{2}$, the followers defined at stage s are just the followers $x_{e, 0}<\cdots<x_{e, n}(n \geq 0)$ defined at stage s_{2}. So R_{e} does not require attention via (i) or (iii) after stage s_{2}. Moreover, R_{e} requires attention via (ii) at a stage $s+1>s_{2}$ only if $g_{s}(k) \neq g_{s+1}(k)$ for some $k \leq n$. But, since $\left\{g_{s}\right\}_{s \geq 0}$ is a computable approximation of g, the latter can happen only finitely often. So R_{e} requires attention only finitely often contrary to assumption.

Now let

$$
x_{e, 0}<x_{e, 1}<x_{e, 2}<\ldots
$$

be the permanent R_{e}-followers. Then, for any $n \geq 0, x_{e, n}$ is appointed at stage $x_{e, n}$ and, for any s such that $x_{e, n} \leq s<x_{e, n+1}, x_{e, 0}, \ldots, x_{e, n}$ are the R_{e}-followers defined at stage s. Moreover, by construction, an interval $J_{e, n}$ becomes associated with $x_{e, n}$ at the stage $x_{e, n+1}$ where $x_{e, n+1}$ is appointed and

$$
\begin{equation*}
\forall k<n\left(A_{x_{e, n+1}-1} \cap J_{e, k} \neq V_{e_{1}, x_{e, n+1}-1} \cap J_{e, k}\right) \tag{2.4}
\end{equation*}
$$

holds. The latter implies that, for any k, n with $k<n$

$$
\begin{align*}
& \text { If } g_{x_{e, n+2}-1}(k) \neq g_{x_{e, n+1}-1}(k) \text { then there is a stage } s \text { with } x_{e, n+1}-1 \leq s<x_{e, n+2}-1 \tag{2.5}\\
& \text { and such that } A_{s+1} \cap J_{e, k} \neq A_{s} \cap J_{e, k} \text { or } V_{e_{1}, s+1} \cap J_{e, k} \neq V_{e_{1}, s} \cap J_{e, k} \text { holds. }
\end{align*}
$$

holds. For a proof of 2.5), fix $k<n$ such that $g_{x_{e, n+2}-1}(k) \neq g_{x_{e, n+1}-1}(k)$ holds. By 2.4 it suffices to show that there is a stage t such that $x_{e, n+1}-1 \leq t \leq x_{e, n+2}-1$ and $A_{t} \cap J_{e, k}=V_{e_{1}, t} \cap J_{e, k}$ holds. By $g_{x_{e, n+2}-1}(k) \neq g_{x_{e, n+1}-1}(k)$ fix s such that $x_{e, n+1}-1 \leq s<x_{e, n+2}-1$ and $g_{s+1}(k) \neq g_{s}(k)$. If
$A_{s} \cap J_{e, k}=V_{e_{1}, s} \cap J_{e, k}$ then $t=s$ will do. Otherwise, R_{e} requires and receives attention via (ii) at stage $s+1$ and $A_{s+1} \cap J_{e, k}=V_{e_{1}, s+1} \cap J_{e, k}$. (Note that, since R_{e} requires attention infinitely often, there are infinitely many stages at which e is eligible. But this implies that e is eligible at all stages ≥ 1.) So $t=s+1$ will do.

Since $\left\{V_{e_{1}, s}\right\}_{s \geq 0}$ is a computable almost-enumeration and since, by Claim $2,\left\{A_{s}\right\}_{s \geq 0}$ is a computable almost-enumeration, too, there are at most $2^{1+\max J_{e, k}}$ stages such that $V_{e_{1}}$ changes below $1+\max J_{e, k}$ and similarly for A. Hence (2.5) implies that

$$
\left|\left\{n>k: g_{x_{e, n+2}-1}(k) \neq g_{x_{e, n+1}-1}(k)\right\}\right| \leq 2 \cdot 2^{1+\max J_{e, k}}
$$

So, if we define the computable approximation $\left\{\tilde{g}_{n}\right\}_{n \geq 0}$ of g by letting

$$
\tilde{g}_{n}(k)=g_{x_{e, n+1}-1}(k),
$$

then the number of mind changes of \tilde{g}_{n} on k is bounded by $2 \cdot 2^{1+\max J_{e, k}}+k+1$. So g is ω-c.e. contrary to choice of g.

Claim 4. For $e \geq 0$, requirement R_{e} is met.
Proof. Fix e and, for a contradiction, assume that R_{e} is not met. Then the hypothesis of R_{e} is true - hence, in particular, $\mathcal{I}^{e_{0}}$ is a c.v.s.a.i. - and, for all $n, A \cap I_{n}^{e_{0}} \neq V_{e_{1}} \cap I_{n}^{e_{0}}$. Moreover, e is eligible at all stages ≥ 1. By Claim 3, fix a stage $s_{0}>e$ such that no requirement $R_{e^{\prime}}$ with $e^{\prime} \leq e$ requires attention after stage s_{0}, such that $\gamma\left(e^{\prime}, s\right)=\gamma^{*}\left(e^{\prime}\right)$ for all $e^{\prime} \leq e$ and all $s \geq s_{0}$ and such that $C_{s_{0}} \upharpoonright e+1=C \upharpoonright e+1$.

Since R_{e} does not require attention at stage $s_{0}+1$, there is a follower assigned to R_{e} at the end of stage s_{0}. So we may fix $n \geq 0$ such that $x_{e, 0}, x_{e, 1}, \ldots, x_{e, n}$ and $J_{e, 0}, J_{e, 1}, \ldots, J_{e, n-1}$ are the finitely many followers and associated intervals assigned to R_{e} at the end of stage s_{0}. By choice of s_{0}, these assignments are permanent. Moreover, since $J_{e, k} \in \mathcal{I}^{e_{0}}$ it follows that $A \cap J_{e, k} \neq V_{e_{1}} \cap J_{e, k}$ (for all $k<n$). So, for any sufficiently large stage $s_{1}>s_{0}, A_{s_{1}} \cap J_{e, k} \neq V_{e_{1}, s_{1}} \cap J_{e, k}$ for all $k<n$. Since $\mathcal{I}^{e_{0}}$ is a c.v.s.a.i. we may pick such a stage s_{1} such that there is a number m such that $I_{m, s_{1}}^{e_{0}} \downarrow$ and $x_{e, n}<\min I_{m}^{e_{0}}$. Then Clause (iii) or Clause (iii) in the definition of requiring attention is true at stage $s_{1}+1$. So (since $e<s_{1}$ and e is eligible at stage $s_{1}+1$) R_{e} requires attention at stage $s_{1}+1$, which is a contradiction.

Claim 5. $A \leq_{\mathrm{T}} C$.
Proof. Given x let s_{x} be the least stage s such that $C_{s} \upharpoonright x+1=C \upharpoonright x+1$ and $g_{t} \upharpoonright x+1=g \upharpoonright x+1$ for all $t \geq s$. Then s_{x} can be computed from C (uniformly in x). So it suffices to show that $A_{s}(x)=A_{s+1}(x)$ for all $s \geq s_{x}$ whence $A(x)=A_{s_{x}}(x)$.

Fix s such that $A_{s}(x) \neq A_{s+1}(x)$. Then, by construction, one of the following two cases must apply.

Case 1. $x=\gamma\left(c_{s}, s\right)$ where $c_{s}=\min \left(C_{s+1} \backslash C_{s}\right)$ and $\gamma\left(c_{s}, s\right)$ is enumerated into A at stage $s+1$.
Then, by $\left(\gamma_{2}\right)$ and by construction, $c_{s} \leq \gamma\left(c_{s}, s\right)$ whence $C_{s+1} \upharpoonright x+1 \neq C_{s} \upharpoonright x+1$. So $s<s_{x}$.

Case 2. There are numbers e and k such that requirement R_{e} receives attention via (ii) at stage $s+1, g_{s+1}(k) \neq g_{s}(k)$ and $x=x_{e, k}$ or $x \in J_{e, k}$ where $x_{e, k}$ is the $(k+1)$ st follower (in order of magnitude) of R_{e} at the end of stage s and $J_{e, k}$ is the interval associated with $x_{e, k}$. Since $x_{e, k}<\min J_{e, k}$ it follows that $k \leq x_{e, k} \leq x$ whence $g_{s+1} \upharpoonright x+1 \neq g_{s} \upharpoonright x+1$. So $s<s_{x}$ is this case, too.

Claim 6. $C \leq_{\mathrm{T}} A$.
Proof. As observed above already, the marker function γ is computable, has computable domain and satisfies the conditions $\left(\gamma_{1}\right)-\left(\gamma_{4}\right)$ and $\left(\gamma_{6}\right)$. Moreover, $\left(\gamma_{5}\right)$ holds by Claim 3. So $C \leq_{\mathrm{T}} A$ by Claims 1 and 2.

Claims 2, 4, 5 and 6 show that A has the required properties. This completes the proof of Theorem 28.

It can be shown that the converse of Theorem 28 holds, too.
Theorem 29 ($\widehat{\operatorname{ASLM}})$. Let A be an almost-c.e. set with the universal similarity property. Then $\operatorname{deg}_{\mathrm{T}}(A)$ is not totally ω-c.e.

To conclude, we get the following characterization of the c.e. not totally ω-c.e. degrees in terms of the universal similarity property.

Theorem 30. For a c.e. Turing degree a the following are equivalent.
(i) There is an almost-c.e. set A with the universal similarity property in \mathbf{a}.
(ii) \mathbf{a} is not totally ω-c.e.

Proof. This is immediate by Theorems 28 and 29
In the following subsections, we give examples of applications of Theorem 30 proving properties of the c.e. not totally ω-c.e. degrees.

2.3.2 Sets with the Universal Similarity Property and CB-Randomness

Brodhead, Downey and Ng BDN12 have shown that any c.e. not totally ω-c.e. Turing degree contains a (not necessarily almost-c.e.) CB-random set and that any such degree bounds a CBrandom almost-c.e. set. We unify these results by showing that any almost-c.e. set with the universal similarity property is CB-random.

Theorem 31. Any almost-c.e. set with the universal similarity property is CB-random.
Corollary 32. Let a be a c.e. Turing degree which is not totally ω-c.e. There is an a.c.e. set $A \in \mathbf{a}$ such that A is $C B$-random.

Proof. This is immediate by Theorems 30 and 31.
Before we prove Theorem 31 we review the relevant notions.
Definition 33. (a) For any function $f: \omega \rightarrow \omega$, an ML-test $\left\{U_{n}\right\}_{n \geq 0}$ is f-bounded (or an f-test for short) if, for $n \geq 0,\left|U_{n}\right| \leq f(n)$.
(b) A Martin-Löf test $\left\{U_{n}\right\}_{n \geq 0}$ is computably-bounded (or a CB-test for short) if $\left\{U_{n}\right\}_{n \geq 0}$ is f-bounded for some computable function f.
(c) A real α (set A) is f-Martin-Löf random (or f-ML-random for short) if α (A) passes all f-tests.
(d) A real α (set A) is computably-bounded random (or CB-random for short) if α (A) passes all CB-tests (i.e., if $\alpha(A)$ is f-ML-random for all computable functions f).

Now, since a set A is CB-random if and only if A is f-ML-random for all computable functions f, for a proof of Theorem 31, it suffices to establish the following lemma. The somewhat technical proof of the lemma can be found in the forthcoming paper ASLM] by Ambos-Spies, Losert and Monath.

Lemma 34 (ASLM$)$. Let f be a computable function. There is a c.v.s.a.i. $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ such that any \mathcal{F}-a.c.e.-a.n.c. almost-c.e. set A is f-ML-random.

2.3.3 Sets with the Universal Similarity Property and Maximal Pairs

As a further example, we now turn to investigate maximal pairs in the almost-c.e. ibT- and cldegrees. They have been and are still widely studied. Yu and Ding [YD04 have shown that there exists a maximal pair in the almost-c.e. ibT-degrees. This result has been extended in various directions. E.g., Fan [Fan09] has shown that there is a maximal pair in the almost-c.e. ibT-degrees such that one half is c.e. In fact, by a result of Fan and Yu FY11, every noncomputable almostc.e. set is half of a maximal pair in the almost-c.e. ibT-degrees. However, as shown by Downey and Hirschfeldt DH10, we cannot make both halves c.e.

In ASLM, Fan's theorem that there is an ibT-maximal pair (A, B) in the almost-c.e. sets where B is c.e. is strengthened in two directions. Namely, it is shown that the c.e. set B can be chosen to be arbitrarily sparse, i.e., to be a subset of any given infinite computable set D and that it suffices to let A be any \mathcal{F}-a.c.e.-a.n.c. almost-c.e. set (where the choice of \mathcal{F} depends on D).

Lemma 35 (First Maximal Pair Lemma). Let D be an infinite computable set. There are a c.v.s.a.i. $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ and a c.e. set $B \subseteq D$ such that, for any \mathcal{F}-a.c.e.-a.n.c. almost-c.e. set A, (A, B) is an ibT-maximal pair in the almost-c.e. sets.

The quite technical proof of this lemma is based on the Yu-Ding method for constructing maximal pairs and its refinement by Barmpalias, Downey and Greenberg and can be found in the forthcoming paper ASLM by Ambos-Spies, Losert and Monath. The lemma immediately implies the following.

Lemma 36 (Second Maximal Pair Lemma). Let A be an almost-c.e. set with the universal similarity property and let D be any infinite computable set. There is a c.e. set $B \subseteq D$ such that (A, B) is an ibT-maximal pair in the almost-c.e. sets.

As mentioned in ASLM, Lemma 35 implies the following Theorem which, by Theorem 21 , implies direction (i) \Rightarrow (ii) of Theorem 17 .

Theorem 37. There is a v.s.a. \mathcal{F} such that no \mathcal{F}-a.c.e.-a.n.c. almost-c.e. set is cl-reducible to any ML-random almost-c.e. set.

In the remainder of this subsection, we prove that a c.e. T-degree contains an a.c.e. set which is not ibT-reducible to any wtt-hard a.c.e. set if and only if it is not totally ω-c.e. We begin with applying the Second Maximal Pair Lemma to prove the following.

Theorem 38. Let A be an almost-c.e. set with the universal similarity property and let C be a wtt-hard almost-c.e. set. Then $A \not \not \mathbb{i b T} C$.

The theorem is immediate by the Second Maximal Pair Lemma and the following equivalence.
Lemma 39 ($\widehat{\text { ASLM }})$. Let A be an almost-c.e. set. The following are equivalent.
(i) A is not ibT-reducible to any wtt-hard almost-c.e. set.
(ii) For any infinite computable set D there is a computably enumerable subset B of D such that (A, B) is an ibT-maximal pair in the almost-c.e. sets.

By Theorem 30. Theorem 38 implies the following.
Theorem 40. Let \mathbf{a} be a c.e. Turing degree which is not totally ω-c.e. Then, there is an almost-c.e. set $A \in \mathbf{a}$ that is not ibT-reducible to any wtt-hard almost-c.e. set.

We now proceed to prove the converse of Theorem 40 .
Theorem 41. Let \mathbf{a} be a c.e. Turing degree which is totally ω-c.e. and let A be any almost-c.e. set in \mathbf{a}. There is a wtt-hard almost-c.e. set B such that $A \leq_{\mathrm{ibT}} B$.

For the proof of Theorem 41, we need the following technical lemma.
Lemma 42 (ASLM $)$. Let A be a noncomputable almost-c.e. set such that $\operatorname{deg}_{\mathrm{T}}(A)$ is totally ω-c.e. Then, the following hold.
(a) There is a strictly increasing computable function h such that the following holds.

For any computable function f there are a computable almost-enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A and an infinite computable set D such that

$$
\forall x \in D\left(\left|\left\{s: A_{s+1} \upharpoonright f(x) \neq A_{s} \upharpoonright f(x)\right\}\right|<h(x)\right)
$$

holds.
(b) There are a computable almost-enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A and a c.v.s.a.i. $\mathcal{I}=\left\{I_{n}\right\}_{n \geq 0}$ such that

$$
\begin{equation*}
\forall n \geq 0\left(\left|\left\{s: A_{s+1} \cap \bigcup_{n^{\prime} \leq n} I_{n^{\prime}} \neq A_{s} \cap \bigcup_{n^{\prime} \leq n} I_{n^{\prime}}\right\}\right|<\left|I_{n}\right|-1\right) \tag{2.6}
\end{equation*}
$$

Now we are ready to prove Theorem 41
Proof of Theorem41. If $\mathbf{a}=\mathbf{0}$ then the claim is obvious. So w.l.o.g. assume that $\mathbf{a}>\mathbf{0}$ and let A be any almost-c.e. set in a. By Lemma 42 (b) fix a computable almost-enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A and a c.v.s.a.i. $\mathcal{I}=\left\{I_{n}\right\}_{n \geq 0}$ such that 2.6 holds. Moreover, fix a_{n} and b_{n} such that $I_{n}=\left[a_{n}, b_{n}\right]$.

It suffices to show that there are an almost-c.e. set B and a computable almost-enumeration $\left\{B_{s}\right\}_{s \geq 0}$ of B such that

$$
\begin{equation*}
A \leq_{\mathrm{ibT}} B \tag{2.7}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\forall n, s \geq 0\left(B_{s}\left(b_{n}\right)=0\right) \tag{2.8}
\end{equation*}
$$

holds. Then, for $C=B \cup\left\{b_{n}: n \in K\right\}$ where K is the halting set, C is almost-c.e., $A \leq_{\mathrm{ibT}} C$ and $K \leq_{\mathrm{wtt}} C$.

The desired computable almost-enumeration $\left\{B_{s}\right\}_{s \geq 0}$ is defined as follows. Let $B_{0}(x)=0$ for all x. For the definition of B_{s+1} distinguish the following two cases. If $A_{s+1}=A_{s}$ then let $B_{s+1}=B_{s}$. Otherwise, let x_{s+1} be the least x such that $A_{s+1}(x) \neq A_{s}(x)$ and fix the unique number n_{s+1} such that $x_{s+1} \in I_{n_{s+1}}$. (Note that $A_{s+1}\left(x_{s+1}\right)=1$ and $A_{s}\left(x_{s+1}\right)=0$ since $\left\{A_{s}\right\}_{s \geq 0}$ is an almost-enumeration.) If $x_{s+1} \neq b_{n_{s+1}}$ then let y_{s+1} be the greatest number $y \leq x_{s+1}$ in $I_{n_{s+1}}$ such that $B_{s}(y)=0$ and if $x_{s+1}=b_{n_{s+1}}$ then let y_{s+1} be the greatest number $y<x_{s+1}$ in $I_{n, s+1}$ such that $B_{s}(y)=0$. In either case let

$$
B_{s+1}(x)= \begin{cases}B_{s}(x) & \text { if } x<y_{s+1} \\ 1 & \text { if } x=y_{s+1} \\ 0 & \text { if } x>y_{s+1}\end{cases}
$$

Assuming that the number y_{s+1} exists for all s such that x_{s+1} is defined, it is obvious that $\left\{B_{s}\right\}_{s \geq 0}$ is a computable almost-enumeration satisfying 2.8. Moreover, for the set B almostenumerated by $\left\{B_{s}\right\}_{s \geq 0}$, 2.7) holds since $\left\{B_{s}\right\}_{s \geq 0}$ permits $\left\{A_{s}\right\}_{s \geq 0}$ (namely, for any z and s such that $A_{s+1} \upharpoonright z+1 \neq A_{s} \upharpoonright z+1$, it holds that $\left.B_{s+1} \upharpoonright z+1 \neq B_{s} \upharpoonright z+1\right)$.

So it only remains to show that y_{s+1} exists whenever x_{s+1} exists. For a contradiction, let s_{0} be the first stage such that $x_{s_{0}+1}$ exists and $y_{s_{0}+1}$ does not exist and let $n=n_{s_{0}+1}$. As $y_{s_{0}+1}$ does not exist, $\left[a_{n}, x_{s_{0}+1}\right) \subseteq B_{s_{0}}$. We claim that there are a number $k \geq 0$ and stages $s_{k}<s_{k-1}<\ldots<s_{0}$ such that the following hold.

$$
\begin{equation*}
x_{s_{0}+1}<x_{s_{1}+1}<\ldots<x_{s_{k}+1}=b_{n} \tag{2.9}
\end{equation*}
$$

and for all $i<k$

$$
\begin{gather*}
x_{s_{i}+1} \in B_{s_{i}} \tag{2.10}\\
\left(x_{s_{i}+1}, x_{s_{i+1}+1}\right) \subseteq B_{s_{i+1}} \tag{2.11}
\end{gather*}
$$

As there is at most one x such that $B(x)$ changes from 0 to 1 at any given stage, this implies that there are at least $\left|\left[a_{n}, x_{s_{0}+1}\right)\right|+\left|\bigcup_{i<k}\left(x_{s_{i}+1}, x_{s_{i+1}+1}\right)\right|+\left|\left\{x_{s_{i}+1}: i<k\right\}\right|=\left|I_{n}\right|-1$ many stages where B changes in I_{n}. By construction, this only happens if A changes in I_{n}, hence A changes at least $\left|I_{n}\right|-1$ many times in I_{n}, which contradicts the choice of \mathcal{I} and of the computable almost-enumeration of A.

It remains to show that 2.9 holds for some k and $s_{k}<s_{k-1}<\ldots<s_{0}$ and that 2.10 and (2.11) hold for all $i<k$. The proof is by induction. For that matter, we prove that, if a stage
$s_{i} \leq s_{0}$ such that $x_{s_{i}+1} \in B_{s_{i}}$ exists, then there is a stage $s_{i+1}<s_{i}$ such that the following hold

$$
\begin{gather*}
x_{s_{i+1}^{+1}}>x_{s_{i}+1}=y_{s_{i+1}+1} \tag{2.12}\\
x_{s_{i+1}+1}=b_{n} \text { or } x_{s_{i+1}+1} \in B_{s_{i+1}} \tag{2.13}
\end{gather*}
$$

and such that 2.11) holds. Fix $s_{i} \leq s_{0}$ such that $x_{s_{i}+1} \in B_{s_{i}}$. Then, by construction, there must be a stage $s_{i+1}<s_{i}$ such that $x_{s_{i}+1}=y_{s_{i+1}+1}$ (hence $x_{s_{i}+1} \in B_{s_{i+1}+1} \backslash B_{s_{i+1}}$) and such that $x_{s_{i}+1} \in B_{s+1}$ for all s with $s_{i+1} \leq s<s_{i}$. By construction, $x_{s_{i+1}+1} \geq x_{s_{i}+1}$, so in order to prove 2.12 assume for a contradiction that $x_{s_{i+1}+1}=x_{s_{i}+1}$. Then, $x_{s_{i}+1} \in A_{s_{i+1}+1} \backslash A_{s_{i}}$, i.e., $x_{s_{i}+1}$ is taken out of A at some stage $s+1$ (i.e., $x_{s_{i}+1} \in A_{s} \backslash A_{s+1}$) with $s_{i+1}<s<s_{i}$. By construction, this implies that $x_{s+1}<x_{s_{i}+1}$ exists, whence, by $s<s_{i} \leq s_{0}, y_{s+1} \leq x_{s+1}<x_{s_{i}+1}$ exist, so, by construction, $x_{s_{i}+1} \notin B_{s+1}$ contradicting the choice of s_{i+1}. It follows that $x_{s_{i+1}+1}>x_{s_{i}+1}$, hence 2.12 holds. It follows by definition of $y_{s_{i+1}+1}$ that 2.11) and 2.13 hold.

Now, since $y_{s_{0}+1}$ does not exist, either $x_{s_{0}+1}=b_{n}$ (then, 2.9) holds with $k=0$ and 2.10 and (2.11) are vacuous) or $x_{s_{0}+1} \in B_{s_{0}}$. In the latter case, from the above together with the fact that there are only finitely many stages $s<s_{0}$, it follows by induction that for some $k>0$, there are stages $s_{k}<s_{k-1}<\ldots<s_{0}$ such that 2.9 holds and such that 2.10 and 2.11) hold for all $i<k$. This completes the proof.

To conclude, we have the following theorem.
Theorem 43. For a c.e. degree a, the following are equivalent.
(i) There is an almost-c.e. set in a that is not ibT-reducible to any wtt-hard almost-c.e. set.
(ii) \mathbf{a} is not totally ω-c.e.

Proof. Immediate by Theorems 40 and 41 .

2.3.4 Sets with the Universal Similarity Property and cl-Reducibility to Complex Sets

In this subsection, we apply Theorem 43 to characterize the Turing degrees containing almost-c.e. sets which cannot be reduced to any complex almost-c.e. set. Namely, we prove the following theorem which has been conjectured by Noam Greenberg and parallels Theorem 17

Theorem 44. Let a be a c.e. Turing degree. The following are equivalent.
(i) There is an almost-c.e. set in a which is not cl-reducible to any complex almost-c.e. set.
(ii) \mathbf{a} is not totally ω-c.e.

Here, complex sets are defined in terms of plain Kolmogorov complexity and computable orders where a computable order is a computable, nondecreasing, unbounded function.

Definition 45 (Kanovich, see e.g. DH10]). Let h be a computable order. A set A is h-complex if $C(A \upharpoonright n) \geq h(n)$ for all n. A set A is complex if A is h-complex for some computable order.

Note that Downey and Hirschfeldt proved that there is a set that is not cl-reducible to any complex set (Theorem 9.13.2 in DH10). Moreover, Fan and Yu FY11 showed that there is an almost-c.e. set which is not cl-reducible to any complex almost-c.e. set. In order to prove Theorem 44. we need a further equivalence. Kanovich (see Theorem 8.16.7 in DH10) has shown that a c.e. set A is complex if and only if A is wtt-complete. Since any almost-c.e. set is wtt-equivalent to a c.e. set and since Kjos-Hanssen, Merkle and Stephan KHMS11 have observed that the class of complex sets is closed upwards under wtt-reducibility, the complex almost-c.e. sets coincide with the wtt-hard almost-c.e. sets.

Lemma 46. An almost-c.e. set A is complex if and only if A is wtt-hard (for the class of the c.e. sets).

We observe further that a set is cl-reducible to a wtt-hard almost-c.e. set if and only if it is ibT-reducible to such a set.

Proposition 47 ($\widehat{\operatorname{ASLM}}$). A set A is cl-reducible to some wtt-hard almost-c.e. set if and only if A is ibT-reducible to such a set.

So, by the coincidence of the complex almost-c.e. sets and the wtt-hard almost-c.e. sets, direction (i) \Rightarrow (ii) of Theorem 44 follows from Theorem 41 while direction (ii) \Rightarrow (i) follows from Theorem 40 and Proposition 47.

Proof of Theorem 44. (i) \Rightarrow (ii). The proof is by contraposition. Assume that a is totally ω-c.e. and let A be any almost-c.e. set in a. It suffices to show that there is a complex almost-c.e. set C such that $A \leq_{\mathrm{cl}} C$. By Theorem 41 there is a wtt-hard almost-c.e. set C such that $A \leq_{\mathrm{ibT}} C$ hence $A \leq_{\mathrm{cl}} C$. So the claim follows by Lemma 46 .
(ii) \Rightarrow (i). Assume that \mathbf{a} is not totally ω-c.e. By Theorem 40 , there is a set $A \in \mathbf{a}$ which is not ibT-reducible to any wtt-hard almost-c.e. set. We show that A is not cl-reducible to any complex almost-c.e. set. For a contradiction assume that A is cl-reducible to the complex almost-c.e. set C. Then, by Lemma 46, C is wtt-hard and, by Proposition 47, A is ibT-reducible to some wtt-hard almost-c.e. set \hat{C}. But this contradicts the choice of A.

2.4 Notions of Universal Array Noncomputability

In the last section, we have seen that the c.e. not totally ω-c.e. degrees contain almost-c.e. sets that possess a property that can be viewed as a universal version of the key property of the a.n.c. c.e. sets; namely, the universal similarity property. This observation strengthens the impression based on Lemma 23 that being not totally ω-c.e. is a universal or uniform version of being a.n.c. Note that it has been shown by Downey, Jockusch and Stob DJS90 that no c.e. set is \mathcal{F}-a.n.c. for all very strong arrays \mathcal{F}, so there is no equivalent of the universal similarity property for c.e. sets. In this section, however, we define typical properties of c.e. sets of not totally ω-c.e. Turing degree, namely, we introduce various notions of universal array noncomputability. We explore the properties of and the relationships between c.e. sets with the different universal array noncomputability properties, their wtt- as well as T-degrees. In particular, we see that those sets capture a further notion of multiple permitting, namely uniform multiple permitting and that their

Turing degrees are precisely the c.e. not totally ω-c.e. Turing degrees, implying that the latter are uniformly multiply permitting. Later we exploit this fact to look at more properties of the c.e. not totally ω-c.e. degrees. Many of the definitions and results in this section will appear in the forthcoming paper ASL by Ambos-Spies and Losert.

2.4.1 Basic Definitions and Facts

We start with the basic definitions.
Definition 48. For any set A, we let $A^{\langle e\rangle}=\{x:\langle e, x\rangle \in A\}$ be the eth row of A.
Recall the definition of the enumeration $\left\{\mathcal{F}^{e}\right\}_{e \geq 0}=\left\{\mathcal{F}^{\varphi_{e}}\right\}_{e \geq 0}$ of all very strong arrays (and initial segments) for a given universal function φ from the discussion following Definition 12

Definition 49. (a) Given a universal function φ, we call a c.e. set $A \varphi$-universally array noncomputable (φ-universally a.n.c. or φ-u.a.n.c.) if $A^{\langle e\rangle}$ is \mathcal{F}^{e}-a.n.c. whenever \mathcal{F}^{e} is a very strong array.
(b) A c.e. set is uniformly universally array noncomputable (uniformly u.a.n.c. or u.u.a.n.c.) if it is φ-u.a.n.c. for some universal function φ.
(c) We call a c.e. set A universally a.n.c. (u.a.n.c.) if for every very strong array \mathcal{F}, there is an index e such that $A^{\langle e\rangle}$ is \mathcal{F}-a.n.c.

We call a c.e. (Turing- or wtt-) degree φ-u.a.n.c. (u.u.a.n.c, u.a.n.c.) whenever it contains a φ-u.a.n.c. (u.u.a.n.c., u.a.n.c.) c.e. set.

Note that for every universal function φ, there exists a φ-universally a.n.c. c.e. set. We establish this fact in the following lemma.

Lemma 50. Let φ be a universal function. Then, there is a c.e. set A which is φ-universally a.n.c.

Proof. Let A be defined by

$$
\langle e, x\rangle \in A \Leftrightarrow \exists n\left(F_{n}^{e} \downarrow \& x \in W_{n} \cap F_{n}^{e}\right)\left(\Leftrightarrow \exists n, s\left(F_{n, s}^{e} \downarrow \& x \in W_{n, s} \cap F_{n}^{e}\right)\right)
$$

for all e and x. Then, obviously, A is c.e. and if \mathcal{F}^{e} is a v.s.a. then $A^{\langle e\rangle} \cap F_{n}^{e}=W_{n} \cap F_{n}^{e}$ for all n, so $A^{\langle e\rangle}$ is \mathcal{F}^{e}-a.n.c. Hence, by definition, A is φ-u.a.n.c.

The following relations among the notions are immediate by definition.
Proposition 51. Let φ be a universal function. For any c.e. set A, the following holds.

A is φ-u.a.n.c.

\Downarrow
A is u.u.a.n.c.
\Downarrow
A is u.a.n.c.

In the following, we show that the implications in Proposition 51 are strict.
Lemma 52. Let φ be a universal function. There is a c.e. set A which is uniformly u.a.n.c. but not φ-u.a.n.c.

Proof. Fix an index e_{0} such that $\mathcal{F}^{\varphi_{e_{0}}}$ is a very strong array and an index e_{1} such that $\mathcal{F}^{\varphi_{e_{1}}}$ is not a very strong array. Note that e_{0} and e_{1} exist by choice of φ. Let ψ be defined as follows. For $e \neq e_{0}, e_{1}$, let $\psi(e, x)=\varphi(e, x)$ for all x and let $\psi\left(e_{0}, x\right)=\varphi\left(e_{1}, x\right)$ and $\psi\left(e_{1}, x\right)=\varphi\left(e_{0}, x\right)$ for all x. It is easy to verify that ψ is a universal function, whence, by Lemma 50, there exists a ψ-u.a.n.c. c.e. set \hat{A}. Now, define A by letting $A^{\left\langle e_{0}\right\rangle}=\emptyset$ and $A^{\langle e\rangle}=\hat{A}^{\langle e\rangle}$ for all $e \neq e_{0}$. Then, A is c.e. and, by choice of \hat{A} and as $\mathcal{F}^{\psi_{e_{0}}}=\mathcal{F}^{\varphi_{e_{1}}}$ is not a v.s.a., A is ψ-u.a.n.c. and hence u.u.a.n.c. However, by choice of $e_{0}, \mathcal{F}^{\varphi_{e}}$ is a v.s.a. As $A^{\left\langle e_{0}\right\rangle}=\emptyset, A^{\left\langle e_{0}\right\rangle}$ is not $\mathcal{F}^{e_{0}}$-a.n.c., hence A is not φ-u.a.n.c. This completes the proof of the lemma.

Lemma 53. There is a c.e. set A that is u.a.n.c. but not uniformly u.a.n.c.
Proof. We computably enumerate such a set A.
Let φ together with a computable approximation $\left\{\varphi_{s}\right\}_{s \geq 0}$ be a 2-universal partial computable function and let ψ together with a computable approximation $\left\{\psi_{s}\right\}_{s \geq 0}$ be some fixed 1-universal partial computable function. For fixed e, let φ^{e} denote the e th branch of φ. Note that for any e, φ^{e} is a two-ary partial computable function. Furthermore, for every e, as discussed following Definition 12, let $\mathcal{I}^{e}=\mathcal{I}^{\psi_{e}}$ be the complete very strong array of intervals (or initial segment) defined by ψ_{e} and for every e and k, let $\mathcal{F}^{e, k}=\mathcal{F}^{\varphi_{k}^{e}}$ be the v.s.a. (or initial segment) defined by φ_{k}^{e}. It suffices to construct a c.e. set A such that the following requirements are met.
$\hat{R}_{2 e}:$ If \mathcal{I}^{e} is a c.v.s.a.i. then $A^{\langle k\rangle}$ is \mathcal{I}^{e}-a.n.c. for some k.
$\hat{R}_{2 e+1}$: If φ^{e} is universal for the (unary) partial computable functions, then there is some $k \geq 0$ such that $\mathcal{F}^{e, k}$ is a v.s.a. and $A^{\langle k\rangle}$ is not $\mathcal{F}^{e, k}$-a.n.c.

Here, the requirements $\hat{R}_{2 e}$ guarantee that A is u.a.n.c. (notice that, by Proposition 25 it is enough to meet $\hat{R}_{2 e}$ for all complete very strong arrays of intervals) whereas the requirements $\hat{R}_{2 e+1}$ make sure that A is not uniformly u.a.n.c.

Our strategy is as follows. For a splitting $\left\{J_{n}\right\}_{n \geq 0}$ of ω into intervals, we replace our requirements by the following stronger requirements.
$R_{2 e}:$ If \mathcal{I}^{e} is a c.v.s.a.i. then, for some $k \in J_{e}, A^{\langle k\rangle}$ is \mathcal{I}^{e}-a.n.c.
$R_{2 e+1}:$ For any $e^{\prime}<e$, if there is $k^{\prime} \in J_{e}$ such that $\mathcal{F}^{e^{\prime}, k^{\prime}}$ is a v.s.a.
then, for some $k \in J_{e}, \mathcal{F}^{e^{\prime}, k}$ is a v.s.a. and $A^{\langle k\rangle}$ is not $\mathcal{F}^{e^{\prime}, k}$-a.n.c.

Note that $R_{2 e}$ immediately implies $\hat{R}_{2 e}$. Moreover, for any e^{\prime} such that $\varphi^{e^{\prime}}$ is universal, there are infinitely many k such that $\mathcal{F}^{e^{\prime}, k}$ is a v.s.a. In particular, for any splitting $\left\{J_{n}\right\}_{n \geq 0}$ of ω into intervals, it follows that there are $e>e^{\prime}$ and $k^{\prime} \in J_{e}$ such that $\mathcal{F}^{e^{\prime}, k^{\prime}}$ is a v.s.a. So, for any e^{\prime}, there is $e>e^{\prime}$ such that $R_{2 e+1}$ implies $\hat{R}_{2 e^{\prime}+1}$.

Our strategy is as follows. To meet a single requirement $R_{2 e}$, we aim to guarantee that $A^{\langle k\rangle}$ is \mathcal{I}^{e}-a.n.c. for some $k \in J_{e}$. For that matter, for fixed k and n, we pick an unused component $I_{f(k, n)}^{e}$ of \mathcal{I}^{e} and make sure that $A^{\langle k\rangle} \cap I_{f(k, n)}^{e}=W_{n} \cap I_{f(k, n)}^{e}$. We ensure this by defining f in stages and, whenever $f(k, n, s)$ is defined at some stage s and $A_{s}^{\langle k\rangle} \cap I_{f(k, n, s)}^{e} \neq W_{n, s+1} \cap I_{f(k, n, s)}^{e}$ holds, we arrange that $A_{s+1}^{\langle k\rangle} \cap I_{f(k, n, s)}^{e}=W_{n, s+1} \cap I_{f(k, n, s)}^{e}$ holds.

To meet a single requirement $R_{2 e+1}$, for each $e^{\prime}<e$ and $k \in J_{e}$ such that $\mathcal{F}^{e^{\prime}, k}$ is a v.s.a. - if any - we try to make sure that $A^{\langle k\rangle}$ is computable. As we cannot decide whether $\mathcal{F}^{e^{\prime}, k}$ is a v.s.a. or not, we choose to act at so-called $\mathcal{F}^{e^{\prime}, k}$-expansionary stages - i.e., stages where new components of $\mathcal{F}^{e^{\prime}, k}$ are defined - for the sake of meeting requirement $R_{2 e+1}$. Note that, whenever $\mathcal{F}^{e^{\prime}, k}$ is a v.s.a., there are infinitely many $\mathcal{F}^{e^{\prime}, k}$-expansionary stages.

To avoid conflicts between the different types of requirements, we only act on the odd stages to meet the requirements of the form $R_{2 e}$ and only on the even stages to meet the requirements of the form $R_{2 e+1}$. Moreover, we choose to try to make $A^{\langle k\rangle} \mathcal{I}^{e}$-a.n.c. for every $k \in J_{e}$ for the sake of $R_{2 e}$. We might need to destroy action taken for that matter in order to meet a requirement $R_{2 e+1}$ which possibly aims to make $A^{\langle k\rangle}$ computable. At a given stage $s^{\prime}+1$, we then choose to enumerate all numbers from $I_{f\left(k, n, s^{\prime}\right)}^{e}$ (if defined) into $A^{\langle k\rangle}$ for $n>n_{e}\left(e^{\prime}, k, s^{\prime}\right)$ where $n_{e}\left(e^{\prime}, k, s\right)$ is appropriately chosen depending on e and $e^{\prime}<e$ and bounded in s in case that k is minimal in J_{e} such that $\mathcal{F}^{e^{\prime}, k}$ is indeed a v.s.a. We can then argue that, for every $e^{\prime}<e$, for the least $k \in J_{e}$ such that $\mathcal{F}^{e^{\prime}, k}$ is a v.s.a. (if any), this strategy guarantees that $A^{\langle k\rangle}$ is either cofinite or finite, depending on whether \mathcal{I}^{e} is a c.v.s.a.i. or not. In any case, $A^{\langle k\rangle}$ will then be computable, hence not $\mathcal{F}^{e^{\prime}, k}$-a.n.c. By choosing the splitting $\left\{J_{n}\right\}_{n \geq 0}$ in a way that $\left|J_{n}\right|=n+1$, we make sure that there is a number $k \in J_{e}$ that is not the least $k^{\prime} \in J_{e}$ such that $\mathcal{F}^{e^{\prime}, k^{\prime}}$ is a v.s.a. for any $e^{\prime}<e$. For the least such k, we argue that the strategy for meeting $R_{2 e}$ succeeds.

Before giving the actual construction, we define the following notions. Let $\left\{J_{n}\right\}_{n \geq 0}$ be a splitting of ω into intervals such that $\left|J_{n}\right|=n+1$ for all n, i.e., let $x_{0}=0$ and for every $n \geq 0$, let $x_{n+1}=x_{n}+n+1$ and let $J_{n}=\left[x_{n}, x_{n+1}\right)$. As the fact whether some $\mathcal{F}^{e, k}$ is a v.s.a. or not is not computable, we have to use approximations. We define the following length of agreement function. For all e, k and s, we let

$$
l(e, k, s)=\mu n\left(F_{n, s}^{e, k} \uparrow\right)
$$

A stage $2 s$ is $\mathcal{F}^{e, k}$-expansionary if $s=0$ or $l(e, k, 2 s)>l\left(e, k, 2 s^{\prime}\right)$ holds for all $s^{\prime}<s$. Moreover, if e is fixed, then for $e^{\prime}<e$ and $k \in J_{e}$, let

$$
n_{e}\left(e^{\prime}, k, 2 s+1\right)=\max _{k^{\prime} \in J_{e}, k^{\prime}<k} l\left(e^{\prime}, k^{\prime}, 2 s+1\right) .
$$

Now we are ready to give the formal construction of A where we let A_{s} denote the finite part of A constructed at the end of stage s.

Construction.

Stage 0 is vacuous, i.e., $A_{0}=\emptyset$ and $f(k, n, 0) \uparrow$ for all k and n.
Stage $2 s+1$. For all $e<s$ and all $k \in J_{e}$, perform the following actions.

1. For all n such that $f(k, n, 2 s) \downarrow$ and such that

$$
\begin{equation*}
W_{n, 2 s+1} \cap I_{f(k, n, 2 s)}^{e} \neq A_{2 s}^{\langle k\rangle} \cap I_{f(k, n, 2 s)}^{e} \tag{2.14}
\end{equation*}
$$

holds, let $A_{2 s+1}^{\langle k\rangle} \cap I_{f(k, n, 2 s)}^{e}=W_{n, 2 s+1} \cap I_{f(k, n, 2 s)}^{e}$. For all such n, say that $R_{2 e}$ becomes active (via Clause 1 and k and n).
2. For the least n such that $f(k, n, 2 s) \uparrow$, if there is a number m such that
(i) $I_{m, 2 s+1}^{e} \downarrow$,
(ii) $I_{m}^{e} \cap A_{2 s}^{\langle k\rangle}=\emptyset$ and
(iii) if $n>0$, then $m>f(k, n-1,2 s)$
hold, let $f(k, n, 2 s+1)=m$ for the least such m, hence $I_{f(k, n, 2 s+1)}^{e}=I_{m}^{e}$, and say that $R_{2 e}$ becomes active (via Clause 2 and k and n).

Unless mentioned otherwise, let $A_{2 s+1}^{\langle k\rangle}=A_{2 s}^{\langle k\rangle}$ and $f(k, n, 2 s+1)=f(k, n, 2 s)$ for all k and n.

Stage $2 s+2$. For any $e<s$ and for each $k \in J_{e}$, perform the following action. For any $e^{\prime}<e$ such that $2 s+2$ is $\mathcal{F}^{e^{\prime}, k}$-expansionary and

$$
\begin{equation*}
n_{e}\left(e^{\prime}, k, 2 s+1\right)<l\left(e^{\prime}, k, 2 s+1\right) \tag{2.15}
\end{equation*}
$$

holds, for all $n>n_{e}\left(e^{\prime}, k, 2 s+1\right)$ such that $f(k, n, 2 s+1) \downarrow$, let $f(k, n, 2 s+2) \uparrow$ and put all $x \in I_{f(k, n, 2 s+1)}^{e}$ into $A^{\langle k\rangle}$. For all such e, k, e^{\prime} and n, we say that $R_{2 e+1}$ becomes active (via k, e^{\prime} and $\left.n\right)$.
Unless mentioned otherwise, let $A_{2 s+2}^{\langle k\rangle}=A_{2 s+1}^{\langle k\rangle}$ and $f(k, n, 2 s+2)=f(k, n, 2 s+1)$ for all k and n.

This completes the construction.

Verification.

In the following we prove a series of claims showing that A has the required properties, i.e., that A is c.e. and that all requirements are met. Before we turn to these claims, we begin with the following observations for fixed $e, k \in J_{e}, e^{\prime}<e, n, m$ and s. These are, unless mentioned otherwise, immediate by construction.

If $f(k, n, s) \neq f(k, n, s+1)$ holds , then either $f(k, n, s) \uparrow$ and $f(k, n, s+1) \downarrow$ hold and $R_{2 e}$ acts via Clause 2 and k and n at stage $s+1$ or $f(k, n, s) \downarrow$ and $f(k, n, s+1) \uparrow$ hold and $R_{2 e+1}$ acts via k, e^{\prime} and n for some $e^{\prime}<e$. Moreover, if $f(k, n, s) \downarrow$, then $f\left(k, n^{\prime}, s\right) \downarrow$ and $f\left(k, n^{\prime}, s\right)<f(k, n, s)$ for all $n^{\prime}<n$. To see this, it suffices to note that if $f(k, n, s+1) \downarrow$ and $f(k, n, s) \uparrow$ hold, then n is minimal with $f(k, n, s) \uparrow$ and, in case $n>0, f(k, n, s+1)>f(k, n-1, s)=f(k, n-1, s+1)$ holds and if $f(k, n, s+1) \uparrow$ and $f(k, n, s) \downarrow$ hold, then, by construction, $f\left(k, n^{\prime}, s+1\right) \uparrow$ for all $n^{\prime}>n$.

Note that $A^{\langle k\rangle} \subseteq \bigcup_{m \geq 0 \& I_{m}^{e} \downarrow} I_{m}^{e}$. Moreover, $A_{s+1}^{\langle k\rangle} \cap I_{m}^{e} \neq A_{s}^{\langle k\rangle} \cap I_{m}^{e}$ implies that $f\left(k, n^{\prime}, s\right)=m$ for some n^{\prime}. Furthermore, if $f(k, n, s)=m$ and $f(k, n, s+1) \uparrow$, then $f\left(k, n^{\prime}, s^{\prime}+1\right) \neq m$ for all n^{\prime} and for all $s^{\prime} \geq s$. Namely, for a contradiction fix the least $s^{\prime} \geq s$ with $f\left(k, n^{\prime}, s^{\prime}+1\right)=m$ for some n^{\prime} and fix the least corresponding n^{\prime}. By minimality of s^{\prime} and by the above, we know that $f\left(k, n^{\prime}, s^{\prime}\right) \uparrow$, hence $R_{2 e}$ acts via Clause 2 and k and n^{\prime} at stage $s^{\prime}+1$, hence, by construction, $A_{s^{\prime}}^{\langle k\rangle} \cap I_{m}^{e}=\emptyset$. On the other hand, by choice of $s, R_{2 e+1}$ becomes active via k, e^{\prime} and n for some $e^{\prime}<e$ at stage $s+1$, yielding $A_{s+1}^{\langle k\rangle} \cap I_{m}^{e}=I_{m}^{e}$ by construction. By minimality of s^{\prime}, there is no $n^{\prime \prime}$
such that $f\left(k, n^{\prime \prime}, s^{\prime \prime}+1\right)=m$ for any $s^{\prime \prime}$ with $s \leq s^{\prime \prime}<s^{\prime}$, so $A_{s^{\prime}}^{\langle k\rangle} \cap I_{m}^{e}=A_{s+1}^{\langle k\rangle} \cap I_{m}^{e}=I_{m}^{e} \neq \emptyset$, a contradiction.

Claim 1. A is c.e. via $\left\{A_{s}\right\}_{s \geq 0}$.
Proof. Fix $k \geq 0$ and, for a contradiction, fix x and $s^{\prime} \geq 0$ such that $A_{s^{\prime}+1}^{\langle k\rangle}(x)<A_{s^{\prime}}^{\langle k\rangle}(x)$. Then, by construction, there are e and m such that $k \in J_{e}$ and $x \in I_{m}^{e}$ and such that either $R_{2 e}$ or $R_{2 e+1}$ becomes active at stage $s^{\prime}+1$. As requirements of the form $R_{2 e+1}$ only put numbers into A, $s^{\prime}=2 s$ for some $s, R_{2 e}$ becomes active via Clause 1 and k and some n such that $f(k, n, 2 s)=m$ at stage $2 s+1$ and $A_{2 s+1}^{\langle k\rangle} \cap I_{m}^{e}=W_{n, 2 s+1} \cap I_{m}^{e}$. So by assumption, $x \in A_{2 s}^{\langle k\rangle} \backslash W_{n, 2 s+1}$. Fix the stage $s_{x}+1 \leq 2 s$ such that x is enumerated into $A^{\langle k\rangle}$ at stage $s_{x}+1$. By construction, this can only happen in the following two cases.

Case 1. For some n^{\prime} with $f\left(k, n^{\prime}, s_{x}\right)=m, R_{2 e}$ becomes active via Clause 1 and k and n^{\prime} at stage $s_{x}+1$.
We claim that $n^{\prime}=n$. It then follows by construction that $A_{s_{x}+1}^{\langle k\rangle} \cap I_{m}^{e}=W_{n, s_{x}+1} \cap I_{m}^{e}$. Hence $x \in W_{n, s_{x}+1}$. But, as $\left\{W_{n, s}\right\}_{s \geq 0}$ is a computable enumeration, by $s_{x}+1 \leq 2 s$, this contradicts the fact that $x \notin W_{n, 2 s+1}$.

It remains to show that $n^{\prime}=n$. Assume for a contradiction that $n^{\prime} \neq n$. Then, by the above observations and since $f(k, n, 2 s)=m$, it follows that $f\left(k, n^{\prime}, 2 s\right) \neq m$, hence there is a stage $s^{\prime \prime}$ with $s_{x} \leq s^{\prime \prime}<2 s$ such that $f\left(k, n^{\prime}, s^{\prime \prime}\right)=m$ and $f\left(k, n^{\prime}, s^{\prime \prime}+1\right) \uparrow$. But, again by the above observations, this contradicts the fact that $f(k, n, 2 s)=m$.

Case 2. For some $e^{\prime}<e$ and n^{\prime} with $f\left(k, n^{\prime}, s_{x}\right)=m, R_{2 e+1}$ becomes active via k, e^{\prime} and n^{\prime} at stage $s_{x}+1$

Then, by construction, $f\left(k, n^{\prime}, s_{x}+1\right) \uparrow$, hence, by the above observations, $f\left(k, n^{\prime \prime}, s\right) \neq m$ for all $n^{\prime \prime}$ and for all $s>s_{x}$, contradicting $f(k, n, 2 s)=m$ by $2 s>s_{x}$.

This completes the proof of Claim 1.

For proving that all requirements are met, we need the following definitions. For fixed e, e^{\prime} with $e^{\prime}<e$, let

$$
k_{e^{\prime}}^{e}= \begin{cases}\mu k \in J_{e}\left(\mathcal{F}^{e^{\prime}, k} \text { is a v.s.a. }\right) & \text { if such a } k \text { exists } \\ -1 & \text { otherwise }\end{cases}
$$

Furthermore, for all e, let

$$
k_{e}=\mu k \in J_{e}\left(k \notin\left\{k_{e^{\prime}}^{e}: e^{\prime}<e\right\}\right) .
$$

Note that, as $\left|J_{e}\right|=e+1, k_{e}$ exists for all e. For fixed e and for all $e^{\prime}<e$ and $k \in J_{e}$, let

$$
n_{e}\left(e^{\prime}, k\right)=\lim _{s \rightarrow \infty} n_{e}\left(e^{\prime}, k, 2 s+1\right)
$$

Note that $n_{e}\left(e^{\prime}, k\right) \in \omega \cup\{\infty\}$. Before we turn to proving that the requirements are met, we show an auxiliary claim.

Claim 2. If \mathcal{I}^{e} is a c.v.s.a.i., then for all e and $n, \lim _{s \rightarrow \infty} f\left(k_{e}, n, s\right)$ exists.

Proof. Fix e and n. The proof is by induction on n, so assume the claim holds for each $n^{\prime}<n$. For $n>0$, fix the least s_{n-1} with $f\left(k_{e}, n-1,2 s_{n-1}+1\right)=\lim _{s \rightarrow \infty} f\left(k_{e}, n-1, s\right)$ and let $s_{-1}=0$. Moreover, fix the least $s_{0}>e$ such that, for all $e^{\prime}<e$ such that $\mathcal{F}^{e^{\prime}, k_{e}}$ is not a v.s.a., there is no $\mathcal{F}^{e^{\prime}, k_{e}}$-expansionary stage $2 s$ with $s \geq s_{0}$ and such that for all $e^{\prime}<e$ such that $\mathcal{F}^{e^{\prime}, k_{e}}$ is a v.s.a., $n_{e}\left(e^{\prime}, k_{e}, 2 s+1\right) \geq n$ holds for all $s \geq s_{0}$.

Note that s_{0} exists as, if $\mathcal{F}^{e^{\prime}, k_{e}}$ is not a v.s.a., there are only finitely many $\mathcal{F}^{e^{\prime}, k_{e}}$-expansionary stages and, if $\mathcal{F}^{e^{\prime}, k_{e}}$ is a v.s.a., then $k_{e^{\prime}}^{e}<k_{e}$ by definition of $k_{e^{\prime}}^{e}$ and of k_{e}, hence, by definition of $n_{e}\left(e^{\prime}, k_{e}, 2 s+1\right)$, as $l\left(e^{\prime}, k_{e^{\prime}}^{e}, 2 s+1\right)$ is unbounded in s, so is $n_{e}\left(e^{\prime}, k_{e}, 2 s+1\right)$ (moreover, the latter in nondecreasing in s).

Now, let $s_{1}=\max \left\{s_{n-1}, s_{0}\right\}$ and, if $f\left(k, n, 2 s_{1}+1\right) \downarrow$, let $s=s_{1}$. Otherwise, let $s>s_{1}$ be minimal such that $R_{2 e}$ becomes active at stage $2 s+1$ via k and n. Note that such a stage exists by choice of s_{n-1} and as \mathcal{I}^{e} is a c.v.s.a.i. We claim that $f(k, n, 2 s+1) \downarrow$ and that $f\left(k, n, s^{\prime}+1\right)=$ $f\left(k, n, s^{\prime}\right)$ for all $s^{\prime} \geq 2 s+1$, hence $\lim _{s \rightarrow \infty} f(k, n, s)$ exists. The former is immediate by choice of s. It remains to show the latter. For a contradiction fix the least $s^{\prime} \geq 2 s+1$ such that $f\left(k, n, s^{\prime}+1\right) \neq f\left(k, n, s^{\prime}\right)$. By minimality of $s^{\prime}, f\left(k, n, s^{\prime}\right) \uparrow$. This implies that $R_{2 e+1}$ acts via k, e^{\prime} and n for some $e^{\prime}<e$ at stage $s^{\prime}+1$, hence $s^{\prime}=2 s^{\prime \prime}+1$ for some $s^{\prime \prime}, 2 s^{\prime \prime}+2$ is $\mathcal{F}^{e^{\prime}, k_{e}}$-expansionary and $n_{e}\left(e^{\prime}, k_{e}, 2 s^{\prime \prime}+1\right)<n$. But, by $s^{\prime \prime} \geq s_{0}$, this contradicts the choice of s_{0}. This completes the proof of Claim 2.

Claim 3. For all e, $R_{2 e}$ is met.
Proof. Fix e and w.l.o.g., assume that \mathcal{I}^{e} is a c.v.s.a.i. We claim that then, $A^{\left\langle k_{e}\right\rangle}$ is \mathcal{I}^{e}-a.n.c. To prove this, we fix n and show that there is some m such that $A^{\left\langle k_{e}\right\rangle} \cap I_{m}^{e}=W_{n} \cap I_{m}^{e}$.

Namely, $m=\lim _{s \rightarrow \infty} f\left(k_{e}, n, s\right)$ will do. The existence of m is immediate by Claim 2. So it remains to show that $A^{\left\langle k_{e}\right\rangle} \cap I_{m}^{e}=W_{n} \cap I_{m}^{e}$. Fix s_{n} minimal such that $f\left(k_{e}, n, s\right)=m$ for all $s \geq s_{n}$. Note that by construction, $A_{s_{n}}^{\left\langle k_{e}\right\rangle} \cap I_{m}^{e}=\emptyset$ and $A^{\left\langle k_{e}\right\rangle} \cap I_{m}^{e}$ only changes after stage s_{n} if either $R_{2 e+1}$ acts via k_{e}, e^{\prime} and n for some $e^{\prime}<e$ at some stage $2 s+2>s_{n}$ or if $R_{2 e}$ acts via k_{e}, n and Clause 1. The former would by construction imply that $f\left(k_{e}, n, 2 s+2\right) \uparrow$ which, by $2 s+2>s_{n}$ contradicts the choice of s_{n}. The latter happens at any stage $2 s+1>s_{n}$ such that 2.14 holds for $k=k_{e}$. Then, it is ensured that $A_{2 s+1}^{\left\langle k_{e}\right\rangle} \cap I_{m}^{e}=W_{n, 2 s+1} \cap I_{m}^{e}$. Hence, as $W_{n} \cap I_{m}^{e}$ changes at most finitely often after stage $s_{n}, A^{\left\langle k_{e}\right\rangle} \cap I_{m}^{e}=W_{n} \cap I_{m}^{e}$ holds which completes the proof of Claim 3.

For proving that the requirements $R_{2 e+1}$ are met as well, we need one more auxiliary claim.
Claim 4. If \mathcal{I}^{e} is a c.v.s.a.i., then for all $k \in J_{e}$ and all $m \geq 0$, there is a stage $2 s+1$ such that there is n with $f(k, n, 2 s+1)=m$.

Proof. For a contradiction, fix some $k \in J_{e}$ and the least m such that $f(k, n, 2 s+1) \neq m$ for all s and n.

As \mathcal{I}^{e} is a c.v.s.a.i., we may fix $s_{0}>e$ minimal with $I_{m, 2 s_{0}+1}^{e} \downarrow$. For each s, let n_{s} be the least n such that $f(k, n, 2 s) \uparrow$ holds. We claim that for every $s \geq s_{0}$, for $n=n_{s}$, Clauses (i) - (iii) in Clause 2 of requirement $R_{2 e}$ becoming active hold.

By construction and by assumption on m, it then follows that $R_{2 e}$ becomes active via Clause 2 and k and n_{s} at every stage $2 s+1$ with $s \geq s_{0}$ and $f\left(k, n_{s}, 2 s+1\right)=m^{\prime}$ for some $m^{\prime}<m$. By the
pigeon hole principle, this implies that there are $m_{0}<m, s^{\prime}$ and $s^{\prime \prime}$ with $s_{0} \leq s^{\prime}<s^{\prime \prime}$ such that $R_{2 e}$ becomes active via Clause 2 and k and $n_{s^{\prime}}$ at stage $2 s^{\prime}+1$ and $f\left(k, n_{s^{\prime}}, 2 s^{\prime}+1\right)=m_{0}$ and such that $R_{2 e}$ becomes active via Clause 2 and k and $n_{s^{\prime \prime}}$ at stage $2 s^{\prime \prime}+1$ and $f\left(k, n_{s^{\prime \prime}}, 2 s^{\prime \prime}+1\right)=$ m_{0}. It follows that $f\left(k, n_{s^{\prime}}, 2 s^{\prime \prime}\right) \neq m_{0}$, hence there is a stage s with $s^{\prime} \leq s<s^{\prime \prime}$ such that $f\left(k, n_{s^{\prime}}, 2 s+1\right)=m_{0}$ and $f\left(k, n_{s^{\prime}}, 2 s+2\right) \uparrow$. But this contradicts the observations preceding Claim 1.

It remains to show that, for each $s \geq s_{0}$, (i) - (iii) hold for $n=n_{s}$. (i) holds by choice of s_{0} and of the approximation of \mathcal{I}^{e}. (ii) follows from the assumption on m and from the observations preceding Claim 1. The proof of (iii) for $s \geq s_{0}$ and $n=n_{s}$ is by induction on $s \geq s_{0}$. Assume that for some $s \geq s_{0}$, for all s^{\prime} with $s_{0} \leq s^{\prime}<s$, (iii) holds for $s=s^{\prime}$ and $n=n_{s^{\prime}}$ and, for a contradiction, assume that (iii) does not hold for $n=n_{s}$, i.e., that $n_{s}>0$ and $f\left(k, n_{s}-1,2 s\right)=m^{\prime} \geq m$ hold. By assumption on m, it follows that $m^{\prime}>m$. Moreover, there is $s^{\prime}<s$ such that $n_{s^{\prime}}=n_{s}-1$ and $R_{2 e}$ becomes active via Clause 2 and k and $n_{s^{\prime}}$ at stage $2 s^{\prime}+1$ and $f\left(k, n_{n^{\prime}}, 2 s^{\prime}+1\right)=m^{\prime}$ holds. It follows that $s^{\prime}>e$ and that m^{\prime} is minimal such that (i) - (iii) hold for $s=s^{\prime}, n=n_{s^{\prime}}$ and $m=m^{\prime}$. So, $I_{m^{\prime}, 2 s^{\prime}}^{e} \downarrow$, hence $s^{\prime} \geq s_{0}$. As $s^{\prime}<s$, it follows by inductive hypothesis that (i) (iii) hold for $s=s^{\prime}$ and $n=n_{s^{\prime}}$ which, by $m<m^{\prime}$, contradicts the minimality of m^{\prime}.

This completes the proof of Claim 4.
Claim 5. For all e, $R_{2 e+1}$ is met.
Proof. Fix $e, e^{\prime}<e$ and $k^{\prime} \in J_{e}$ such that $\mathcal{F}^{e^{\prime}, k^{\prime}}$ is a v.s.a. We claim that then, $\mathcal{F}^{e^{\prime}, k_{e^{\prime}}^{e}}$ is a v.s.a. and $A^{\left\langle k_{e^{\prime}}^{e}\right\rangle}$ is computable and hence not $\mathcal{F}^{e^{\prime}, k_{e^{\prime}}^{e} \text {-a.n.c. The first part is immediate by definition of }}$ $k_{e^{\prime}}^{e}$. For a proof of the second part, note that if \mathcal{I}^{e} is not a c.v.s.a.i., then, by construction, $A^{\langle k\rangle}$ is finite for all $k \in J_{e}$, hence, in particular, $A^{\left\langle k_{e^{e}}^{e}\right\rangle}$ is finite and hence computable. So w.l.o.g., we assume that \mathcal{I}^{e} is a c.v.s.a.i. We claim that then, $A^{\left\langle k_{e^{\prime}}^{e}\right\rangle}$ is cofinite. Note that, by definition of $k_{e^{\prime}}^{e}$, the following hold.

$$
\begin{array}{r}
\max _{k^{\prime} \in J_{e}, k^{\prime}<k_{e^{\prime}}^{e}} \lim _{s \rightarrow \infty}\left(l\left(e^{\prime}, k^{\prime}, s\right)\right)<\infty \\
\lim _{s \rightarrow \infty}\left(l\left(e^{\prime}, k_{e^{\prime}}^{e}, s\right)\right)=\infty \tag{2.17}
\end{array}
$$

Now, let $M=\left\{m: \exists n\left(m=\lim _{s \rightarrow \infty} f\left(k_{e^{\prime}}^{e}, n, s\right)\right\}\right.$. We prove that for each $m \notin M, A^{\left\langle k_{\left.e^{\prime}\right\rangle}^{e}\right\rangle} \cap I_{m}^{e}=I_{m}^{e}$ holds. Namely, for fixed $m \notin M$, by Claim 4, fix the least s_{m} such that $f\left(k_{e^{\prime}}^{e}, n, 2 s_{m}+1\right)=m$ for some n together with the corresponding n. By choice of m, it follows that there is s_{m}^{\prime} minimal with $2 s_{m}^{\prime}+2>2 s_{m}+1$ such that $R_{2 e+1}$ acts via $k_{e^{\prime}}^{e}, n$ and $e^{\prime \prime}$ for some $e^{\prime \prime}<e$ at stage $2 s_{m}^{\prime}+2$, which - as, by minimality of $s_{m}^{\prime}, f\left(k_{e^{\prime}}^{e}, n, 2 s_{m}^{\prime}+1\right)=m$ holds - yields $A_{2 s_{m}^{\prime}+2}^{\left\langle\left\langle e^{e}\right\rangle\right.} \cap I_{m}^{e}=I_{m}^{e}$, hence, by Claim 1, $A^{\left\langle k_{e^{\prime}}^{e}\right\rangle} \cap I_{m}^{e}=I_{m}^{e}$.

To prove that $A^{\left\langle k_{e}^{e}\right\rangle}$ is cofinite, as \mathcal{I}^{e} is a c.v.s.a.i., it now suffices to show that M is finite. For that matter, it is enough to show that $N=\left\{n: \lim _{s \rightarrow \infty} f\left(k_{e^{\prime}}^{e}, n, s\right)\right.$ exists $\}$ is finite. Namely, for each $n>n_{e}\left(e^{\prime}, k_{e^{\prime}}^{e}\right)$, we claim that $n \notin N$. Moreover, by (2.16), $n_{e}\left(e^{\prime}, k_{e^{\prime}}^{e}\right)<\infty$. For a proof, assume for a contradiction that there is $n>n_{e}\left(e^{\prime}, k_{e^{\prime}}^{e}\right)$ such that $\lim _{s \rightarrow \infty} f\left(k_{e^{\prime}}^{e}, n, s\right)=m_{0}$ exists and fix the least $s^{\prime}>e$ such that $f\left(k_{e^{\prime}}^{e}, n, s\right)=m_{0}$ for all $s \geq s^{\prime}$. By 2.16) and 2.17, there is an
 $n_{e}\left(e^{\prime}, k_{e^{\prime}}^{e}, 2 s^{\prime \prime}+1\right)=n_{e}\left(e^{\prime}, k_{e^{\prime}}^{e}\right)$. Fix the least such $s^{\prime \prime}$. Then, by choice of $s^{\prime}, f\left(k_{e^{\prime}}^{e}, n, 2 s^{\prime \prime}+1\right) \downarrow=m_{0}$,
hence, by $n>n_{e}\left(e^{\prime}, k_{e^{\prime}}^{e}\right)$ and by choice of $s^{\prime \prime}, R_{2 e+1}$ becomes active at stage $2 s^{\prime \prime}+2$ via $k_{e^{\prime}}^{e}, e^{\prime}$ and n yielding $f\left(k_{e^{\prime}}^{e}, n, 2 s^{\prime \prime}+2\right) \uparrow$, contradicting $2 s^{\prime \prime}+2>s^{\prime}$. It follows that N and hence M is finite, so $A^{\left\langle k_{e^{\prime}}^{e}\right\rangle}$ is cofinite which completes the proof of Claim 5 .

Claims 1, 3 and 4 show that A has the required properties. This completes the proof of Lemma 53.

Moreover, none of the universality notions of c.e. sets is wtt-invariant. Indeed, in every c.e. wtt -degree, there is a c.e. set which is not universally a.n.c. Namely, for a given c.e. set \hat{A}, let $A=\{\langle e, 0\rangle: e \in \hat{A}\}$. Then A is c.e., $A={ }_{\mathrm{wtt}} \hat{A}$ and $A^{\langle e\rangle}$ is computable for every e, hence A is not universally a.n.c.

The following bounding notion of c.e. sets, however, which is implied by the universality notions is wtt-invariant and, as we will show below, the universality notions and this bounding notion coincide up to wtt-equivalence.

Definition 54. A c.e. set A (a c.e. degree a) has the uniform bounding property (u.b.p.) via f if f is a strictly increasing computable function and, for any v.s.a. \mathcal{F}, there is an \mathcal{F}-a.n.c. c.e. set B such that B is f-bounded Turing reducible to A (a); and A (a) has the uniform bounding property (u.b.p.) if A has the u.b.p. via some f.

Note that Downey, Jockusch and Stob DJS90 have shown that, for any array noncomputable set c.e. A and for any v.s.a. \mathcal{F}, there is an \mathcal{F}-a.n.c. c.e. set $A_{\mathcal{F}}$ which is wtt-equivalent to A. But a computable bound $f=f_{\mathcal{F}}$ such that $A_{\mathcal{F}}$ is f-bounded Turing reducible to A in general depends on the v.s.a. \mathcal{F}. In contrast, for a set A with the uniform bounding property such a bound f exists which does not depend on the very strong array \mathcal{F}.

Proposition 55. Let A be a universally a.n.c. c.e. set. Then A has the uniform bounding property via $f(x)=\langle x, x\rangle$.

Note that Proposition 55 follows from that fact that, for every set A and for each $e, A^{\langle e\rangle} \leq_{f-\mathrm{T}} A$ for $f(x)=\langle x, x\rangle$.

2.4.2 U.a.n.c. Sets and Multiple Permitting

In this subsection, we look at the variant of multiple permitting guaranteed by c.e. sets with the uniform bounding property. In DJS90, the a.n.c. c.e. degrees have been introduced in order to capture a certain type of multiple permitting. In ASa, Ambos-Spies has formalized this notion as follows.

Definition 56 (ASa). Let $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be a v.s.a., let f be a computable function, let A be a c.e. set and let $\left\{A_{s}\right\}_{s \geq 0}$ be a computable enumeration of A. Then A is \mathcal{F}-permitting via f and $\left\{A_{s}\right\}_{s \geq 0}$ if, for any partial computable function ψ,

$$
\exists^{\infty} n \forall x \in F_{n}\left(\psi(x) \downarrow \Rightarrow A \upharpoonright f(x)+1 \neq A_{\psi(x)} \upharpoonright f(x)+1\right)
$$

holds.
A is \mathcal{F}-permitting via f if there is a computable enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A such that A is \mathcal{F}-permitting via f and $\left\{A_{s}\right\}_{s \geq 0} ; A$ is \mathcal{F}-permitting if A is \mathcal{F}-permitting via some computable f; and A is multiply permitting if A is \mathcal{F}-permitting for some v.s.a. \mathcal{F}.

Definition 57 (ASa$)$). A c.e. r-degree \mathbf{a} is multiply permitting (\mathcal{F}-permitting, \mathcal{F}-permitting via f) if there is a c.e. set A in a such that A is multiply permitting (\mathcal{F}-permitting, \mathcal{F}-permitting via $f)$.

In ASa, Ambos-Spies has shown that, for a v.s.a. \mathcal{F} and a computable function f, a c.e. set A which is \mathcal{F}-permitting via f and some computable enumeration $\left\{A_{s}\right\}_{s \geq 0}$ is \mathcal{F}-permitting via f and all computable enumerations $\left\{\hat{A}_{s}\right\}_{s \geq 0}$ of A. So when dealing with the multiple permitting notions we may drop the reference to the underlying computable enumeration.

Moreover, as shown by Ambos-Spies in ASa, too, multiple permitting captures the permitting properties of the a.n.c. c.e. sets and multiply permitting c.e. sets are just the c.e. sets which are wtt-equivalent to some a.n.c. c.e. set.

Lemma 58 (Permitting Lemma for A.N.C. C.E. Sets ASa). Let $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ be a v.s.a., let A be an \mathcal{F}-a.n.c. c.e. set, let $\left\{A_{s}\right\}_{s \geq 0}$ be a computable enumeration of A and let ψ be a partial computable function. Then

$$
\exists^{\infty} n \forall x \in F_{n}\left(\psi(x) \downarrow \Rightarrow x \in A \backslash A_{\psi(x)}\right)
$$

holds. Hence, in particular, A is \mathcal{F}-permitting via $f(x)=x$.
Theorem 59 (ASa). Let a be a c.e. wtt-degree, let \mathcal{F} be a very strong array and let f be a strictly increasing computable function. The following are equivalent.
(i) \mathbf{a} is array noncomputable.
(ii) \mathbf{a} is multiply permitting.
(iii) There is an \mathcal{F}-a.n.c. c.e. set $A \in \mathbf{a}$.
(iv) There is a c.e. set $A \in \mathbf{a}$ such that A is \mathcal{F}-permitting via f.
(v) Any c.e. set $A \in \mathbf{a}$ is \mathcal{F}-permitting hence multiply permitting.

By Theorem 59, any multiply permitting set c.e. A is \mathcal{F}-permitting for all very strong arrays \mathcal{F}. The bound $f_{\mathcal{F}}$ such that A is \mathcal{F}-permitting via $f_{\mathcal{F}}$ depends on the v.s.a. \mathcal{F}. So the following gives a stronger multiple permitting property defined in the spirit of the uniform bounding property.

Definition 60. A c.e. set A is uniformly multiply permitting via f if f is a strictly increasing computable function and, for any v.s.a. \mathcal{F}, A is \mathcal{F}-permitting via f; and A is uniformly multiply permitting if A is uniformly multiply permitting via some f.

As one can easily check, the uniform multiple permitting property is wtt-invariant and the wttdegrees of the uniformly multiply permitting c.e. sets are closed upwards in the c.e. wtt-degrees.

Lemma 61. Let f and g be strictly increasing computable functions and let A and B be c.e. sets such that A is uniformly multiply permitting via f and $A \leq_{g-\mathrm{T}} B$. Then B is uniformly multiply permitting via $g(f)$.

Lemma 62. Let A be c.e. and have the uniform bounding property via f. Then A is uniformly multiply permitting via f.

Proof. Given a v.s.a. \mathcal{F}, it suffices to show that A is \mathcal{F}-permitting via f. By choice of A there is an \mathcal{F}-a.n.c. c.e. set \hat{A} such that $\hat{A} \leq_{f-\mathrm{T}} A$. By Lemma 58 \hat{A} is \mathcal{F}-permitting via $\hat{f}(x)=x$. So, by Lemma 61, A is \mathcal{F}-permitting via $f(\hat{f})=f$.

In the following subsections, we exploit this fact to examine the wtt- and T-degrees of universally a.n.c. c.e. sets.

2.4.3 On the wtt-Degrees of U.a.n.c. Sets

In this subsection, we show that, up to wtt-equivalence, the various universal array noncomputability notions coincide with each other, with the uniform bounding property and with the uniform multiple permitting property.

Theorem 63. Let a be a c.e. wtt-degree and let φ be a universal function. Then, the following are equivalent.
(i) \mathbf{a} is φ-universally a.n.c.
(ii) \mathbf{a} is uniformly universally a.n.c.
(iii) \mathbf{a} is universally a.n.c.
(iv) a has the uniform bounding property.
(v) Any c.e. set $A \in \mathbf{a}$ has the uniform bounding property.
(vi) There is a c.e. set $A \in \mathbf{a}$ which is uniformly multiply permitting.
(vii) All c.e. sets $A \in \mathbf{a}$ are uniformly multiply permitting.

Proof. The equivalence (iv) $\Leftrightarrow(\mathrm{v})$ is immediate by definition of the uniform bounding property and the equivalence (vi) \Leftrightarrow (vii) is immediate by Lemma 61. Moreover, the implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) hold by Proposition 51 and the implications (iii) \Rightarrow (iv) and (iv) \Rightarrow (vi) hold by Proposition 55 and Lemma 62 respectively. So it suffices to show the implication (vi) \Rightarrow (i). This is done by proving the following two lemmas.

Lemma 64. Let C be a c.e. set, let φ be a universal function and let $\hat{A} \leq_{\mathrm{wtt}} C\left(\hat{A} \leq_{\mathrm{T}} C\right)$ be $a \varphi$-universally a.n.c. c.e. set. Then, there is a φ-universally a.n.c. c.e. set A with $A={ }_{\mathrm{wtt}} C$ ($A={ }_{\mathrm{T}} C$).

Proof. We give the proof for the case of wtt-reducibility. For T-reducibility, the proof is the same, we just replace $w t t$ by T everywhere in the proof.

Fix $e \geq 0$ such that \mathcal{F}^{e} is not a very strong array and let

$$
A(x)= \begin{cases}C(y) & \text { if } x=\langle e, y\rangle \text { for some } y \geq 0 \\ \hat{A}(x) & \text { otherwise }\end{cases}
$$

Since \hat{A} and C are c.e., it is easy to see that A is c.e., too. As we only change $\hat{A}^{\langle e\rangle}$ and \mathcal{F}^{e} is not a very strong array, A is φ-universally a.n.c. Since $A=\hat{A} \backslash\{\langle e, x\rangle: x \geq 0\} \dot{\cup}\{\langle e, x\rangle: x \in C\}$,
where the first component of the disjoint union is ibT-reducible to \hat{A} (which is wtt-reducible to C) and the second component is ibT-reducible to C, it is easy to see that A is wtt-reducible to C. Furthermore, $C \leq_{\mathrm{wtt}} A$ as for all $x, x \in C$ if and only if $\langle e, x\rangle \in A$.

Lemma 65. Let A be a c.e. set such that A is uniformly multiply permitting and let φ be any universal function. There is a φ-u.a.n.c. c.e. set \hat{A} such that $\hat{A} \leq_{\mathrm{wtt}} A$.

Proof. Fix a strictly increasing computable function f and a computable enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A such that A is uniformly multiply permitting via f and $\left\{A_{s}\right\}_{s \geq 0}$. It suffices to enumerate a c.e. set $\hat{A} \leq_{\mathrm{wtt}} A$ such that, for any $e \geq 0$ such that \mathcal{F}^{e} is a v.s.a. and for any $m \geq 0$,

$$
\begin{equation*}
\exists^{\infty} n\left(\hat{A}^{\langle e\rangle} \cap F_{\langle m, n\rangle}^{e}=W_{m} \cap F_{\langle m, n\rangle}^{e}\right) \tag{2.18}
\end{equation*}
$$

holds.
A computable enumeration $\left\{\hat{A}_{s}\right\}_{s \geq 0}$ of a set \hat{A} with the required properties is obtained by letting $\hat{A}_{0}=\emptyset$ and by putting a number $\langle e, x\rangle$ (which is not yet in \hat{A}_{s}) into \hat{A}_{s+1} if and only if there are numbers m, n such that $e, m, n, x<s$ and

- $F_{\langle m, n\rangle, s}^{e} \downarrow$,
- $x \in\left(W_{m, s} \cap F_{\langle m, n\rangle}^{e}\right) \backslash \hat{A}_{s}^{\langle e\rangle}$ and
- x is f-permitted by A at stage $s+1$, i.e., $A_{s+1} \upharpoonright f(x)+1 \neq A_{s} \upharpoonright f(x)+1$
hold.
Obviously, \hat{A} is c.e. and $\hat{A} \leq_{\text {wtt }} A$. So, given e such that \mathcal{F}^{e} is a v.s.a. and a c.e. set W_{m} it suffices to show that 2.18 holds. For this sake define the partial computable function ψ on $\bigcup_{n \geq 0} F_{\langle m, n\rangle}^{e}$ by letting

$$
\psi(x)=\mu s>e, m, n, x\left[x \in W_{m, s}\right]
$$

for $x \in F_{\langle m, n\rangle}^{e}$. Since, by assumption, A is $\left\{F_{\langle m, n\rangle}^{e}\right\}_{n \geq 0}$-permitting via f, there are infinitely many numbers n such that

$$
\forall x \in F_{\langle m, n\rangle}^{e}\left(\psi(x) \downarrow \Rightarrow A \upharpoonright f(x)+1 \neq A_{\psi(x)} \upharpoonright f(x)+1\right)
$$

holds. But, by definition of \hat{A} and ψ, this implies that $\hat{A}^{\langle e\rangle} \cap F_{\langle m, n\rangle}^{e}=W_{m} \cap F_{\langle m, n\rangle}^{e}$ for any such n.

We conclude this subsection by observing that the partial ordering $\overline{\mathrm{UANC}_{\mathrm{wtt}}}$ of the c.e. wttdegrees which are not universally a.n.c. forms an ideal in the c.e. wtt-degrees (i.e., it is closed downwards and under join in the c.e. wtt-degrees). Downward closure of $\overline{U A N C}_{\mathrm{wtt}}$ follows by Lemma 64 In order to obtain the closure under join, by distributivity of the c.e. wtt-degrees (shown by Lachlan; see e.g. Stob [Sto83]) and by Theorem 63, it suffices to show that, for any splitting of a c.e. set A with the uniform multiple permitting property into two disjoint c.e. sets A_{0} and A_{1}, one of these sets is uniformly multiply permitting, too. For a proof we refer to the forthcoming paper ASL by Ambos-Spies and Losert.

2.4.4 U.a.n.c. Sets and Sets with the Universal Similarity Property

In the preceding subsection we have given various characterizations of the c.e. wtt-degrees which contain universally a.n.c. c.e. sets. We now look at the relation between universally a.n.c. c.e. sets and almost-c.e. sets with the universal similarity property. We show that any almost-c.e. set with the u.s.p. is wtt-equivalent to a u.a.n.c. c.e. set (Theorem 66). The converse holds only in the following weaker form: for any u.a.n.c. c.e. wtt-degree a there is an almost-c.e. set A with the u.s.p. such that $A \leq_{\mathrm{wtt}}$ a (Theorem67). Namely while, by Lemma 64, the u.a.n.c. c.e. wtt-degrees are closed upwards in the c.e. wtt-degrees, it follows from Theorem 38 that no wtt-hard almost-c.e. set has the u.s.p.

Theorem 66. Let a be a c.e. wtt-degree that contains an almost-c.e. set with the universal similarity property and let φ be a universal function. There is $a \varphi$-universally a.n.c. c.e. set $A \in \mathbf{a}$.

Proof. Fix an almost-c.e. set $\hat{A} \in \mathbf{a}$ with the u.s.p. and let $\left\{\hat{A}_{s}\right\}_{s \geq 0}$ be a computable almostenumeration of \hat{A}. By Lemma 64, it suffices to construct a c.e. set $A \leq_{\text {wtt }} \hat{A}$ which is φ-universally a.n.c. in stages meeting the following requirements for every $e \geq 0$ (where, here and in the following, $\left.e=\left\langle e_{0}, e_{1}\right\rangle\right)$.
\hat{R}_{e} : If $\mathcal{F}^{e_{0}}$ is a very strong array then there is n such that $W_{e_{1}} \cap F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}=A^{\left\langle e_{0}\right\rangle} \cap F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$.
It is easy to verify that the requirements guarantee that A is φ-u.a.n.c. Our strategy to meet \hat{R}_{e} is to wait for a stage t_{e} such that $F_{\left\langle e_{1}, n\right\rangle, t_{e}}^{e_{0}}$ is defined for some n (note that, if $\mathcal{F}^{e_{0}}$ is a v.s.a., such a stage exists) and to let $A^{\left\langle e_{0}\right\rangle}$ copy $W_{e_{1}}$ on $F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$ from stage t_{e} on.

To make sure that $A \leq_{\mathrm{wtt}} \hat{A}$, we combine this strategy with permitting. I.e., whenever we need to enumerate a number x into A, we wait for permitting by \hat{A}, i.e. for a stage s with $\hat{A}_{s+1} \upharpoonright$ $x+1 \neq \hat{A}_{s} \upharpoonright x+1$. As this permission may not be given on the fixed finite set $F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$, we assign infinitely many sets $B_{e, k} \in \mathcal{F}^{e_{0}}, k \geq 0$, (where each $B_{e, k}$ is of the form $F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$ for some n and, for $k<k^{\prime}, n<n^{\prime}$ holds) to every requirement R_{e}. Permission to enumerate a number x from $B_{e, k}$ into $A^{\left\langle e_{0}\right\rangle}$ at some stage $s+1$ is given whenever $\hat{A}_{s+1} \upharpoonright x+1 \neq \hat{A}_{s} \upharpoonright x+1$. For every requirement, exploiting the fact that \hat{A} has the universal similarity property and is thus \mathcal{F}-similar to every c.e. set for every v.s.a. \mathcal{F}, we enumerate an auxiliary c.e. set V_{e} to force \hat{A} to change below $x+1$. We show that, by this strategy, for some k, we receive permitting by \hat{A} whenever we wait for it.

In fact, we replace the requirements \hat{R}_{e} by the following requirements $R_{\langle e, k\rangle}$ for all $e, k \geq 0$.
$R_{\langle e, k\rangle}:$ If $\mathcal{F}^{e_{0}}$ is a very strong array then $W_{e_{1}} \cap B_{e, k}=A^{\left\langle e_{0}\right\rangle} \cap B_{e, k}$ or $\hat{A} \cap B_{e, k} \neq V_{e} \cap B_{e, k}$.
Assume that A and $V_{e}(e \geq 0)$ are c.e. sets such that $R_{\langle e, k\rangle}$ is met for all $e, k \geq 0$. We show that then \hat{R}_{e} is met for all $e \geq 0$. Fix e and w.l.o.g. assume that the hypothesis of \hat{R}_{e} holds, i.e., that $\mathcal{F}^{e_{0}}$ is a very strong array. Then, for all $k \geq 0$,

$$
\begin{equation*}
W_{e_{1}} \cap B_{e, k}=A^{\left\langle e_{0}\right\rangle} \cap B_{e, k} \text { or } \hat{A} \cap B_{e, k} \neq V_{e} \cap B_{e, k} \tag{2.19}
\end{equation*}
$$

holds. Furthermore, $\mathcal{B}=\left\{B_{e, k}\right\}_{k \geq 0}$ is a very strong array. As \hat{A} has the universal similarity property, \hat{A} is \mathcal{B}-a.c.e-a.n.c., so, since V_{e} is c.e. and hence \mathcal{B}-a.c.e., it follows that there is some $k \geq 0$ such that $\hat{A} \cap B_{e, k}=V_{e} \cap B_{e, k}$. By (2.19), for this $k, W_{e_{1}} \cap B_{e, k}=A^{\left\langle e_{0}\right\rangle} \cap B_{e, k}$ holds. As $B_{e, k}=F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$ for some $n \geq 0$, it follows that $W_{e_{1}} \cap F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}=A^{\left\langle e_{0}\right\rangle} \cap F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$, hence \hat{R}_{e} is met.

It remains to construct c.e. sets A and $V_{e}(e \geq 0)$ such that $R_{\langle e, k\rangle}$ is met for all $e, k \geq 0$. For that matter, for each e and k, we simultaneously aim to let $A^{\left\langle e_{0}\right\rangle}$ copy $W_{e_{1}}$ on $B_{e, k}$ and to make V_{e} different from \hat{A} on $B_{e, k}$. We can then argue that, depending on how often \hat{A} changes on $B_{e, k}$, we either receive permitting from \hat{A} on $B_{e, k}$ often enough to copy $W_{e_{1}}$ on $B_{e, k}$ or $B_{e, k}$ has enough elements to make V_{e} different from \hat{A} on $B_{e, k}$. We now turn to the construction of A and V_{e}.

Construction.

At every stage t, if there is $\langle e, k\rangle \leq t$ such that there is a number $m \geq 0$ such that all of the following hold,

- $F_{\left\langle e_{1}, m\right\rangle, t}^{e_{0}} \downarrow$,
- for any $\left\langle e^{\prime}, k^{\prime}\right\rangle<\langle e, k\rangle$, if $t_{e^{\prime}, k^{\prime}}<t$ exists, then $\max B_{e^{\prime}, k^{\prime}}<\min F_{\left\langle e_{1}, m\right\rangle}^{e_{0}}$ and
- if $k>0$, then $t_{e, k-1}<t$ exists,
then fix the least such $\langle e, k\rangle$ and the least corresponding m, let $t_{e, k}=t$ and let $B_{e, k}=F_{\left\langle e_{1}, m\right\rangle}^{e_{0}}$.
If $t_{e, k}$ exists for some $k \geq 0$, we say that $B_{e, k}$ is assigned to requirement $R_{e, k}$ at stage $t_{e, k}$ and we say that $B_{e, k}$ is defined $\left(B_{e, k} \downarrow\right)$ at a given stage s if $t_{e, k} \leq s$ exists. Note that whenever $B_{e, k}$ is defined at a stage $s, B_{e, k^{\prime}}$ is defined at stage s^{\prime} for all $k^{\prime} \leq k$ and for all $s^{\prime} \geq s$. Note further that, by definition of the sets $B_{e, k}$, for $\langle e, k\rangle \neq\left\langle e^{\prime}, k^{\prime}\right\rangle, B_{e, k} \cap B_{e^{\prime}, k^{\prime}}=\emptyset$ holds. Finally, note that, if $\mathcal{F}^{e_{0}}$ is a v.s.a., then $t_{e, k}$ exists for all k and $\left\{B_{e, k}\right\}_{k \geq 0}$ is a v.s.a. We now turn to the definition of A and $V_{e}(e \geq 0)$ in stages where we let A_{s} and $V_{e, s}$ denote the finite parts of A and V_{e}, respectively, enumerated by the end of stage s.

Stage 0 is vacuous, i.e., we let $A_{0}=\emptyset$ and $V_{e, 0}=\emptyset$ for all e.
Stage $s+1$. At stage $s+1$, fix all $e \leq s$ and all k such that $B_{e, k}$ is defined at stage s, such that

$$
\begin{equation*}
A_{s}^{\left\langle e_{0}\right\rangle} \cap B_{e, k} \neq W_{e_{1}, s+1} \cap B_{e, k} \tag{2.20}
\end{equation*}
$$

and such that, for $x=\min \left(W_{e_{1}, s+1} \cap B_{e, k}\right) \backslash A_{s}^{\left\langle e_{0}\right\rangle}$, at least one of the following holds.
(i) $\hat{A}_{s+1} \upharpoonright x+1 \neq \hat{A}_{s} \upharpoonright x+1$.
(ii) $\hat{A}_{s+1} \cap B_{e, k}=V_{e, s} \cap B_{e, k}$.

For all such e and k, perform the following action depending on which of the clauses above holds (if both clauses hold, perform both actions).
(i) Enumerate all numbers $\left\langle e_{0}, y\right\rangle$ such that $y \in\left(W_{e_{1}, s+1} \cap B_{e, k}\right) \backslash A_{s}^{\left\langle e_{0}\right\rangle}$ into A.
(ii) Enumerate x into V_{e}.

We say that $R_{\langle e, k\rangle}$ becomes active at stage $s+1$ for all such e and k.
This completes the construction.

Verification.

Note that the construction is effective and that the actions taken for the sake of different requirements do not interfere with each other as they are performed on disjoint sets. Moreover, A and
all V_{e} are c.e. by construction. We prove the following claims to show that A has the required properties.

Claim 1. For $e, k \geq 0$, requirement $R_{\langle e, k\rangle}$ is met.

Proof. Fix $e, k \geq 0$. We first make a crucial observation, namely that for all stages s_{0}, s_{1}, s_{2} with $0 \leq s_{0} \leq s_{1} \leq s_{2}$, the following holds.

$$
\left.\begin{array}{l}
x=\min \left(W_{e_{1}, s_{0}+1} \cap B_{e, k}\right) \backslash A_{s_{0}}^{\left\langle e_{0}\right\rangle} \tag{2.21}\\
x=\min \left(W_{e_{1}, s_{2}+1} \cap B_{e, k}\right) \backslash A_{s_{2}}^{\left\langle e_{0}\right\rangle}
\end{array}\right\} \Rightarrow x=\min \left(W_{e_{1}, s_{1}+1} \cap B_{e, k}\right) \backslash A_{s_{1}}^{\left\langle e_{0}\right\rangle}
$$

For a proof of 2.21 fix s_{0}, s_{1}, s_{2} with $0 \leq s_{0} \leq s_{1} \leq s_{2}$ such that the hypotheses of 2.21) hold. Then it is easy to see that, since A and $W_{e_{1}}$ are c.e. and by choice of s_{0}, s_{1} and $s_{2}, x \in$ $\left(W_{e_{1}, s_{1}+1} \cap B_{e, k}\right) \backslash A_{s_{1}}^{\left\langle e_{0}\right\rangle}$ holds, hence, for $y=\min \left(W_{e_{1}, s_{1}+1} \cap B_{e, k}\right) \backslash A_{s_{1}}^{\left\langle e_{0}\right\rangle}, y \leq x$ holds. Assume for a contradiction that $y<x$. Then, as $y \in W_{e_{1}, s_{1}+1}, y \in W_{e_{1}, s_{2}+1}$ holds, hence $y \in A_{s_{2}}^{\left\langle e_{0}\right\rangle}$ must hold (because $x=\min \left(W_{e_{1}, s_{2}+1} \cap B_{e, k}\right) \backslash A_{s_{2}}^{\left\langle e_{0}\right\rangle}$ and $y<x$). So there is a stage s_{y} with $s_{1} \leq s_{y}<s_{2}$ such that y is enumerated into $A^{\left\langle e_{0}\right\rangle}$ at stage $s_{y}+1$. By construction, this only happens if $R_{\langle e, k\rangle}$ becomes active via Clause (i) at stage $s_{y}+1$. But then, all numbers in $\left(W_{e_{1}, s_{y}+1} \cap B_{e, k}\right) \backslash A_{s_{y}}^{\left\langle e_{0}\right\rangle}$ are enumerated into $A^{\left\langle e_{0}\right\rangle}$ at stage $s_{y}+1$. From the hypotheses of 2.21), it follows that $x \in\left(W_{e_{1}, s_{y}+1} \cap B_{e, k}\right) \backslash A_{s_{y}}^{\left\langle e_{0}\right\rangle}$, hence x is enumerated into $A^{\left\langle e_{0}\right\rangle}$ at stage $s_{y}+1$, which, by $s_{y}<s_{2}$ contradicts the fact that $x=\min \left(W_{e_{1}, s_{2}+1} \cap B_{e, k}\right) \backslash A_{s_{2}}^{\left\langle e_{0}\right\rangle}$. So 2.21) must hold.

We now argue that whenever $R_{\langle e, k\rangle}$ becomes active via Clause (ii) at some stage $s+1$, one of the following holds.

$$
\begin{align*}
\hat{A}_{s+1} \cap B_{e, k} & \neq \hat{A}_{s} \cap B_{e, k} \tag{2.22}\\
V_{e, s+1} \cap B_{e, k} & \neq V_{e, s} \cap B_{e, k} . \tag{2.23}
\end{align*}
$$

Fix s such that $R_{\langle e, k\rangle}$ becomes active via Clause (ii) at stage $s+1$. Then, by construction, the following holds.

$$
\begin{equation*}
\hat{A}_{s+1} \cap B_{e, k}=V_{e, s} \cap B_{e, k} \tag{2.24}
\end{equation*}
$$

Furthermore, $x \in V_{e, s+1}$ for $x=\min \left(W_{e_{1}, s+1} \cap B_{e, k}\right) \backslash A_{s}^{\left\langle e_{0}\right\rangle}$. If $x \notin V_{e, s}$, then, by $\left.x \in B_{e, k}, 2.23\right)$ holds. So assume that $x \in V_{e, s}$. Then, there is a stage $t<s$ such that x is enumerated into V_{e} at stage $t+1$. As $x \in B_{e, k}$, this only happens if $R_{\langle e, k\rangle}$ becomes active via Clause (ii) at stage $t+1$ and $x=\min \left(W_{e_{1}, t+1} \cap B_{e, k}\right) \backslash A_{t}^{\left\langle e_{0}\right\rangle}$. This implies that $\hat{A}_{t+1} \cap B_{e, k}=V_{e, t} \cap B_{e, k}$ holds. Moreover, as x is enumerated into V_{e} at stage $t+1$, it follows that $\hat{A}_{t+1}(x)=0 \neq 1=V_{e, t+1}(x)$, hence, by 2.24) and by $x \in V_{e, s}$, there must be a stage u where $t+1 \leq u \leq s$ such that $\hat{A}_{u+1}(x)=1 \neq 0=\hat{A}_{u}(x)$. We claim that $x \in A_{u+1}^{\left\langle e_{0}\right\rangle}$, hence, as $x \notin A_{s}^{\left\langle e_{0}\right\rangle}$ by choice of $x, u=s$ and 2.22 holds. By 2.21) for $s_{0}=t, s_{1}=u$ and $s_{2}=s$, we know that $x=\min \left(W_{e_{1}, u+1} \cap B_{e, k}\right) \backslash A_{u}^{\left\langle e_{0}\right\rangle}$, hence 2.20 holds for $s=u$ and, by $t<u, e<u$ and $B_{e, k}$ is defined at stage u. By choice of u, this implies that $R_{\langle e, k\rangle}$ becomes active via Clause (i) at stage $u+1$, hence x is enumerated into $A^{\left\langle e_{0}\right\rangle}$ at stage $u+1$.

Now assume for a contradiction that $R_{\langle e, k\rangle}$ is not met. By this assumption, the hypothesis of $R_{\langle e, k\rangle}$ is true, so $\mathcal{F}^{e_{0}}$ is a very strong array. This implies that $t_{e, k}$ exists and $B_{e, k}$ is defined at all stages $s \geq t_{e, k}$. Furthermore, $W_{e_{1}} \cap B_{e, k} \neq A^{\left\langle e_{0}\right\rangle} \cap B_{e, k}$ and $\hat{A} \cap B_{e, k}=V_{e} \cap B_{e, k}$ hold. Fix a stage
$s_{0} \geq t_{e, k}$ such that

$$
\begin{align*}
W_{e_{1}, s} \cap B_{e, k} & =W_{e_{1}} \cap B_{e, k}, \\
A_{s}^{\left\langle e_{0}\right\rangle} \cap B_{e, k} & =A^{\left\langle e_{0}\right\rangle} \cap B_{e, k}, \\
\hat{A}_{s} \cap B_{e, k} & =\hat{A} \cap B_{e, k}, \tag{2.25}\\
V_{e, s} \cap B_{e, k} & =V_{e} \cap B_{e, k} \tag{2.26}
\end{align*}
$$

hold for all $s \geq s_{0}$. But then, by assumption, 2.20) holds for $s=s_{0}$ and $\hat{A}_{s_{0}+1} \cap B_{e, k}=V_{e, s_{0}} \cap B_{e, k}$, hence $R_{\langle e, k\rangle}$ becomes active via Clause (ii) at stage $s_{0}+1$. But then, either 2.22) or 2.23) holds for $s=s_{0}$, contradicting either 2.25 or 2.26 . It follows that $R_{\langle e, k\rangle}$ is met.

Claim 2. $A \leq_{\mathrm{wtt}} \hat{A}$.
Proof. For given $x \geq 0$, fix $e_{0}, y \geq 0$ such that $x=\left\langle e_{0}, y\right\rangle$ and find a stage s_{x} such that $\hat{A}_{s} \upharpoonright$ $y+1=\hat{A} \upharpoonright y+1$ for all $s \geq s_{x}$. We claim that $A=A_{s_{x}}$. For a contradiction assume that there is a stage $s \geq s_{x}$ such that $A_{s+1}(x) \neq A_{s}(x)$. By construction, this only happens if $y \in B_{e, k}$ for some $e, k \geq 0$ (where $e=\left\langle e_{0}, e_{1}\right\rangle$ for some $e_{1} \geq 0$) and $R_{e, k}$ becomes active at stage $s+1$ via Clause (i). But this implies that $y \in\left(W_{e_{1}, s+1} \cap B_{e, k}\right) \backslash A_{s}^{\left\langle e_{0}\right\rangle}$ and that $\hat{A}_{s+1} \upharpoonright \min \left(W_{e_{1}, s+1} \cap B_{e, k}\right) \backslash A_{s}^{\left\langle e_{0}\right\rangle}+1 \neq$ $\hat{A}_{s} \upharpoonright \min \left(W_{e_{1}, s+1} \cap B_{e, k}\right) \backslash A_{s}^{\left\langle e_{0}\right\rangle}+1$, hence $\hat{A}_{s} \upharpoonright y+1 \neq \hat{A} \upharpoonright y+1$, a contradiction.

This completes the proof of Theorem 66 .
Theorem 67. Let \mathbf{a} be a c.e. wtt-degree which is u.a.n.c. Then, there is an almost-c.e. set $A \leq_{\mathrm{wtt}} \mathbf{a}$ with the universal similarity property.

Proof. By Theorem 63, fix a c.e. set $\hat{A} \in \mathbf{a}$ and a strictly increasing computable function f such that \hat{A} is uniformly multiply permitting via f and let $\left\{\hat{A}_{s}\right\}_{s \geq 0}$ be a computable enumeration of \hat{A} such that $\hat{A}_{s} \subseteq \omega \upharpoonright s$. We give a computable almost-enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of a set A such that A has the universal similarity property and $A \leq_{\text {wtt }} \hat{A}$. The latter is ensured by permitting, i.e., by guaranteeing that

$$
\begin{equation*}
\forall x, s\left(A_{s+1}(x) \neq A_{s}(x) \Rightarrow \hat{A}_{s+1} \upharpoonright f\left(\left\langle x, 2^{x+1}\right\rangle\right)+1 \neq \hat{A}_{s} \upharpoonright f\left(\left\langle x, 2^{x+1}\right\rangle\right)+1\right) . \tag{2.27}
\end{equation*}
$$

holds. (The term 2^{x+1} in this bound reflects the fact that a computable almost enumeration may change on the initial segment $\omega \upharpoonright x+1$ up to 2^{x+1} many times.)

Similarly to the proof of Theorem 28, we combine the basic strategy from the proof of Theorem 27 with permitting according to 2.27 . As explained there, in order to ensure that A has the universal similarity property, it suffices to meet the following requirements for all $e \geq 0$ where (here and in the following) $e=\left\langle e_{0}, e_{1}\right\rangle$.

$$
\begin{aligned}
R_{e}: & \text { If } \mathcal{I}^{e_{0}} \text { is a c.v.s.a.i. and } V_{e_{1}} \text { is } \mathcal{I}^{e_{0}} \text {-almost c.e. via }\left\{V_{e_{1}, s}\right\}_{s \geq 0} \\
& \text { then there is a number } n \text { such that } A \cap I_{n}^{e_{0}}=V_{e_{1}} \cap I_{n}^{e_{0}} .
\end{aligned}
$$

Recall that the computable enumeration $\left\{V_{e, s}\right\}_{e, s \geq 0}$ of computable almost-enumerations $\left\{V_{e, s}\right\}_{s \geq 0}$ $(e \geq 0)$ has been defined following Theorem 27. The strategy to meet the requirements R_{e} while guaranteeing 2.27) is essentially the same as in the proof of Theorem 28. Note that here, we do not need coding, so the construction is somewhat simpler. Unless mentioned otherwise, all notions
(e.g., eligibility) are defined as in the proof of Theorem 28 . We now turn to the formal construction where, as usual, we let A_{s} denote the finite part of A constructed by the end of stage s.

Construction.

Stage 0 is vacuous. I.e., $A_{0}=\emptyset$ and no requirement has a follower at the end of stage 0 (i.e., all requirements are initialized at stage 0).

Stage $s+1$. A requirement R_{e} requires attention at stage $s+1$ if $e<s, R_{e}$ is eligible at stage $s+1$ and one of the following holds.
(i) No follower is assigned to R_{e} at the end of stage s.
(ii) (i) does not hold, $x_{e, 0}<\cdots<x_{e, n}(n \geq 0)$ are the followers assigned to R_{e} at the end of stage s and there is a number $k<n$ such that either
(a) $A_{s}\left(x_{e, k}\right)=0$ and $\hat{A}_{s+1} \upharpoonright f\left(\left\langle x_{e, k}, 2^{x_{e, k}+1}\right\rangle\right)+1 \neq \hat{A}_{s} \upharpoonright f\left(\left\langle x_{e, k}, 2^{x_{e, k}+1}\right\rangle\right)+1$ or
(b) $A_{s}\left(x_{e, k}\right)=1, A_{s} \cap J_{e, k} \neq V_{e_{1}, s+1} \cap J_{e, k}$ for the interval $J_{e, k}$ associated with $x_{e, k}$, and $\hat{A}_{s+1} \upharpoonright f\left(\left\langle x, 2^{x+1}\right\rangle\right)+1 \neq \hat{A}_{s} \upharpoonright f\left(\left\langle x, 2^{x+1}\right\rangle\right)+1$ for the least $x \in J_{e, k}$ such that $A_{s}(x) \neq V_{e_{1}, s}(x)$,
holds.
(iii) (ii) and (ii) do not hold, $x_{e, 0}<\cdots<x_{e, n}(n \geq 0)$ are the followers assigned to R_{e} at the end of stage s, for all $k<n, A_{s}\left(x_{e, k}\right)=0$ or $A_{s} \cap J_{e, k} \neq V_{e_{1}, s} \cap J_{e, k}$ holds where $J_{e, k}$ is the interval associated with $x_{e, k}$, and there is a number $m \leq s$ such that $I_{m, s+1}^{e_{0}} \downarrow$ and $x_{e, n}<\min I_{m}^{e_{0}}\left(\right.$ note that $\left.\max I_{m}^{e_{0}}<s+1\right)$.

Fix $e<s$ minimal such that R_{e} requires attention and perform the following action corresponding to the clause via which R_{e} requires attention.
(i) Appoint $x_{e, 0}=s+1$ as a follower to R_{e}.
(ii) For all k that make Clause (iii) in the definition of requiring attention true, perform the following action depending on which subclause holds.
(a) Put $x_{e, k}$ into A_{s+1} and let $A_{s+1} \cap J_{e, k}=V_{e_{1}, s+1} \cap J_{e, k}$.
(b) Let $A_{s+1} \cap J_{e, k}=V_{e_{1}, s+1} \cap J_{e, k}$.
(iii) For the least m that makes Clause (iii) in the definition of requiring attention true, associate the interval $J_{e, n}=I_{m}^{e_{0}}$ with the follower $x_{e, n}$ of R_{e}. Furthermore, appoint $x_{e, n+1}=s+1$ as a further follower to R_{e}.

In any of the subcases (i) - (iii) say that R_{e} receives attention or becomes active. Furthermore, for all $e^{\prime}>e$, initialize $R_{e^{\prime}}$, i.e., cancel all corresponding assignments of followers and intervals.
(If not explicitly stated otherwise, any parameter depending on the stage is unchanged at stage $s+1$.)

This completes the construction. Note that the construction ensures that the followers of R_{e} are appointed in order of magnitude and that the greatest follower is the only follower which has not yet an interval associated with it.

Verification.

Note that the construction is effective and that the observations made at the beginning of the verification in the proof of Theorem 28 hold here, too (if applicable). In order to show that A has the required properties, we prove a series of claims, similarly as in the proof of Theorem 28

Claim 1. A is a.c.e. via $\left\{A_{s}\right\}_{s \geq 0}$.
Proof. The proof is the same as the proof of Claim 2 in the proof of Theorem 28
Claim 2. $A \leq_{\mathrm{wtt}} \hat{A}$.

Proof. By Claim 1, it suffices to show that 2.27) holds. But this is immediate by Clause (ii) in the definition of requiring attention since any possible change of A at stage $s+1$ is determined by the action of a requirement becoming active according to this clause at stage $s+1$.

Claim 3. For any $e \geq 0$, requirement R_{e} requires attention only finitely often.

Proof. The proof is by induction on e. Fix e and, by inductive hypothesis, assume the claim to be correct for $e^{\prime}<e$. Let s_{0} be the greatest stage s such that $s=0$ or $R_{e^{\prime}}$ requires attention at stage s for some $e^{\prime}<e$. Note that such a stage s_{0} exists by inductive hypothesis. Moreover, R_{e} is initialized at stage s_{0} and, after stage s_{0}, R_{e} becomes active whenever it requires attention and any follower or interval assigned to R_{e} after stage s_{0} is permanent since R_{e} is not initialized anymore. So if $x_{e, k}=x_{e, k}[s]$ for some $s>s_{0}$ then $x_{e, k}=x_{e, k}\left[s^{\prime}\right]$ for all $s^{\prime} \geq s$ and similarly for $J_{e, k}$.

Now, for a contradiction, assume that requirement R_{e} requires attention infinitely often. Note that R_{e} requires attention via (i) at most once after stage s_{0}. Moreover, for fixed k, R_{e} requires attention via (ii) and k at most finitely often since, by 2.1) and by definition of requiring attention, this only happens at a stage $s+1$ such that $\hat{A}_{s+1} \upharpoonright f\left(\left\langle x, 2^{x+1}\right\rangle\right)+1 \neq \hat{A}_{s} \upharpoonright f\left(\left\langle x, 2^{x+1}\right\rangle\right)+1$ for $x=\max J_{e, k}$. So R_{e} requires attention via (iii) infinitely often.

It follows that there are infinitely many followers and corresponding intervals assigned to R_{e}. So we can effectively list the (permanent) followers $x_{e, 0}<x_{e, 1}<x_{e, 2}<\ldots$ existing after stage s_{0} and the corresponding intervals $J_{e, 0}, J_{e, 1}, J_{e, 2}, \ldots$ where $x_{e, n}$ is appointed at stage $x_{e, n}>s_{0}$ and $J_{e, k}$ is assigned at stage $x_{e, n+1}$. Note that, by permanence of the followers and intervals, $x_{e, k} \in A_{s+1}$ if and only if there is a stage t such that $x_{e, k+1} \leq t \leq s$ and R_{e} acts via (ii)(a) and k at stage $t+1$ and, for $s \geq x_{e, k+1}$,

$$
\begin{equation*}
A_{s+1} \cap J_{e, k} \neq A_{s} \cap J_{e, k} \text { if and only if } R_{e} \text { acts via (ii)(a) or (ii)(b) and } k \text { at stage } s+1 \text {. } \tag{2.28}
\end{equation*}
$$

Now, by noncomputability of \hat{A}, there are infinitely many k such that \hat{A} changes below $x_{e, k}$ (hence below $\left.f\left(\left\langle x_{e, k}, 2^{x_{e, k}+1}\right\rangle\right)+1\right)$ after stage $x_{e, k+1}$. So, for infinitely many k, R_{e} requires attention (hence becomes active) via Clause (ii)(a) and $x_{e, k}$. So we may fix strictly increasing computable
sequences of indices $\left\{k_{n}\right\}_{n \geq 0}$ and stages $\left\{t_{n}\right\}_{n \geq 0}$ such that $t_{n} \geq x_{e, k_{n}+1}$ and R_{e} acts via (ii)(a) and $x_{e, k_{n}}$ at stage $t_{n}+1$ whence

$$
\begin{equation*}
\forall n \forall s \geq t_{n}\left(A_{s}\left(x_{e, k_{n}}\right)=1\right) \tag{2.29}
\end{equation*}
$$

Since R_{e} requires attention via Clause (iii) infinitely often, it follows that

$$
\forall n\left(A \cap J_{e, k_{n}} \neq V_{e_{1}} \cap J_{e, k_{n}}\right) .
$$

So, for any n we may let x_{n} be the least x in $J_{e, k_{n}}$ such that $A(x) \neq V_{e_{1}}(x)$. In order to get the desired contradiction, we show that, for any n, there is a stage $t_{n}^{\prime \prime}$ such that

$$
\begin{equation*}
V_{e_{1}, t_{n}^{\prime \prime}+1}\left(x_{n}\right) \neq V_{e_{1}, t_{n}^{\prime \prime}}\left(x_{n}\right) \& \hat{A} \upharpoonright f\left(\left\langle x_{n}, 2^{x_{n}+1}\right\rangle\right)+1=\hat{A}_{t_{n}^{\prime \prime}} \upharpoonright f\left(\left\langle x_{n}, 2^{x_{n}+1}\right\rangle\right)+1 . \tag{2.30}
\end{equation*}
$$

Then we use the fact that \hat{A} is uniformly multiply permitting via f in order to show that 2.30 has to fail for some n.

We first turn to the proof of 2.30 . By construction, there is a strictly increasing computable sequence $m_{0}<m_{1}<m_{2}<\ldots$ such that $J_{e, k_{n}}=I_{m_{n}}^{e_{0}}$. Hence $\mathcal{I}^{e_{0}}$ is a c.v.s.a.i. and the subarray $\mathcal{J}=\left\{J_{e, k_{n}}\right\}_{n \geq 0}=\left\{I_{m_{n}}^{e_{0}}\right\}_{n \geq 0}$ of $\mathcal{I}^{e_{0}}$ is a v.s.a. Since R_{e} requires attention infinitely often - hence e is eligible infinitely often - this implies that the computable almost-enumeration $\left\{V_{e_{1}, s}\right\}_{s \geq 0}$ of $V_{e_{1}}$ is compatible with $\mathcal{I}^{e_{0}}$ hence compatible with \mathcal{J}. So, for any n,

$$
\begin{equation*}
\forall x \in J_{e, k_{n}} \forall s\left(x \in V_{e_{1}, s} \backslash V_{e_{1}, s+1} \Rightarrow \exists y<x\left(y \in J_{e, k_{n}} \& y \in V_{e_{1}, s+1} \backslash V_{e_{1}, s}\right)\right) \tag{2.31}
\end{equation*}
$$

holds.
Now, for any n, let t_{n}^{\prime} be the greatest stage t^{\prime} such that R_{e} requires attention via Clause (ii) and $x_{e, k_{n}}$ at stage $t^{\prime}+1$; and let $t_{n}^{\prime \prime}$ be the least stage $t^{\prime \prime}$ such that $V_{e_{1}, s}\left(x_{n}\right)=V_{e_{1}}\left(x_{n}\right)$ for all $s>t^{\prime \prime}$.

Note that, by choice of t_{n}, t_{n}^{\prime} exists and $t_{n} \leq t_{n}^{\prime}$. Moreover, by R_{e} being active at stage $t_{n}^{\prime}+1$ via Clause (ii) and $x_{e, k_{n}}$, the approximations of A and $V_{e_{1}}$ agree on $J_{e, k_{n}}$ at stage $t_{n}^{\prime}+1$ and, by maximality of t_{n}^{\prime} and by 2.28, the approximation of A on $J_{e, k_{n}}$ does not change after stage $t_{n}^{\prime}+1$. Hence

$$
\begin{equation*}
\forall s>t_{n}^{\prime}\left(A \cap J_{e, k_{n}}=A_{s} \cap J_{e, k_{n}}=A_{t_{n}^{\prime}+1} \cap J_{e, k_{n}}=V_{e_{1}, t_{n}^{\prime}+1} \cap J_{e, k_{n}}\right) \tag{2.32}
\end{equation*}
$$

Moreover, since, for $y<x_{n}$ such that $y \in J_{e, k_{n}}, A(y)=V_{e_{1}}(y)$ it follows by 2.32 and 2.31 that the approximation of $V_{e_{1}}(y)$ does not change after stage $t_{n}^{\prime}+1$ whence (by 2.32)

$$
\begin{equation*}
\forall s>t_{n}^{\prime} \forall y<x_{n}\left(y \in J_{e, k_{n}} \Rightarrow V_{e_{1}}(y)=V_{e_{1}, s}(y)=A_{s}(y)=A(y)\right) \tag{2.33}
\end{equation*}
$$

Finally, since, by choice of $t_{n}^{\prime \prime}, V_{e_{1}, s}\left(x_{n}\right)=V_{e_{1}}\left(x_{n}\right) \neq A\left(x_{n}\right)$ for all $s>t_{n}^{\prime \prime}$, it follows by 2.32 that $t_{n}^{\prime}<t_{n}^{\prime \prime}$ and $V_{e_{1}, s}\left(x_{n}\right) \neq A_{s}\left(x_{n}\right)$ for all $s>t_{n}^{\prime \prime}$ whence, by 2.33,

$$
\begin{equation*}
\forall s>t_{n}^{\prime \prime}\left(x_{n}=\mu x \in J_{e, k_{n}}\left[A_{s}(x) \neq V_{e_{1}, s}(x)\right]\right) \tag{2.34}
\end{equation*}
$$

Furthermore, by $t_{n}^{\prime \prime}>0$ and by minimality of $t_{n}^{\prime \prime}$,

$$
\begin{equation*}
V_{e_{1}, t_{n}^{\prime \prime}+1}\left(x_{n}\right) \neq V_{e_{1}, t_{n}^{\prime \prime}}\left(x_{n}\right) \tag{2.35}
\end{equation*}
$$

Now, by $t_{n}^{\prime}<t_{n}^{\prime \prime}, R_{e}$ does not require attention via Clause (ii) and $x_{e, k_{n}}$ at any stage $s \geq t_{n}^{\prime \prime}+1$. Since $A_{s}\left(x_{e, k_{n}}\right)=1$ for such s by 2.29 and by $t_{n} \leq t_{n}^{\prime \prime}$, it follows by 2.34) and by definition of requiring attention that

$$
\begin{equation*}
\hat{A} \upharpoonright f\left(\left\langle x_{n}, 2^{x_{n}+1}\right\rangle\right)+1=\hat{A}_{t_{n}^{\prime \prime}} \upharpoonright f\left(\left\langle x_{n}, 2^{x_{n}+1}\right\rangle\right)+1 . \tag{2.36}
\end{equation*}
$$

Obviously, 2.35 and (2.36) imply 2.30.
Having established 2.30, in the remainder of the proof we use the fact that \hat{A} is uniformly multiply permitting via f to refute 2.30 for some n.

Since \mathcal{J} is a v.s.a., $\mathcal{F}=\left\{F_{n}\right\}_{n \geq 0}$ where

$$
F_{n}=\left\{\langle x, y\rangle: x \in J_{e, k_{n}} \& y \leq 2^{x+1}\right\}
$$

is a very strong array, too. Define the partial computable function ψ on $\bigcup_{n \geq 0} F_{n}$ as follows. For $x \in J_{e, k_{n}}$ and $y \leq 2^{x+1}$, let $\psi(\langle x, y\rangle)$ be the least stage s such that $V_{e_{1}, t+1}(x) \neq V_{e_{1}, t}(x)$ for y many stages $t<s$ (if such an s exists). Then, as \hat{A} is uniformly multiply permitting via f, there are infinitely many numbers n such that

$$
\begin{equation*}
\forall\langle x, y\rangle \in F_{n}\left(\psi(\langle x, y\rangle) \downarrow \Rightarrow \hat{A} \upharpoonright f(\langle x, y\rangle)+1 \neq \hat{A}_{\psi(\langle x, y\rangle)} \upharpoonright f(\langle x, y\rangle)+1\right) . \tag{2.37}
\end{equation*}
$$

Fix such an n. Let $p\left(x_{n}\right)$ be the number of stages t such that $V_{e_{1}, t+1}\left(x_{n}\right) \neq V_{e_{1}, t}\left(x_{n}\right)$. Since $\left\{V_{e_{1}, s}\right\}_{s \geq 0}$ is a computable almost enumeration, $p\left(x_{n}\right) \leq 2^{x_{n}+1}$. So $\psi\left(\left\langle x_{n}, p\left(x_{n}\right)\right\rangle\right)$ is defined. Moreover, by definition of ψ and by the first part of 2.30, $\psi\left(\left\langle x_{n}, p\left(x_{n}\right)\right\rangle\right)>t_{n}^{\prime \prime}$. It follows, by the second part of 2.30 , that $\hat{A} \upharpoonright f\left(\left\langle x_{n}, 2^{x_{n}+1}\right\rangle\right)+1=\hat{A}_{\psi\left(\left\langle x_{n}, p\left(x_{n}\right)\right\rangle\right)} \upharpoonright f\left(\left\langle x_{n}, 2^{x_{n}+1}\right\rangle\right)+1$. But this contradicts 2.37.

This completes the proof of Claim 3.
Claim 4. For $e \geq 0$, requirement R_{e} is met.
Proof. This follows from Claim 3 exactly as Claim 4 in the proof of Theorem 28 follows from Claim 3 there.

Claims 1, 2 and 4 imply that A has the required properties. This completes the proof of the theorem.

2.4.5 On the T-Degrees of U.a.n.c. Sets

We now turn to the Turing degrees of universally a.n.c. c.e. sets. First note that the construction from the proof of Theorem 67 can be combined with coding in the same way as in the proof of Theorem 28. This fact, together with Theorem 63, yields the following corollary.

Corollary 68. Let a be a c.e. Turing degree and let φ be a universal function. Then, the following are equivalent.
(i) \mathbf{a} is φ-universally a.n.c.
(ii) \mathbf{a} is uniformly universally a.n.c.
(iii) \mathbf{a} is universally a.n.c.
(iv) a has the uniform bounding property.
(v) \mathbf{a} is uniformly multiply permitting.
(vi) There is an almost-c.e. set $A \in \mathbf{a}$ which has the universal similarity property.

Together with Theorem 30, this directly implies the following Theorem.
Theorem 69. For a c.e. Turing degree \mathbf{a} and a universal function φ, the following are equivalent.
(i) \mathbf{a} is not totally ω-c.e.
(ii) \mathbf{a} is φ-universally a.n.c.

In the following, we prove Theorem 69 directly. We begin with the direction (i) \Rightarrow (ii).
Theorem 70. Let a be a c.e. Turing degree that is not totally ω-c.e. and let φ be a universal function. Then, there is a c.e. set $A \in \mathbf{a}$ which is φ-universally a.n.c.

Proof. By Lemma 64 it suffices to construct a c.e. set $A \leq_{\mathrm{T}}$ a with the required property in stages meeting the following requirements for every $e \geq 0$ where, here and in the following, $e=\left\langle e_{0}, e_{1}\right\rangle$.
R_{e} : If $\mathcal{F}^{e_{0}}$ is a very strong array then there is n such that $W_{e_{1}} \cap F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}=A^{\left\langle e_{0}\right\rangle} \cap F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$. (2.38)
As in the proof of Theorem 66, the requirements guarantee that A is φ-universally a.n.c. The strategy to meet R_{e} is the same as the strategy to meet \hat{R}_{e} in the proof of Theorem 66 explained there. To make sure that $A \leq_{\mathrm{T}} \mathbf{a}$, again, we combine this strategy with permitting. I.e., whenever we want to enumerate a number x into A, we wait for permitting by some function $g \leq_{\mathrm{T}} \mathbf{a}$. As, for some e, this permission may not be given on a fixed finite set $F_{\left\langle e_{1}, n\right\rangle}^{e_{0}}$, we again assign infinitely many sets $B_{e, k} \in \mathcal{F}^{e_{0}}, k \geq 0$, to every requirement R_{e}, just as in the proof of Theorem 66. Here, permission to enumerate numbers from $B_{e, k}$ into A at some stage $s+1$ is given whenever $g_{s+1}(k) \neq g_{s}(k)$. We use the fact that we may choose g to be not ω-c.e., i.e., the mind changes of any computable approximation of g cannot be computably bounded. Exploiting this fact, by a typical not-totally- ω-c.e. permitting argument similar to the one from the proof of Theorem 28, we show that for some k, we receive permitting by g whenever we wait for it.

Fix a c.e. set $C \in \mathbf{a}$ and a function $g \leq_{\mathrm{T}} C$ together with a Turing functional Γ such that g is not ω-c.e. and such that $\Gamma^{C}=g$. Let $\left\{g_{s}\right\}_{s \geq 0}$ be the computable approximation of g where $g_{s}=\Gamma_{s}^{C_{s}}$ for some fixed computable enumeration of C. We now turn to the formal construction of A where we let A_{s} be the finite part of A enumerated by the end of stage s.

Construction.

For $e, k \geq 0$, we define the stages $t_{e, k}$ and the sets $B_{e, k}$ just as in the proof of Theorem 66, we say that $B_{e, k}$ is assigned to requirement R_{e} at stage $t_{e, k}$ if the latter exists and we say that $B_{e, k}$ is defined at a stage s if $t_{e, k} \leq s$ exists. Note that the observations on the stages $t_{e, k}$ and the sets $B_{e, k}$ from the proof of Theorem 66 hold here, as well. We now turn to the definition of A in stages.

Stage 0. At stage 0, let $A_{0}=\emptyset$.

Stage $s+1$. At stage $s+1$, for all $e \leq s$ and all k such that $B_{e, k}$ is defined at stage s, such that

$$
B_{e, k} \cap A_{s}^{\left\langle e_{0}\right\rangle} \neq B_{e, k} \cap W_{e_{1}, s+1}
$$

and such that $g_{s+1}(k) \neq g_{s}(k)$, enumerate all numbers $\left\langle e_{0}, x\right\rangle$ such that $x \in\left(B_{e, k} \cap W_{e_{1}, s+1}\right) \backslash$ $A_{s}^{\left\langle e_{0}\right\rangle}$ into A. We say that R_{e} becomes active via k at stage $s+1$ for all such e and k.

This completes the construction.

Verification.

Note that the construction is effective and that the actions taken for the sake of different requirements do not interfere with each other. Note that, by construction, A is c.e. Moreover, for e, k such that $B_{e, k}$ is defined at some point, numbers of the form $\left\langle e_{0}, x\right\rangle$ with $x \in B_{e, k}$ only enter A at some stage $s+1$ if $x \in W_{e_{1}, s+1}$. It follows that for all s, the following holds.

$$
\begin{equation*}
A_{s}^{\left\langle e_{0}\right\rangle} \cap B_{e, k} \subseteq W_{e_{1}, s} \cap B_{e, k} \subseteq W_{e_{1}, s+1} \cap B_{e, k} \tag{2.39}
\end{equation*}
$$

We prove the following claims to show that A has the required properties.
Claim 1. For $e \geq 0$, requirement R_{e} is met.
Proof. Fix $e \geq 0$ and for a contradiction assume that R_{e} is not met. We show that there is a computable approximation $\left\{\tilde{g}_{n}\right\}_{n \geq 0}$ of g for which the number of mind changes is computably bounded whence g is ω-c.e. contrary to choice of g.

By assumption, the hypothesis of R_{e} is true, so $\mathcal{F}^{e_{0}}$ is a very strong array. This implies that for all $k \geq 0, t_{e, k}$ exists and $B_{e, k}$ is defined at all stages $s \geq t_{e, k}$. Note that, by construction, $\max B_{e, k}<\min B_{e, k+1}$ for all $k \geq 0$. As $B_{e, k} \in\left\{F_{\left\langle e_{0}, n\right\rangle}^{e_{0}}\right\}_{n \geq 0}$ for all k, by assumption $A \cap B_{e, k} \neq$ $W_{e_{1}} \cap B_{e, k}$ holds for all k. This implies that there is an infinite computable set of stages $\left\{s_{0}, s_{1}, \ldots\right\}$ with $s_{0}>e$ and such that $s_{n} \geq t_{e, n}$ for all n and such that

$$
\begin{equation*}
\forall k<n\left(A_{s_{n}} \cap B_{e, k} \neq W_{e_{1}, s_{n}+1} \cap B_{e, k}\right) \tag{2.40}
\end{equation*}
$$

holds. The latter implies that, for any k, n with $k<n$,

$$
\begin{align*}
& \text { if } g_{s_{n+1}}(k) \neq g_{s_{n}}(k) \text { then there is a stage } s \text { such that } s_{n}<s \leq s_{n+1} \text { and } \\
& \text { such that } W_{e_{1}, s+1} \cap B_{e, k} \neq W_{e_{1}, s} \cap B_{e, k} \text { holds. } \tag{2.41}
\end{align*}
$$

holds. For a proof of 2.41), fix $k<n$ such that $g_{s_{n+1}}(k) \neq g_{s_{n}}(k)$ holds. Fix t minimal with $s_{n} \leq t<s_{n+1}$ such that $g_{t+1}(k) \neq g_{t}(k)$. Assume for a contradiction that $W_{e_{1}, s+1} \cap B_{e, k}=$ $W_{e_{1}, s} \cap B_{e, k}$ for all s with $s_{n}<s \leq s_{n+1}$. Then, in particular, $W_{e_{1}, t+1} \cap B_{e, k}=W_{e_{1}, s_{n}+1} \cap B_{e, k}$. Furthermore, by construction and by minimality of $t, A_{t}^{\left\langle e_{0}\right\rangle} \cap B_{e, k}=A_{s_{n}}^{\left\langle e_{0}\right\rangle} \cap B_{e, k}$, so, by (2.40), $A_{t}^{\left\langle e_{0}\right\rangle} \cap B_{e, k} \neq W_{e_{1}, t+1} \cap B_{e, k}$. This implies that R_{e} becomes active via k at stage $t+1$, so by (2.39) for $s=t, A_{t+1}^{\left\langle e_{0}\right\rangle} \cap B_{e, k}=W_{e_{1}, t+1} \cap B_{e, k}$ holds. Since, by assumption, $W_{e_{1}, s_{n+1}+1} \cap B_{e, k}=W_{e_{1}, t+1} \cap B_{e, k}$ and, by construction, $A_{s_{n+1}}^{\left\langle e_{0}\right\rangle} \cap B_{e, k}=A_{t+1}^{\left\langle e_{0}\right\rangle} \cap B_{e, k}$, it follows that $W_{e_{1}, s_{n+1}+1} \cap B_{e, k}=A_{s_{n+1}}^{\left\langle e_{0}\right\rangle} \cap B_{e, k}$ holds which contradicts 2.40 for $n+1$ in place of n.

Since $\left\{W_{e_{1}, s}\right\}_{s \geq 0}$ is a computable enumeration there are at most $\left|B_{e, k}\right|$ many stages such that $W_{e_{1}}$ changes in $B_{e, k}$. Hence 2.41) implies that

$$
\left|\left\{n>k: g_{s_{n+1}}(k) \neq g_{s_{n}}(k)\right\}\right| \leq\left|B_{e, k}\right| .
$$

So, if we define the computable approximation $\left\{\tilde{g}_{n}\right\}_{n \geq 0}$ of g by letting

$$
\tilde{g}_{n}(k)=g_{s_{n}}(k),
$$

then the number of mind changes of \tilde{g}_{n} on k is bounded by $\left|B_{e, k}\right|+k+1$. So g is ω-c.e. contrary to choice of g.

Claim 2. $A \leq_{\mathrm{T}} C$.
Proof. For a given $x \geq 0$, by $g=\Gamma^{C}$, fix a stage s_{x} such that $g_{t} \upharpoonright x+1=g \upharpoonright x+1$ holds for all $t \geq s_{x}$. It suffices to show that $A_{s+1}(x)=A_{s}(x)$ for all $s \geq s_{x}$ whence $A(x)=A_{s_{x}}(x)$.

Fix s such that $A_{s+1}(x) \neq A_{s}(x)$. Fix $e_{0}, y \geq 0$ such that $x=\left\langle e_{0}, y\right\rangle$. Then, by construction, there are numbers e_{1} and k such that, for $e=\left\langle e_{0}, e_{1}\right\rangle, B_{e, k}$ is defined at stage $s, y \in B_{e, k}$ and such that $g_{s+1}(k) \neq g_{s}(k)$. Since, by construction, $B_{e, k^{\prime}}$ is defined at stage s for all $k^{\prime}<k$ and $\max B_{e, k^{\prime}}<\min B_{e, k} \leq y$ for all such k^{\prime}, it follows that $k \leq y \leq x$ whence $g_{s+1} \upharpoonright x+1 \neq g_{s} \upharpoonright x+1$. So $s<s_{x}$.

This completes the proof of Theorem 70 .
We now turn to the proof of the direction $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ in Theorem 69. Note that in ASL, there is an alternative proof of this direction using a result on (non-) wtt-reducibility to hypersimple sets by Barmpalias, Downey and Greenberg [BDG10]. Here, however, we give a direct proof using not-totally- ω-c.e. permitting.

Theorem 71. Let A be a c.e. set such that $\operatorname{deg}_{\mathrm{T}}(A)$ is totally ω-c.e. Then, A is not universally a.n.c.

Before giving the proof of Theorem 71, we state a technical lemma needed.
Lemma 72. Let A be a noncomputable c.e. set such that $\operatorname{deg}_{\mathrm{T}}(A)$ is totally ω-c.e. Then, there are a computable enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A with $A_{0}=\emptyset$ and a complete very strong array of intervals $\mathcal{I}=\left\{I_{n}\right\}_{n \geq 0}$ such that the following holds.

$$
\begin{equation*}
\forall n \forall e<n\left|\left\{s: A_{s+1}^{\langle e\rangle} \cap \bigcup_{n^{\prime} \leq n} I_{n^{\prime}} \neq A_{s}^{\langle e\rangle} \cap \bigcup_{n^{\prime} \leq n} I_{n^{\prime}}\right\}\right|<\left|I_{n}\right|-1 \tag{2.42}
\end{equation*}
$$

We first show how Theorem 71 follows from Lemma 72
Proof of Theorem 71 assuming Lemma 72, If A is computable, then the claim is straightforward. So assume that A is noncomputable. By Lemma 72 , fix a computable enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A with $A_{0}=\emptyset$ and a complete very strong array of intervals $\mathcal{I}=\left\{I_{n}\right\}_{n \geq 0}$ such that 2.42 holds. For given $e \geq 0$, we show that $A^{\langle e\rangle}$ is not \mathcal{I}-a.n.c. By Definition 49, it is enough construct a c.e. set V_{e} such that the following holds.

$$
\begin{equation*}
\forall n>e\left(A^{\langle e\rangle} \cap I_{n} \neq V_{e} \cap I_{n}\right) \tag{2.43}
\end{equation*}
$$

We give the construction of V_{e} in stages. We aim to make V_{e} different from $A^{\langle e\rangle}$ on each I_{n} for each $n>e$. By Lemma 72, we can argue that our strategy is successful.

At stage 0, let

$$
V_{e, 0}(x)= \begin{cases}1 & \text { if } x=\max I_{n} \text { for some } n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

At stage $s+1$, fix all $n>e$ such that there is at least one number x with $x \in I_{n}$ such that $A_{s+1}^{\langle e\rangle}(x) \neq A_{s}^{\langle e\rangle}(x)$. For all such n, if $A_{s+1}^{\langle e\rangle} \cap I_{n}=V_{e, s} \cap I_{n}$, enumerate the greatest number y with $y \in I_{n} \backslash V_{e, s}$ (if any) into V_{e}.

Note that $V_{e}=\lim _{s \rightarrow \infty} V_{e, s}$ is c.e. We now show that 2.43 holds. Fix $n>e$. We show that for all $s \geq 0$,

$$
\begin{equation*}
A_{s}^{\langle e\rangle} \cap I_{n} \neq V_{e, s} \cap I_{n} \tag{2.44}
\end{equation*}
$$

holds. The proof is by induction on s. For $s=0, A_{0}^{\langle e\rangle} \cap I_{n}=\emptyset \neq V_{e, 0} \cap I_{n}$. Now assume that (2.44) holds for some $s \geq 0$. If there is no $x \in I_{n}$ such that $A_{s+1}^{\langle e\rangle}(x) \neq A_{s}^{\langle e\rangle}(x)$, by construction, $V_{e, s+1} \cap I_{n}=V_{e, s} \cap I_{n} \neq A_{s}^{\langle e\rangle} \cap I_{n}=A_{s+1}^{\langle e\rangle} \cap I_{n}$, hence (2.44) holds for $s+1$ in place of s. So assume that there is such a number $x \in I_{n}$. In case $A_{s+1}^{\langle e\rangle} \cap I_{n} \neq V_{e, s} \cap I_{n}$, by construction, $V_{e, s+1} \cap I_{n}=V_{e, s} \cap I_{n}$, hence 2.44 holds for $s+1$ in place of s in this case, too. So assume furthermore that $A_{s+1}^{\langle e\rangle} \cap I_{n}=V_{e, s} \cap I_{n}$. We claim that in this case there is a number y with $y \in I_{n} \backslash V_{e, s}$. Then, by construction, the greatest such y is enumerated into V_{e} at stage $s+1$, hence $V_{e, s+1} \cap I_{n} \neq V_{e, s} \cap I_{n}=A_{s+1}^{\langle e\rangle} \cap I_{n}$, so (2.44) holds for $s+1$ in place of s.

It remains to show that y exists, i.e., that $\left|V_{e, s} \cap I_{n}\right|<\left|I_{n}\right|$. Note that for all $z \in V_{e, s} \cap I_{n}$, $z=\max I_{n}$ or there is a stage $t \geq 0$ such that z is enumerated into V_{e} at stage $t+1$. By construction, the latter only happens if there is a number $w \in I_{n}$ such that $A_{t+1}^{\langle e\rangle}(w) \neq A_{t}^{\langle e\rangle}(w)$. By (2.42), there are at most $\left|I_{n}\right|-2$ such stages t, hence there are at most $\left|I_{n}\right|-1$ numbers in $V_{e, s} \cap I_{n}$. It follows that $\left|V_{e, s} \cap I_{n}\right|<\left|I_{n}\right|$.

We now turn to the proof of Lemma 72

Proof of Lemma 72. Fix h as in Lemma 42 (a), let f be the function $f(x)=\langle 2 h(x), 2 h(x)\rangle$ and fix the corresponding computable enumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A with $A_{0}=\emptyset$ and the infinite computable set D such that

$$
\begin{equation*}
\forall x \in D\left(\left|\left\{s: A_{s+1} \upharpoonright f(x) \neq A_{s} \upharpoonright f(x)\right\}\right|<h(x)\right) \tag{2.45}
\end{equation*}
$$

holds. (Lemma 42 is stated for an almost-c.e. set A. It is easy to see that the computable almostenumeration $\left\{A_{s}\right\}_{s \geq 0}$ of A given in the proof of this lemma in ASLM] is actually a computable enumeration with $A_{0}=\emptyset$ if we start with a c.e. set A together with a computable enumeration $\left\{\hat{A}_{s}\right\}_{s \geq 0}$ of A with $\hat{A}_{0}=\emptyset$.)

Then the desired c.v.s.a.i. $\mathcal{I}=\left\{I_{n}\right\}_{n \geq 0}$ is defined by letting $I_{n}=\left[x_{n}, x_{n+1}\right)$ where the numbers x_{n} are inductively defined by $x_{0}=0$ and

$$
x_{n+1}=2 h\left(y_{n}\right) \text { where } y_{n}=\mu y\left(y \in D \& y>x_{n}\right) .
$$

Note that, by choice of h, y_{n} and $x_{n+1}, x_{n+1}>2 x_{n}$. So \mathcal{I} is a c.v.s.a.i. Finally, for a proof of
2.42, it suffices to note that, for $e<n$,

$$
\begin{aligned}
& \left|\left\{s: A_{s+1}^{\langle e\rangle} \cap \bigcup_{n^{\prime} \leq n} I_{n^{\prime}} \neq A_{s}^{\langle e\rangle} \cap \bigcup_{n^{\prime} \leq n} I_{n^{\prime}}\right\}\right| \\
\leq & \left|\left\{s: A_{s+1} \upharpoonright\left\langle e, x_{n+1}\right\rangle \neq A_{s} \upharpoonright\left\langle e, x_{n+1}\right\rangle\right\}\right| \\
\leq & \left|\left\{s: A_{s+1} \upharpoonright\left\langle n, x_{n+1}\right\rangle \neq A_{s} \upharpoonright\left\langle n, x_{n+1}\right\rangle\right\}\right| \\
= & \left|\left\{s: A_{s+1} \upharpoonright\left\langle n, 2 h\left(y_{n}\right)\right\rangle \neq A_{s} \upharpoonright\left\langle n, 2 h\left(y_{n}\right)\right\rangle\right\}\right| \\
\leq & \left|\left\{s: A_{s+1} \upharpoonright\left\langle 2 h\left(y_{n}\right), 2 h\left(y_{n}\right)\right\rangle \neq A_{s} \upharpoonright\left\langle 2 h\left(y_{n}\right), 2 h\left(y_{n}\right)\right\rangle\right\}\right| \\
= & \left|\left\{s: A_{s+1} \upharpoonright f\left(y_{n}\right) \neq A_{s} \upharpoonright f\left(y_{n}\right)\right\}\right| \\
< & h\left(y_{n}\right)
\end{aligned}
$$

where the last inequality holds by 2.45 , while, for fixed $n>e$,

$$
\left|I_{n}\right|=2 h\left(y_{n}\right)-x_{n}>2 h\left(y_{n}\right)-y_{n} \geq h\left(y_{n}\right)
$$

holds.

2.4.6 Embedding the \mathcal{S}_{7}, an Application of Uniform Multiple Permitting

In this subsection, we give a further example of applying Corollary 68. Namely, we show that a c.e. Turing degree bounds an embedding of the nondistributive finite lattice \mathcal{S}_{7}, which contains a critical triple, if and only if it is not totally ω-c.e. In DGW07, Downey, Greenberg and Weber show the following.

Theorem 73 (DGW07]). A c.e. Turing degree a bounds a critical triple if and only if a is not totally ω-c.e.

Here, the definition of a critical triple is given by Downey and Weinstein and we say that a c.e. Turing degree a bounds a critical triple if there is a critical triple $\mathbf{a}_{0}, \mathbf{a}_{1}$ and \mathbf{b} in the c.e. Turing degree such that $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{b} \leq \mathbf{a}$ holds.

Definition 74 (Dow90, Wei88). Three elements a_{0}, a_{1} and b of an upper semilattice $(\mathcal{U}, \leq \mathcal{U})$ form a critical triple if the following hold.

- a_{0}, a_{1} and b are pairwise $\leq_{\mathcal{U}}$-incomparable.
- $a_{0} \vee b=a_{1} \vee b$.
- For every $c \in \mathcal{U}$, if $c \leq_{\mathcal{U}} a_{0}, a_{1}$, then $c \leq_{\mathcal{U}} b$.

Recall that the c.e. Turing degrees form an upper semilattice but not a lower semilattice. As many wellknown finite lattices contain a critical triple, this brings us to the question of embeddings of finite lattices into the c.e. Turing degrees. These have been intensively studied. It has been shown by Thomason [Tho71] and, independently, by Lerman (see Ambos-Spies and Lerman ASL86]) that every finite distributive lattice can be embedded into the c.e. Turing degrees. Moreover, one has looked at the well-know nondistributive finite lattices \mathcal{M}_{5} and \mathcal{N}_{5} (where the former is modular and latter is not). Lachlan Lac72 has given embeddings of these lattices into the c.e. Turing degrees. Moreover, it has been shown that the \mathcal{N}_{5} can be embedded into the c.e. Turing degree
below every noncomputable c.e. degree (see Ambos-Spies and Fejer ASF88]). In contrast to this, Downey and Greenberg (see DG06) have shown that the \mathcal{M}_{5} can be embedded into the c.e. Turing degrees below a c.e. degree \mathbf{a} if and only if \mathbf{a} is not totally $<\omega^{\omega}$-c.e. (where being totally $(<) \alpha$-c.e. for an ordinal α is a generalization of being totally ω-c.e. introduced by Downey and Greenberg; see DG06]. Here we use Corollary 68 to show that the nondistributive finite lattice \mathcal{S}_{7} can be embedded into the c.e. Turing degrees exactly below the c.e. not totally ω-c.e. Turing degrees. This is the first example of a finite lattice with this property.

Definition 75. The \mathcal{S}_{7} is the finite partial ordering ($\left\{a, a_{0}, a_{1}, b, b_{0}, b_{1}, c\right\}, \leq \mathcal{S}_{7}$) where for $x, y \in$ $\left\{a, a_{0}, a_{1}, b, b_{0}, b_{1}, c\right\}, x \leq \mathcal{S}_{7} y$ holds if and only if $x=y$ or $x=c$ or $y=a$ or $x \in\left\{b_{0}, b_{1}\right\}$ and $y=b$ or, for $i \leq 1, x=b_{i}$ and $y=a_{i}$.

The \mathcal{S}_{7} can be illustrated as below. Note that the lattice is nondistributive and contains a critical triple, namely a_{0}, a_{1} and b.

For better readability, we begin with the basic construction to embed the above lattice into the c.e. Turing degrees.

Theorem 76. There is a zero-preserving lattice embedding $p: \mathcal{S}_{7} \rightarrow\left(\mathbf{R}_{\mathrm{T}}, \leq\right)$.
To prove Theorem 76, we argue that it suffices to prove the following theorem.
Theorem 77. There are pairwise disjoint c.e. sets $A_{0}, A_{1}, B_{0}, B_{1}$ such that, for $i \leq 1$,
(i) $\operatorname{deg}_{\mathrm{T}}\left(A_{i} B_{i}\right) \wedge \operatorname{deg}_{\mathrm{T}}\left(B_{0} B_{1}\right)=\operatorname{deg}_{\mathrm{T}}\left(B_{i}\right)$,
(ii) $\operatorname{deg}_{\mathrm{T}}\left(A_{0} B_{0}\right) \wedge \operatorname{deg}_{\mathrm{T}}\left(A_{1} B_{1}\right)=\mathbf{0}$,
(iii) $A_{i} \leq_{\mathrm{T}} A_{1-i} B_{0} B_{1}$,
(iv) $A_{i} \not \mathbb{Z}_{\mathrm{T}} B_{0} B_{1}$,
(v) $B_{i} \not \mathbb{Z}_{\mathrm{T}} A_{1-i} B_{1-i}$.
(Here and in the following we write $X Y$ in place of $X \cup Y$. Note that, by disjointness of the sets X and Y we construct, $\operatorname{deg}_{\mathrm{T}}(X Y)=\operatorname{deg}_{\mathrm{T}}(X \oplus Y)$.)

Proof of Theorem 76, assuming Theorem 777. Let A_{0}, A_{1}, B_{0} and B_{1} be as in Theorem 77. Then, a zero-preserving lattice embedding $p: \mathcal{S}_{7} \rightarrow\left(\mathbf{R}_{\mathrm{T}}, \leq\right)$ is given by letting $p(a)=\operatorname{deg}_{\mathrm{T}}\left(A_{0} B_{0} B_{1}\right)$, $p\left(a_{i}\right)=\operatorname{deg}_{\mathrm{T}}\left(A_{i} B_{i}\right), p(b)=\operatorname{deg}_{\mathrm{T}}\left(B_{0} B_{1}\right), p\left(b_{i}\right)=\operatorname{deg}_{\mathrm{T}}\left(B_{i}\right)$ for $i \leq 1$ and $p(c)=\mathbf{0}$. It remains to show that p is indeed a zero-preserving lattice embedding. In the following, let $x, y, z \in$ $\left\{a, a_{0}, a_{1}, b, b_{0}, b_{1}, c\right\}$.

We first show that $x \leq_{\mathcal{S}_{7}} y$ if and only if $p(x) \leq p(y)$. By pairwise disjointness of the sets A_{i} and B_{i}, it is immediate that $x \leq_{\mathcal{S}_{7}} y$ implies that $p(x) \leq p(y)$ for all $x, y \in\left\{a, a_{0}, a_{1}, b, b_{0}, b_{1}, c\right\}$. We have to show that the converse holds, too. By the former, by definition of the \mathcal{S}_{7} and of p and by transitivity of Turing reducibility, for $i \leq 1$, it suffices to show that the following hold.
(a) $A_{0} B_{0} B_{1} \not \mathbb{T}_{\mathrm{T}} A_{i} B_{i}, B_{0} B_{1}$,
(b) $A_{i} B_{i} \not \leq_{\mathrm{T}} B_{i}, B_{1-i}$,
(c) $B_{0} B_{1} \not \mathbb{Z}_{\mathrm{T}} B_{i}$,
(d) B_{i} is not computable.

For a proof, it is enough to note that (a) follows from v) and (iv) by transitivity, (b) and (c) similarly follow from (iv) and (v), respectively and (d) directly follows from v.

We now prove that $x \wedge y=z$ implies $p(x) \wedge p(y)=p(z)$. By definition of the \mathcal{S}_{7}, it suffices to show that $p\left(a_{i}\right) \wedge p(b)=p\left(b_{i}\right)$ for $i \leq 1$ and that $p\left(b_{0}\right) \wedge p\left(b_{1}\right)=p\left(a_{0}\right) \wedge p\left(a_{1}\right)=p(c)$. But this is immediate by definition of p and by (i) and (iii), respectively.

Finally we need to show that $x \vee y=z$ implies $p(x) \vee p(y)=p(z)$. Again by definition of the \mathcal{S}_{7}, it is enough to show that $p\left(a_{0}\right) \vee p(b)=p\left(a_{1}\right) \vee p(b)=p\left(a_{0}\right) \vee p\left(a_{1}\right)=p(a)$. By disjointness of the sets and by definition of $p, p\left(a_{0}\right) \vee p(b)=p(a)$ is immediate. By (iii), it follows that $p\left(a_{1}\right) \vee p(b)=p(a)$ and $p\left(a_{0}\right) \vee p\left(a_{1}\right)=p(a)$ hold, too.

Altogether, it follows that p is a lattice embedding. As c is the least element of the \mathcal{S}_{7} and $p(c)=\mathbf{0}$ is the least element of $\left(\mathbf{R}_{\mathrm{T}}, \leq\right), p$ is zero-preserving, hence the proof of Theorem 76 assuming Theorem 77 is complete.

We now give the proof of Theorem 77 .
Proof of Theorem 77. In the following, let $e, s \geq 0$ and $i \leq 1$. We computably enumerate pairwise disjoint sets A_{0}, A_{1}, B_{0} and B_{1} with the required properties. For that matter, it suffices to meet the following requirements.

Meet requirements.

$$
\begin{aligned}
& M_{3 e+i}: \text { If } \Phi_{e}^{A_{i} B_{i}} \text { is total and } \Phi_{e}^{A_{i} B_{i}}=\Phi_{e}^{B_{0} B_{1}} \text { then } \Phi_{e}^{A_{i} B_{i}} \leq_{\mathrm{T}} B_{i} . \\
& M_{3 e+2}: \text { If } \Phi_{e}^{A_{0} B_{0}} \text { is total and } \Phi_{e}^{A_{0} B_{0}}=\Phi_{e}^{A_{1} B_{1}} \text { then } \Phi_{e}^{A_{0} B_{0}} \text { is computable. }
\end{aligned}
$$

Join requirements.

$$
J_{i}: A_{i} \leq_{\mathrm{T}} A_{1-i} B_{0} B_{1} .
$$

Nonordering requirements.

$$
\begin{aligned}
& N_{4 e+i}: A_{i} \neq \Phi_{e}^{B_{0} B_{1}} . \\
& N_{4 e+2+i}: B_{i} \neq \Phi_{e}^{A_{1-i} B_{1-i}} .
\end{aligned}
$$

Note that by "Posner's trick" (see Soare [Soa87], Remark IX.1.4), the meet requirements suffice to guarantee the required meets in (i) above, while the (global) join requirements and the nonordering requirements ensure (ii) and (iii), respectively.

We start by describing the strategies for meeting the different types of requirements where we introduce some of the notation required for the formal construction.

For the meet requirements we use a variant of Lachlan's branching degree construction (for the branching degree requirements M_{n} where $n=3 e+i$; see [Lac66]) respectively the minimal pair technique (for the minimal pair requirements M_{n} where $n=3 e+2$). We call a meet requirement M_{n} infinitary if its hypothesis is true and we call M_{n} finitary otherwise. We define (α-)expansionary stages as usual. For an infinitary meet requirement M_{n} we make sure that at a stage $s+1$ only big numbers enter the oracles of the computations in the hypothesis of M_{n} unless the stage s is expansionary. Furthermore, if M_{n} is a branching degree requirement, i.e., $n=3 e+i$, then, whenever at some stage $s+1$ where s is expansionary, both oracles of the computations in the hypothesis of M_{n} (i.e., $A_{i} B_{i}$ and $B_{0} B_{1}$) are changed, we make a sufficiently small change in the set B_{i} representing the meet, too. For a minimal pair requirement $M_{n}, n=3 e+2$, at a stage $s+1$ where s is expansionary numbers may enter at most one of the oracles of the computations in the hypothesis, i.e., either $A_{0} B_{0}$ or $A_{1} B_{1}$, but not both.

Formally, we define the lengths of agreement as follows.

$$
\begin{aligned}
l(3 e+i, s) & =\max \left\{x: \forall y<x\left(\Phi_{e, s}^{A_{i, s} B_{i, s}}(y) \downarrow=\Phi_{e, s}^{B_{0, s} B_{1, s}}(y)\right)\right\} \\
l(3 e+2, s) & =\max \left\{x: \forall y<x\left(\Phi_{e, s}^{A_{0, s} B_{0, s}}(y) \downarrow=\Phi_{e, s}^{A_{1, s} B_{1, s}}(y)\right)\right\}
\end{aligned}
$$

Note that $l(n, s)$ is computable. Moreover, for the oracle sets X and Y in the hypothesis of any meet requirement $M_{n}(n=3 e+j, j \in\{0,1,2\})$, the following holds.

$$
\begin{equation*}
\Phi_{e}^{X} \text { total and } \Phi_{e}^{X}=\Phi_{e}^{Y} \Rightarrow \lim _{s \rightarrow \infty} l(n, s) \downarrow=\infty \tag{2.46}
\end{equation*}
$$

Since we cannot decide whether a meet requirement M_{n} is infinitary or finitary, we use the full binary tree $T=\{0,1\}^{<\omega}$ to model our guesses on whether M_{e} is infinitary or not.

A node α of length k codes a guess about the hypotheses of the first k meet requirements M_{0}, \ldots, M_{k-1} where, for $n<k, \alpha(n)=0$ codes the guess that M_{n} is infinitary and $\alpha(n)=1$ codes the guess that M_{n} is finitary. At any stage s of the construction we have an approximation δ_{s}, i.e., a guess on which of the first s meet requirements are infinitary. For the definition of δ_{s}, we inductively define α-stages for each node α as follows. Each stage $s \geq 0$ is a λ-stage. If s is an α-stage, then we call $s \alpha$-expansionary if $l(|\alpha|, s)>l(|\alpha|, t)$ for all α-stages $t<s$ and we call s an $\alpha 0$-stage if s is α-expansionary and an $\alpha 1$-stage if s is an α-stage but not α-expansionary. Then $\delta_{s} \in T$ is the unique string α of length s such that s is an α-stage. Moreover, we say that α is accessible at stage $s+1$ if s is an α-stage.

The true path $f: \omega \rightarrow\{0,1\}$ of the construction is defined by

$$
f(n)= \begin{cases}0 & \text { if there are infinitely many }(f \upharpoonright n) \text {-expansionary stages } \\ 1 & \text { otherwise }\end{cases}
$$

Note that f is the leftmost path through T visited infinitely often, i.e., satisfying $\delta_{s} \sqsubset f$ for infinitely many s. Moreover, 2.46) implies that $f(n)=0$ for infinitary M_{n}. To each node α of length n, we assign a strategy \mathcal{N}_{α} for meeting requirement N_{n} which is based on the guess α. We show that the strategy $\mathcal{N}_{f \upharpoonright n}$ on the true path succeeds in meeting N_{n}.

For the join requirements, we guarantee that every number x which may enter any set $X \in$ $\left\{A_{0}, A_{1}, B_{0}, B_{1}\right\}$ under construction is targeted for this set at a stage $s \leq x$ where each number may be targeted for at most one set. (This also guarantees that every number is enumerated into at most one of the sets under construction.) Now, for the sake of J_{i}, whenever a number x becomes targeted for A_{i} at a stage s, at stage $s+1$ an unused number $x^{\prime}>s$ is appointed as a trace of x and targeted for A_{1-i}, B_{0} or B_{1}. Then, if x is enumerated into A_{i}, simultaneously its (current) trace is enumerated into its target set. The trace x^{\prime} of x may be replaced by another trace $x^{\prime \prime}$ at some stage $s^{\prime}+1>s+1$. This action, called retargeting, requires that the trace x^{\prime} is enumerated into its target at stage $s^{\prime}+1$ and the new unused trace $x^{\prime \prime}$ is appointed at the same stage $s^{\prime}+1$ where the target of $x^{\prime \prime}$ may be freely chosen from A_{1-i}, B_{0} or B_{1} (but the target has to be determined by stage $\min \left\{x^{\prime \prime}, s^{\prime}+1\right\}$). Provided that, for fixed x, retargeting happens only finitely often, this guarantees that $A_{i} \leq_{\mathrm{T}} A_{1-i} B_{0} B_{1}$. In our construction, for any x there will be at most one retargeting. Namely if x is targeted for A_{i} and its first trace x^{\prime} is targeted for A_{1-i} then x^{\prime} may be replaced later by a trace $x^{\prime \prime}$ targeted for B_{i}. (The correctness of the reduction $A_{i} \leq_{\mathrm{T}} A_{1-i} B_{0} B_{1}$ in this special case is shown in Claim 5 below.)

To meet a single nonordering requirement N_{n} of the form $X \neq \Phi_{e}^{Y}$ for some X, Y and e, we use the well-known Friedberg-Muchnik strategy. We appoint a follower x to N_{n} and wait for a stage s such that $\Phi_{e, s}^{Y_{s}}(x) \downarrow=0$. If there is no such stage s then we never put x into X and the requirement is met. If such a stage s exists, we make sure that we preserve the computation $\Phi_{e, s}^{Y_{s}}(x)$ by preserving Y up to the use of the computation (actually we preserve Y up to s which, by our convention on uses, bounds the use of the computation) and put x into X.

We have to ensure that the strategies for meeting the different requirements can be combined with each other. In order to achieve this we use some ideas introduced by Lachlan in Lac72 in the embeddings of the two nondistributive five-element lattices \mathcal{N}_{5} and \mathcal{M}_{5} and by Downey, Greenberg and Weber in the construction of a degenerate critical triple of Turing degrees (Theorem 2.1 in DGW07) where we follow the latter quite closely. Consider a strategy \mathcal{N}_{α} for some nonordering requirement N_{n}. This strategy might wish to enumerate some number x into some set X under construction. If $n=4 e+2+i$ then $X=B_{i}$, hence putting x into X is uncritical for the join requirements. On the other hand, if $n=4 e+i$ then $X=A_{i}$. So for the sake of J_{i}, we have to define a trace $x_{1}>x$ of x which has to be targeted for one of the sets A_{1-i}, B_{0} or B_{1}. This trace x_{1} has to enter its target when x enters A_{i} unless we put x_{1} into its target previously and replace it by a new trace y_{0} (with a possibly new target among A_{1-i}, B_{0} or B_{1}). In general, we have to assign the trace x_{1} before there is a stage s such that the computation $\Phi_{e, s}^{B_{0, s} B_{1, s}}(x)$ converges. So we cannot target x_{1} for B_{0} or B_{1}, because the use of the computation $\Phi_{e, s}^{B_{0, s} B_{1, s}}(x)$ may exceed x_{1}
whence the enumeration of x_{1} may destroy this computation. So when x is appointed we define a trace x_{1} targeted for A_{1-i}. But, for the sake of J_{1-i}, x_{1} needs a trace x_{2} targeted for either A_{i}, B_{0} or B_{1}. Again, we cannot target x_{2} for B_{0} or B_{1} because otherwise enumerating x_{2} into B_{0} or B_{1} might destroy the computation $\Phi_{e, s}^{B_{0, s} B_{1, s}}(x)$ showing up later. Therefore, we target x_{2} for A_{i}. Now, this process has to be iterated: we need a trace x_{3} for x_{2} targeted for A_{1-i} and so on. If $\Phi_{e, s}^{B_{0, s} B_{1, s}}(x)$ never becomes defined, this process goes on forever. This is uncritical, however, since neither x nor any of the corresponding traces has to be enumerated into its target. On the other hand, as soon as we see a converging computation $\Phi_{e, s}^{B_{0, s} B_{1, s}}(x)$ at some stage s, we may now define a trace $y_{m}>x_{m}$ of x_{m} (where $x_{0}=x$ and $x_{m}, m \geq 0$, is the largest trace of x defined up to stage s and x_{m} is targeted for $\left.A_{j_{m}}, j_{m} \in\{0,1\}\right)$ such that y_{m} is bigger than the use of the computation $\Phi_{e, s}^{B_{0, s} B_{1, s}}(x)$ and target it for for $B_{j_{m}}$. Then enumerating y_{m} into $B_{j_{m}}$ later will not destroy this computation. In fact, in the actual construction, we simultaneously define traces $y_{m}<y_{m-1}<\ldots<y_{0}$ where each y_{l} is a (potential) trace of the corresponding number x_{l} and y_{l} is targeted for the set $B_{j_{l}}$ where x_{l} is targeted for $A_{j_{l}}$. Once the trace y_{m} is defined, we may simultaneously enumerate y_{m} into $B_{j_{m}}$ and x_{m} into $A_{j_{m}}$ and at the same time replace the trace x_{m} of x_{m-1} by (activating) the $B_{j_{m-1}}$-trace y_{m-1}. So, inductively, we may enumerate the pairs $\left(x_{l}, y_{l}\right)$ into $A_{j_{l}}$ and $B_{j_{l}}$ for $l=m, m-1, \ldots 0$. So eventually, the follower x is enumerated into A_{i} thereby meeting requirement $N_{4 e+i}$. Obviously, this procedure is compatible with the strategy for the global join requirements. Moreover, if we limit the appointment of the B_{i}-traces and the enumeration of the traces $\left(x_{l}, y_{l}\right)$ into $A_{j_{l}}$ and $B_{j_{l}}$ to stages where α is accessible, we may argue that these actions are compatible with the constraints imposed by the meet requirements.

Note that numbers enter any set under construction only for the sake of some nonordering strategy. We call a trace targeted for A_{i} an $A_{i^{-}}$or A-trace and a trace targeted for B_{i} a $B_{i^{-}}$or B-trace. Similarly a number targeted for A_{i} is an $A_{i^{-}}$or A-number and a number targeted for B_{i} is a B_{i} - or B-number. We call nonordering requirements N_{n} with $n=4 e+i$ and their corresponding strategies critical (as they need traces for their followers) and nonordering requirements N_{n} with $n=4 e+2+i$ and their strategies uncritical (as they do not). Moreover, we call a follower or (potential) trace of any nonordering strategy active at stage $s+1$ if it is defined (i.e., assigned to the strategy) but not yet enumerated into its target by the end of stage s. If \mathcal{N}_{α} is critical and has an active follower x at stage $s+1$ then we call the sequence $x_{0}, x_{1}, \ldots, x_{m}$ or $x_{0}, x_{1}, \ldots, x_{m}, y_{m}, y_{m-1}, \ldots, y_{0}$ associated with \mathcal{N}_{α} at the end of stage s where $x=x_{0}$, the numbers x_{1}, \ldots, x_{m} are the active A-traces and the numbers $y_{m}, y_{m-1}, \ldots, y_{0}$ are the active (potential) B-traces the entourage of the follower x.

Construction.

We say that x is a new large number at stage $s+1$ if $x>s+1$ and x is greater than any number used in the construction so far. If we say that a (nonordering) strategy \mathcal{N}_{α} is initialized at stage s then any follower or trace associated with \mathcal{N}_{α} is canceled at stage s and \mathcal{N}_{α} is declared not to be satisfied at stage s. For any set X under construction we let X_{s} be the finite part of X enumerated by the end of stage s.

Stage 0. $X_{0}=\emptyset$ for any set X under construction and any strategy is initialized.
Stage $s+1$. A strategy \mathcal{N}_{α} with $|\alpha|=n$ requires attention at stage $s+1$ if $\alpha \sqsubseteq \delta_{s}, \mathcal{N}_{\alpha}$ is
not satisfied at the end of stage s and one of the following holds.
(i) No follower is assigned to \mathcal{N}_{α} at the end of stage s.
(ii) \mathcal{N}_{α} is critical, say $n=4 e+i, \mathcal{N}_{\alpha}$ has a follower x^{α} at the end of stage $s, \Phi_{e, s}^{B_{0, s} B_{1, s}}\left(x^{\alpha}\right)=0$ and x^{α} is not realized at the end of stage s.
(iii) \mathcal{N}_{α} is critical and has a realized follower x^{α} at the end of stage s.
(iv) \mathcal{N}_{α} is uncritical, say $n=4 e+2+i, \mathcal{N}_{\alpha}$ has a follower x^{α} at the end of stage s, $\Phi_{e, s}^{A_{1-i, s} B_{1-i, s}}\left(x^{\alpha}\right)=0$ and x^{α} is not realized at the end of stage s.

Fix the least α such that \mathcal{N}_{α} requires attention at stage $s+1$ and perform the following action according to the clause above via which \mathcal{N}_{α} requires attention.
(i) Assign the least new large number x^{α} as a follower to \mathcal{N}_{α}. If N_{n} is critical of the form $A_{i} \neq \Phi_{e}^{B_{0} B_{1}}$, declare the entourage of x^{α} to be $x_{0}^{\alpha}=x^{\alpha}$ and x_{0}^{α} to be targeted for A_{i}. If N_{n} is uncritical of the form $B_{i} \neq \Phi_{e}^{A_{1-i} B_{1-i}}$, declare x^{α} to be targeted for B_{i}.
(ii) Declare x^{α} to be realized. Append the least $m+1$ new large numbers $y_{m}^{\alpha}<y_{m-1}^{\alpha}<$ $\ldots<y_{0}^{\alpha}$ to the entourage $x^{\alpha}=x_{0}^{\alpha}, x_{1}^{\alpha}, \ldots, x_{m}^{\alpha}$ of x^{α}. For $0 \leq l \leq m$, declare y_{l}^{α} to be targeted for $B_{j_{l}}$ where j_{l} is such that x_{l}^{α} is targeted for $A_{j_{l}}$. Moreover, declare y_{m}^{α} to be the $B_{j_{m}}$-trace of x_{m}^{α}. (For $l<m, y_{l}^{\alpha}$ will become the $B_{j_{l}}$-trace of x_{l}^{α} once the current $A_{1-j_{l}}$-trace x_{l+1}^{α} of x_{l}^{α} will be enumerated into $A_{1-j_{l}}$; so we refer to y_{l}^{α} as the potential $B_{j_{l}}$-trace of x_{l}^{α}.)
(iii) Let $x^{\alpha}=x_{0}^{\alpha}, x_{1}^{\alpha} \ldots, x_{m}^{\alpha}, y_{m}^{\alpha}, y_{m-1}^{\alpha}, \ldots, y_{0}^{\alpha}$ be the entourage of x^{α} at the end of stage s and fix $i \leq 1$ such that x_{m}^{α} and y_{m}^{α} are targeted for A_{i} and B_{i}, respectively. Enumerate x_{m}^{α} into A_{i} and y_{m}^{α} into B_{i} and delete x_{m}^{α} and y_{m}^{α} from the entourage of x^{α}. If $m>0$ appoint y_{m-1}^{α} as the B_{1-i}-trace of x_{m-1}^{α} replacing the old A_{i}-trace x_{m}^{α} of x_{m-1}^{α} (note that x_{m-1}^{α} and y_{m-1}^{α} have been previously targeted for A_{1-i} and B_{1-i}, respectively). If $m=0$, declare \mathcal{N}_{α} to be satisfied.
(iv) Enumerate x^{α} into its target B_{i} at stage $s+1$, declare x^{α} to be realized and declare \mathcal{N}_{α} to be satisfied.

In any of the cases, declare that \mathcal{N}_{α} receives attention or becomes active at stage $s+1$ (via follower x^{α}). Initialize all strategies \mathcal{N}_{β} with $\alpha<\beta$. Furthermore, for any strategy \mathcal{N}_{β} with $\beta<\alpha$ such that the last element x_{m}^{β} of the current entourage is targeted for some A_{i}, add a new large number x_{m+1}^{β} to the entourage as a trace of x_{m}^{β} and target it for A_{1-i}. Finally, let $X_{s+1}=X_{s}$ for all sets X under construction unless mentioned otherwise above and let status and parameters of strategies be unchanged unless mentioned otherwise above.

Verification.

We start with a few observations. Note that at any stage $s+1$, exactly one strategy \mathcal{N}_{α} is active. Furthermore, if \mathcal{N}_{α} is uncritical and enumerates some number at stage $s+1$, it enumerates exactly one number into exactly one B_{i}. We then call $s+1$ a B_{i}-stage. If \mathcal{N}_{α} is critical and performs some enumeration at stage $s+1$, it enumerates exactly two numbers, one into A_{i} and one into B_{i} for exactly one i. We call such a stage $s+1$ an $\left(A_{i} B_{i}\right)$-stage. It follows that every stage at which some enumeration takes place is either a $B_{0^{-}}$, a $B_{1^{-}}$, an $\left(A_{0} B_{0}\right)$ - or an $\left(A_{1} B_{1}\right)$-stage.

We now prove a series of claims that show that the constructed sets have the required properties.
Claim 1. All constructed sets are c.e.

Proof. Immediate by construction.
Claim 2 (True Path Lemma). $f=\liminf _{s \rightarrow \infty} \delta_{s}$, i.e., for any $\alpha, \alpha \sqsubset f$ if and only if $\alpha \sqsubset \delta_{s}$ for infinitely many s and there are only finitely many s such that $\delta_{s}<_{L} \alpha$. Moreover, if M_{n} is infinitary then $f(n)=0$.

Proof. The first part is immediate by definition of δ_{s} and f. The second part follows from 2.46).

Claim 3. Every strategy \mathcal{N}_{α} on the true path (i.e., $\alpha \sqsubset f$) is initialized only finitely often and requires attention only finitely often. Moreover, $N_{|\alpha|}$ is met.

Proof. The proof is by induction on $|\alpha|$. Given $\alpha \sqsubset f$, by Claim 2, fix s_{0} minimal such that $\alpha \leq \delta_{s}$ for all $s \geq s_{0}$ and, by inductive hypothesis, fix $s_{1} \geq s_{0}$ minimal such that no strategy \mathcal{N}_{β} with $\beta \sqsubset \alpha$ requires attention after stage s_{1}. Then \mathcal{N}_{α} is never initialized after stage s_{1} and receives attention whenever it requires attention after stage s_{1}. By minimality of s_{1}, a follower x^{α} is permanently assigned to \mathcal{N}_{α} at stage $s_{2}+1$ where s_{2} is the least α-stage $\geq s_{1}$. (Note that s_{2} exists because α is on the true path whence there are infinitely many α-stages.) Now, if there is no α-stage $s_{3}>s_{2}$ such that x^{α} becomes realized at stage $s_{3}+1$, then \mathcal{N}_{α} does not require attention after stage $s_{2}+1$ and x^{α} witnesses that $N_{|\alpha|}$ met. (For the latter note that, for $|\alpha|=4 e+i$, $\Phi_{e, s}^{B_{0, s} B_{1, s}}\left(x^{\alpha}\right) \neq 0$ for all α-stages $s>s_{2}$ hence $\Phi_{e}^{B_{0} B_{1}}\left(x^{\alpha}\right) \neq 0$ and x^{α} is not enumerated into A_{i}. Similarly, for $|\alpha|=4 e+2+i, \Phi_{e}^{A_{1-i} B_{1-i}}\left(x^{\alpha}\right) \neq 0$ and $x^{\alpha} \notin B_{i}$.) So w.l.o.g. let s_{3} be the least α-stage $>s_{2}$ such that x^{α} becomes realized at stage $s_{3}+1$, and distinguish the following two cases.

Case 1: $N_{|\alpha|}$ is critical, say $|\alpha|=4 e+i$.
Let $x^{\alpha}=x_{0}^{\alpha}, x_{1}^{\alpha}, \ldots, x_{m}^{\alpha}$ be the entourage of the follower x^{α} at stage s_{3}. By construction, $\Phi_{e, s_{3}}^{B_{0, s_{3}} B_{1, s_{3}}}\left(x^{\alpha}\right)=0, x^{\alpha}$ is declared to be realized at stage $s_{3}+1$, and B-traces $y_{l}^{\alpha}(0 \leq l \leq m)$ are appointed at stage $s_{3}+1$ (and there are no further traces associated with x^{α} appointed later). Moreover, for any α-stage $s>s_{3}$ such that \mathcal{N}_{α} is not satisfied at stage s, \mathcal{N}_{α} becomes active at stage $s+1$ via Clause (iii) and two elements from x^{α} 's entourage are enumerated into their corresponding sets. Hence, the entourage becomes smaller. As there are infinitely many α-stages, it follows that at some stage $s_{4}+1>s_{3}+1, x^{\alpha}$ itself is enumerated into its target set A_{i} and hence \mathcal{N}_{α} is declared to be satisfied. By choice of $s_{1}, \mathcal{N}_{\alpha}$ is never initialized after stage $s_{4}+1$, thus remains satisfied forever. So \mathcal{N}_{α} does not require attention after stage $s_{4}+1$.

It remains to show that $N_{|\alpha|}$ is met. Since x^{α} is enumerated into A_{i} at stage $s_{4}+1$ and since $\Phi_{e, s_{3}}^{B_{0, s_{3}} B_{1, s_{3}}}\left(x^{\alpha}\right)=0$, it suffices to show that no number $<s_{3}$ enters B_{0} or B_{1} after stage s_{3}. Since no strategy \mathcal{N}_{β} with $\beta<\alpha$ acts after stage s_{1} and since all strategies \mathcal{N}_{β} with $\beta>\alpha$ are initialized at stage $s_{3}+1$ (hence enumerate only numbers $>s_{3}+1$ into any set under construction after stage s_{3}), this follows from the fact that the only numbers enumerated into B_{0} or B_{1} by \mathcal{N}_{α} after stage s_{3} are the B-traces $y_{m}^{\alpha}, \ldots, y_{0}^{\alpha}$ which are new large numbers at stage $s_{3}+1$ hence greater than s_{3}.

Case 2: $\mathcal{N}_{|\alpha|}$ is uncritical, say $|\alpha|=4 e+2+i$.
By construction, $\Phi_{e, s_{3}}^{A_{1-i, s_{3}} B_{1-i, s_{3}}}\left(x^{\alpha}\right)=0, \mathcal{N}_{\alpha}$ becomes active at stage $s_{3}+1, x^{\alpha}$ is enumerated into B_{i} and \mathcal{N}_{α} is declared to be satisfied. Again, \mathcal{N}_{α} is never initialized after stage $s_{3}+1$, hence remains satisfied and does not require attention after stage $s_{3}+1$. Moreover, as in the first case, we may argue that x^{α} witnesses that $N_{|\alpha|}$ is met since no number $\leq s_{3}$ is enumerated into A_{1-i} or B_{1-i} after stage s_{3}. Namely, since no strategy \mathcal{N}_{β} with $\beta<\alpha$ becomes active after stage s_{3} and all strategies \mathcal{N}_{β} with $\beta>\alpha$ are initialized at stage $s_{3}+1$ it suffices to note that \mathcal{N}_{α} does not become active after stage $s_{3}+1$ and that it does not enumerate any number into A_{1-i} or B_{1-i} at stage $s_{3}+1$.

Claim 4. For every $n \geq 0, M_{n}$ is met.
Proof. Fix $n \geq 0$ and w.l.o.g. assume that the hypothesis of M_{n} is true. Let $\alpha=f \upharpoonright n$. By the True Path Lemma, $\alpha 0 \sqsubset f$. So there are infinitely many $\alpha 0$-stages and, by Claims 2 and 3 , we may fix an $\alpha 0$-stage $s_{0}>n$ such that no strategy \mathcal{N}_{β} with $\beta \leq \alpha 0$ becomes active after stage s_{0}. Let $S=\left\{s_{l}: l \geq 0\right\}$ where $s_{0}<s_{1}<s_{2}<\ldots$ are the $\alpha 0$-stages $\geq s_{0}$. Then S is computable and

$$
l\left(n, s_{0}\right)<l\left(n, s_{1}\right)<l\left(n, s_{2}\right)<\ldots
$$

Observe that, for any $l \geq 0$ and any stage t with $s_{l}+1<t \leq s_{l+1}$, only strategies \mathcal{N}_{β} with $\alpha 0<_{\mathrm{L}} \beta$ may act. As those strategies are initialized at stage $s_{l}+1$, at such stages t only numbers $>s_{l}+1$ can enter any set under construction. So, in particular,

$$
\begin{equation*}
\forall i \leq 1 \forall l \geq 0\left(A_{i, s_{l}+1} \upharpoonright s_{l}+1=A_{i, s_{l+1}} \upharpoonright s_{l}+1 \& B_{i, s_{l}+1} \upharpoonright s_{l}+1=B_{i, s_{l+1}} \upharpoonright s_{l}+1\right) \tag{2.47}
\end{equation*}
$$

Note that, by our convention on uses, this implies that any oracle computation existing at the end of stage s_{l} which is not injured at stage $s_{l}+1$ will not be injured by the end of stage s_{l+1}.

Now distinguish the following cases depending on the type of the meet requirement. We start with the more straightforward case of the minimal pair requirements.

Case 1: $n=3 e+2$.
Here the claim follows by the standard minimal pair argument. It suffices to show that, for given x,

$$
\begin{equation*}
\Phi_{e}^{A_{0} B_{0}}(x)=\Phi_{e, s_{k}}^{A_{0, s_{k}} B_{0, s_{k}}}(x) \tag{2.48}
\end{equation*}
$$

for the least k such that $l\left(n, s_{k}\right)>x$. For a proof of (2.48), it suffices to show that, for all $l \geq k$,

$$
\begin{equation*}
\exists i \leq 1\left(\Phi_{e, s_{l+1}}^{A_{i, s_{l+1}} B_{i, s_{l+1}}}(x)=\Phi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}}}(x)\right) \tag{2.49}
\end{equation*}
$$

holds. Namely, since $l\left(n, s_{l}\right)>x$ for all $l \geq k$, it follows by induction on l that, for both $i=0$ and $i=1, \Phi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}}}(x)=\Phi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}}}(x)$ for all $l \geq k$. For a proof of 2.49, by 2.47) it suffices to show that no number less than s_{l} enters $A_{0} B_{0}$ at stage $s_{l}+1$ or no number less than s_{l} enters $A_{1} B_{1}$ at stage $s_{l}+1$ whence $\Phi_{e, s_{l}}^{A_{0, s_{l}} B_{0, s_{l}}}(x)$ or $\Phi_{e, s_{l}}^{A_{1, s_{l}} B_{1, s_{l}}}(x)$ will be preserved by the end of stage s_{l+1}. But this is immediate by construction since any stage at which any of the sets under construction is changed is either a $B_{0^{-}}$or $\left(A_{0}, B_{0}\right)$-stage or a $B_{1^{-}}$or $\left(A_{1}, B_{1}\right)$-stage.

Case 2: $n=3 e+i$.
Here the claim follows by refining Lachlan's branching degree argument. It suffices to show that, for given x,

$$
\begin{equation*}
\Phi_{e}^{A_{i} B_{i}}(x)=\Phi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}}}(x) \tag{2.50}
\end{equation*}
$$

for the least k such that
(a) $l\left(n, s_{k}\right)>x$ and
(b) none of the numbers targeted for B_{i} which exist at the end of stage s_{k} will enter B_{i} after stage s_{k}.

Note that such a number k exists (namely, it suffices to fix the least k^{\prime} such that $l\left(n, s_{k^{\prime}}\right)>x$, fix the highest priority strategy \mathcal{N}_{β} with $\alpha 0 \sqsubseteq \beta$ which acts after stage $s_{k^{\prime}}$, let $s_{k^{\prime \prime}}+1$ be the last stage at which \mathcal{N}_{β} acts and let $k=k^{\prime \prime}+1$; then no \mathcal{N}_{γ} with $\gamma \leq \beta$ acts after stage s_{k} and, for any γ such that $\beta<\gamma$ and \mathcal{N}_{γ} has a follower at stage s_{k}, this follower has been appointed after stage $s_{k^{\prime \prime}}+1$ whence $\alpha 0<_{\mathrm{L}} \gamma$ and \mathcal{N}_{γ} is initialized at stage $s_{k}+1$) and that the least such k can be found computably in B_{i}.

Now, for a proof of 2.50, it suffices to define a strictly increasing function $g(r)(r \geq 0)$ satisfying

$$
\begin{align*}
& \Phi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}}}(x)=\Phi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}}}(x), \tag{2.51}\\
& B_{i, s_{g(r)}} \upharpoonright \varphi_{e, s_{g(r)}}^{A_{i, s_{g(r)}}^{A_{i, s_{g(r)}}}(x)}=B_{i} \upharpoonright \varphi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}}(x),} \tag{2.52}\\
& B_{i, s_{g(r)}} \upharpoonright \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}}}(x)=B_{i} \upharpoonright \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}}}(x) \tag{2.53}
\end{align*}
$$

for all $r \geq 0$. (Obviously, 2.51) implies 2.50 . The other conditions are used in the inductive proof of 2.51 . Also note that the function g does not have to be computable.)

The function g is inductively defined by letting $g(0)=k$ and by letting $g(r+1)=g(r)+1$ unless the nonordering strategy \mathcal{N}_{β} which acts at stage $s_{g(r)}+1$ is critical and acts via Clause (ii), i.e., if the follower x^{β} of \mathcal{N}_{β} becomes realized and the corresponding B-traces are appointed at stage $s_{g(r)}+1$. In this case let $g(r+1)=q$ where $q>g(r)$ is minimal such that \mathcal{N}_{β} does not act via x^{β} at any stage $\geq s_{q}+1$ (i.e., \mathcal{N}_{β} acts via x^{β} at stage $s_{g(r+1)-1}+1$ for the last time).

Now the proof of 2.51, 2.52 and 2.53 is by (simultaneous) induction on r. For $r=0$, $g(r)=k$. So 2.51) is immediate. Moreover, by Clause (b) in the definition of s_{k}, no number less than s_{k} enters B_{i} after stage s_{k}. So, by our convention on uses, the computations $\Phi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}}}(x)$ and $\Phi_{e, s_{k}}^{B_{0, s_{k}} B_{1, s_{k}}}(x)$ are B_{i}-correct, hence 2.52 and 2.53 hold, too.

For the inductive step fix r such that 2.51, 2.52 and 2.53) hold. Since $l\left(n, s_{g(r+1)}\right)>$ $l\left(n, s_{g(r)}\right) \geq l\left(n, s_{k}\right)>x$ it suffices to establish

$$
\begin{equation*}
\Phi_{e, s_{g(r+1)}}^{A_{i, s_{g}^{(r+1)}}} B_{i, s_{g(r+1)}}(x)=\Phi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g}(r)}}(x) \text { or } \Phi_{e, s_{g(r+1)}}^{B_{0, s_{g}(r+1)}} B_{1, s_{g(r+1)}}(x)=\Phi_{e, s_{g(r)}}^{B_{0, s_{g}(r)} B_{1, s_{g(r)}}}(x) \tag{2.54}
\end{equation*}
$$

and 2.52 and 2.53 for $r+1$ in place of r. In the following we refer to the latter as $2.52{ }_{r+1}$ and $2.53{ }_{r+1}$.

Fix the nonordering strategy \mathcal{N}_{β} which becomes active at stage $s_{g(r)}+1$ and let x^{β} be the follower of \mathcal{N}_{β} at the end of stage $s_{g(r)}+1$. Note that $\alpha 0 \sqsubset \beta$ (by choice of s_{0} since $s_{g(r)}$ is an $\alpha 0$-stage). Moreover, by definition of g, \mathcal{N}_{β} acts via x^{β} at stage $s_{g(r+1)-1}+1$ (note that, for $\left.g(r+1)=g(r)+1, s_{g(r+1)-1}+1=s_{g(r)}+1\right)$ whence \mathcal{N}_{β} is not initialized at any stage $s+1$ with $s_{g(r)}+1 \leq s+1 \leq s_{g(r+1)-1}+1$. So, since $s_{g(r+1)}$ is the least $\alpha 0$-stage $\geq s_{g(r+1)-1}+1$, no strategy \mathcal{N}_{γ} with $\gamma<\beta$ acts at any stage $s+1$ with $s_{g(r)}+1 \leq s+1 \leq s_{g(r+1)}$.

Next we show that
or
holds. For a contradiction assume that 2.56 and 2.57) fail. Then, by our convention on uses, $A_{i, s_{g(r+1)}} \upharpoonright s_{g(r)} \neq A_{i, s_{g(r)}} \upharpoonright s_{g(r)}$ and $B_{1-i, s_{g(r+1)}} \upharpoonright s_{g(r)} \neq B_{1-i, s_{g(r)}} \upharpoonright s_{g(r)}$. Since no strategy simultaneously enumerates numbers into A_{i} and into B_{i-1}, since only strategies \mathcal{N}_{δ} with $\alpha 0<\delta$ may act after stage $s_{g(r)} \geq s_{0}$ and since all strategies \mathcal{N}_{δ} with $\alpha 0<_{L} \delta$ are initialized at stage $s_{g(r)}+1$, it follows that there is an $\alpha 0$-stage strictly between $s_{g(r)}$ and $s_{g(r+1)}$. By definition of g, this implies that \mathcal{N}_{β} is a critical nonordering strategy and that \mathcal{N}_{β} receives attention via Clause (ii) at stage $s_{g(r)}+1$. It follows that all B-numbers which are associated with \mathcal{N}_{β} or with a lower priority strategy after stage $s_{g(r)}$ are appointed after this stage hence are greater than $s_{g(r)}$. By 2.55, this implies

$$
\forall j \leq 1\left(B_{j, s_{g(r+1)}} \upharpoonright s_{g(r)}=B_{j, s_{g(r)}} \upharpoonright s_{g(r)}\right) .
$$

Obviously, this implies 2.57 contrary to assumption.
Now, since (2.56) or (2.57) holds, it follows by (2.52) and (2.53) that (at least) one of the
 So (2.54 holds.

It remains to show that $2.52 r_{r+1}$ and $2.53{ }_{r+1}$ hold. If 2.56 and 2.57 hold then this is immediate by the inductive hypotheses 2.52 and 2.53 . So, for the rest of the proof we may assume that (2.56) or (2.57) fails and, for a contradiction, we assume that 2.52$)_{r+1}$ or $2^{2.53}{ }_{r+1}$ fails, too.

By failure of 2.56 or 2.57) there are a stage t_{0} and a number z_{0} such that $s_{g(r)} \leq t_{0}<$ $s_{g(r+1)}$ and either z_{0} enters A_{i} at stage $t_{0}+1$ and $z_{0}<\varphi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}}(x) \text { or } z_{0} \text { enters } B_{1-i}, ~}$ at stage $t_{0}+1$ and $z_{0}<\varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}}}(x)$ (hence, in either case, $z_{0}<s_{g(r)}$). Fix such t_{0} and z_{0}. Since all strategies \mathcal{N}_{γ} with $\beta<\gamma$ are initialized at stage $s_{g(r)}+1$ hence enumerate only numbers $>s_{g(r)}$ after this stage and since, by (2.55), no strategy \mathcal{N}_{γ} with $\gamma<\beta$ may act at stage $t_{0}+1$, it follows that z_{0} is enumerated into its target by \mathcal{N}_{β} at stage $t_{0}+1$. Hence t_{0}
is a β-stage and we may fix the stage $t_{0}^{\prime}+1 \leq z_{0}$ at which z_{0} becomes associated with \mathcal{N}_{β}. So, summarizing,

$$
\begin{equation*}
t_{0}^{\prime}+1 \leq z_{0}<s_{g(r)}<t_{0}+1 \leq s_{g(r+1)-1}+1 \leq s_{g(r+1)} \tag{2.58}
\end{equation*}
$$

and (by 2.55)

$$
\begin{equation*}
\forall s\left(t_{0}^{\prime}+1 \leq s+1 \leq s_{g(r+1)} \Rightarrow \mathcal{N}_{\beta} \text { is not initialized at stage } s+1\right) \tag{2.59}
\end{equation*}
$$

On the other hand, by failure of $2.52 r_{r+1}$ or $2.53 r_{r+1}$, there are a stage $t_{1} \geq s_{g(r+1)}$ and a number z_{1} such that z_{1} enters B_{i} at stage $t_{1}+1$ and either $z_{1}<\varphi_{e, s_{g(r+1)}}^{A_{i, s_{g(r+1)}} B_{i, s}(r+1)}(x)$ or
 strategy $\mathcal{N}_{\beta^{\prime}}$ which enumerates z_{1} into B_{i} at stage $t_{1}+1$ and fix the stage $t_{1}^{\prime}+1$ at which z_{1} is appointed as follower or trace to $\mathcal{N}_{\beta^{\prime}}$.

Then t_{1}^{\prime} is a β^{\prime}-stage, $t_{1}^{\prime}+1<z_{1}<s_{g(r+1)}<t_{1}+1$ and $\mathcal{N}_{\beta^{\prime}}$ is not initialized at any stage $s+1$ such that $t_{1}^{\prime}+1 \leq s+1 \leq t_{1}+1$. In particular, $\mathcal{N}_{\beta^{\prime}}$ is not initialized at stage $s_{g(r+1)}+1$ whence $\alpha 0 \sqsubset \beta^{\prime}$. So t_{1}^{\prime} is an $\alpha 0$-stage, hence $t_{1}^{\prime} \leq s_{g(r+1)-1}$. Since \mathcal{N}_{β} acts at stage $s_{g(r+1)-1}+1$ but $\mathcal{N}_{\beta^{\prime}}$ is not initialized at this stage, it follows that $\beta^{\prime} \leq \beta$.

Now, if $\beta^{\prime}<\beta$ then \mathcal{N}_{β} is initialized at stage $t_{1}^{\prime}+1$. By $t_{1}^{\prime}+1<s_{g(r+1)}$ and 2.59), this implies that $t_{1}^{\prime}+1<t_{0}^{\prime}+1$ hence $z_{1}<z_{0}$. By choice of z_{0} this implies

$$
z_{1}<\max \left\{\varphi_{e, s_{g(r)}}^{\left.A_{i, s_{g(r)}} B_{i, s_{g(r)}}(x), \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}}}(x)\right\}}\right.
$$

Since z_{1} enters B_{i} after stage $s_{g(r+1)}$ this contradicts 2.52 or 2.53.
This leaves the case that $\beta=\beta^{\prime}$. Then z_{0} and z_{1} are associated with \mathcal{N}_{β} but targeted for different sets. So \mathcal{N}_{β} is critical. Since \mathcal{N}_{β} acts at stage $s_{g(r)}+1$ and since (by 2.58) and (2.59) z_{0} is associated with \mathcal{N}_{β} at the end of stage $s_{g(r)}$, it follows that \mathcal{N}_{β} acts via Clause (ii) or Clause (iii) at stage $s_{g(r)}+1$.

First assume that \mathcal{N}_{β} acts at stage $s_{g(r)}+1$ via Clause (ii). Then any of the B-traces $y_{m}^{\beta}, \ldots, y_{0}^{\beta}$ appointed at stage $s_{g(r)}+1$ which enters its target later does so by the end of stage $s_{g(r+1)-1}+1$ and no additional numbers become associated with \mathcal{N}_{β} by the end of stage $s_{g(r+1)}$. So any number z enumerated into B_{i} by \mathcal{N}_{β} after stage $s_{g(r+1)}$ has to be appointed after stage $s_{g(r+1)}$ hence has to be greater than $s_{g(r+1)}$. So, in particular, $z_{1}>s_{g(r+1)}$ contrary to choice of z_{1}.

Finally, assume that \mathcal{N}_{β} acts via Clause (iii) at stage $s_{g(r)}+1$. Then $g(r+1)=g(r)+1$. Since t_{1}^{\prime} is an $\alpha 0$-stage and $t_{1}^{\prime}+1<s_{g(r+1)}$, the latter implies that $t_{1}^{\prime} \leq s_{g(r)}$. In fact, since z_{1} becomes appointed as a B_{i}-trace of \mathcal{N}_{β} at stage $t_{1}^{\prime}+1$ and since no new trace is appointed at stage $s_{g(r)}+1, t_{1}^{\prime}<s_{g(r)}$ and \mathcal{N}_{β} becomes active via (ii) at stage $t_{1}^{\prime}+1$.

Now, in order to get the desired contradiction, we look at the size of t_{1}^{\prime}. If $t_{1}^{\prime}<s_{g(0)}$ then z_{1} is associated with \mathcal{N}_{β} at the end of stage $s_{g(0)}$ and enters B_{i} after stage $s_{g(0)}$. Since $g(0)=k$ this contradicts the choice of k.

So w.l.o.g. we may assume that $t_{1}^{\prime} \geq s_{g(0)}$. Fix the unique number $r^{\prime}<r$ such that $s_{g\left(r^{\prime}\right)} \leq$ $t_{1}^{\prime}<s_{g\left(r^{\prime}+1\right)}$ and fix the strategy $\mathcal{N}_{\beta^{\prime \prime}}$ which acts at stage $s_{g\left(r^{\prime}\right)}+1$. Now, if $t_{1}^{\prime}=s_{g\left(r^{\prime}\right)}$ then $\beta^{\prime \prime}=\beta, \mathcal{N}_{\beta}$ becomes active via (ii) at stage $s_{g\left(r^{\prime}\right)}+1$ and z_{1} is appointed as a B_{i}-trace at stage $s_{g\left(r^{\prime}\right)}+1$. So, by definition of g, z_{1} cannot enter B_{i} after stage $s_{g\left(r^{\prime}+1\right)-1}+1$. So, by $r^{\prime}<r, t_{1}+1 \leq s_{g\left(r^{\prime}+1\right)-1}+1<s_{g(r+1)}$ contrary to choice of t_{1}.
This leaves the case that $s_{g\left(r^{\prime}\right)}<t_{1}^{\prime}<s_{g\left(r^{\prime}+1\right)}$. Since t_{1}^{\prime} is an $\alpha 0$-stage, it follows that $s_{g\left(r^{\prime}\right)+1}<s_{g\left(r^{\prime}+1\right)}$. So $\mathcal{N}_{\beta^{\prime \prime}}$ becomes active via Clause (ii) at stage $s_{g\left(r^{\prime}\right)}+1$. Since \mathcal{N}_{β} acts at stage $t_{1}^{\prime}+1$, it follows by 2.55 (applied to $\beta^{\prime \prime}$ and r^{\prime} in place of β and r) that $\beta^{\prime \prime} \leq \beta$ and since a new trace for \mathcal{N}_{β} is appointed at stage $t_{1}^{\prime}+1$ where $s_{g\left(r^{\prime}\right)}<t_{1}^{\prime} \leq s_{g\left(r^{\prime}+1\right)-1}$ it follows that $\beta \neq \beta^{\prime \prime}$. So $\beta^{\prime \prime}<\beta$. It follows that \mathcal{N}_{β} is initialized at stage $s_{g\left(r^{\prime}+1\right)-1}+1$ and z_{1} is canceled. By the latter, $t_{1}+1<s_{g\left(r^{\prime}+1\right)-1}+1<s_{g(r+1)}$. But, just as in the preceding case, this contradicts the choice of t_{1}.

So, in any case, the assumption that $2.52 r_{r+1}$ or $2.53{ }_{r+1}$ fails leads to a contradiction. This completes the proof of Claim 4.

Claim 5. For $i \in\{0,1\}, J_{i}$ is met.
Proof. For fixed $i \in\{0,1\}$ and $x \geq 0$, we sketch how to (uniformly) compute $A_{i}(x)$ using $A_{1-i} B_{0} B_{1}$ as an oracle. First, by running the construction up to stage x, find out whether there is a stage $s<x$ such that x is appointed as a follower or a trace and targeted for A_{i} at stage $s+1$. If there is no such stage s then $x \notin A_{i}$. So w.l.o.g. fix such s. By construction, either x is canceled or a trace x^{\prime} of x targeted for either A_{1-i} or B_{i} is appointed at stage $s+2$. If x is canceled then, obviously, $x \notin A_{i}$. If x^{\prime} is targeted for B_{i}, then $x \in A_{i}$ if and only if $x^{\prime} \in B_{i}$. If x^{\prime} is targeted for A_{1-i} and $x^{\prime} \notin A_{1-i}$, then $x \notin A_{i}$. Finally, if x^{\prime} is targeted for A_{1-i} and $x^{\prime} \in A_{1-i}$ then, at the stage where x^{\prime} enters A_{1-i}, a new trace y of x targeted for B_{i} is appointed and $x \in A_{i}$ if and only if $y \in B_{i}$.

This completes the proof of Theorem 77 .
We now show that the \mathcal{S}_{7} can be embedded into the c.e. Turing degrees exactly below any c.e. not totally ω-c.e. Turing degree. In contrast to Theorem 76 , however, here the embedding may not preserve the least element.

Theorem 78. A c.e. Turing degree a bounds a lattice embedding of the \mathcal{S}_{7} into the c.e. Turing degrees if and only if \mathbf{a} is not totally ω-c.e.

The only if direction of Theorem 78 follows immediately from Theorem 73 as we have seen that the S_{7} contains a critical triple. For a proof of the if direction, by Corollary 68 and Theorem 69, it suffices to show that any c.e. set D which is uniformly multiply permitting bounds an embedding of the S_{7} into the c.e. degrees.

Theorem 79. Let D be a c.e. set that is uniformly multiply permitting. There are pairwise disjoint c.e. sets $A_{0}, A_{1}, B_{0}, B_{1}$ and C such that

$$
\begin{equation*}
A_{0}, A_{1}, B_{0}, B_{1}, C \leq_{\mathrm{T}} D \tag{2.60}
\end{equation*}
$$

and, for $i \leq 1$,
(i) $\operatorname{deg}_{\mathrm{T}}\left(A_{i} B_{i} C\right) \wedge d e g_{\mathrm{T}}\left(B_{0} B_{1} C\right)=\operatorname{deg}_{\mathrm{T}}\left(B_{i} C\right)$ and $\operatorname{deg}_{\mathrm{T}}\left(A_{0} B_{0} C\right) \wedge \operatorname{deg}_{\mathrm{T}}\left(A_{1} B_{1} C\right)=\operatorname{deg}_{\mathrm{T}}(C)$,
(ii) $A_{i} \leq_{\mathrm{T}} A_{1-i} B_{0} B_{1}$ and
(iii) $A_{i} \not$ T $_{\mathrm{T}} B_{0} B_{1} C$ and $B_{i} \not \leq_{\mathrm{T}} A_{1-i} B_{1-i} C$.

Again, we first prove Theorem 78 assuming Theorem 79 .
Proof of Theorem 78 assuming Theorem 79. The only if direction immediately follows from the Downey-Greenberg-Weber result that no c.e. totally ω-c.e. degree bounds a critical triple as the \mathcal{S}_{7} contains a critical triple (Theorem 73). By Corollary 68 and Theorem 69, the if direction can be deduced from Theorem 79 in a very similar way as Theorem 76 follows from Theorem $77, \quad \square$

It now suffices to prove Theorem 79 .
Proof of Theorem 79. We combine the construction from the proof of Theorem 77 with marker permitting in order to enumerate c.e. sets $A_{0}, A_{1}, B_{0}, B_{1}$ and C with the required properties. Unless mentioned otherwise, all notions introduced in the proof of Theorem 77 are defined here correspondingly. Furthermore, as there we may argue that, in addition to 2.60, it is enough to meet the following requirements (where here and in the following $e \geq 0$ and $i \leq 1$).

Meet requirements.

$$
\begin{aligned}
& M_{3 e+i}: \text { If } \Phi_{e}^{A_{i} B_{i} C} \text { is total and } \Phi_{e}^{A_{i} B_{i} C}=\Phi_{e}^{B_{0} B_{1} C} \text { then } \Phi_{e}^{A_{i} B_{i} C} \leq_{\mathrm{T}} B_{i} C . \\
& M_{3 e+2}: \text { If } \Phi_{e}^{A_{0} B_{0} C} \text { is total and } \Phi_{e}^{A_{0} B_{0} C}=\Phi_{e}^{A_{1} B_{1} C} \text { then } \Phi_{e}^{A_{0} B_{0}} \leq_{\mathrm{T}} C .
\end{aligned}
$$

Join requirements.

$$
J_{i}: A_{i} \leq_{\mathrm{T}} A_{1-i} B_{0} B_{1} .
$$

Nonordering requirements.

$$
\begin{aligned}
& N_{4 e+i}: A_{i} \neq \Phi_{e}^{B_{0} B_{1} C} . \\
& N_{4 e+2+i}: B_{i} \neq \Phi_{e}^{A_{1-i} B_{1-i} C} .
\end{aligned}
$$

In order to satisfy 2.60, given a computable enumeration $\left\{D_{s}\right\}_{s \geq 0}$ of D, we define a computable marker $\gamma(x, s)$ such that γ is nondecreasing in the second argument, $\gamma(x, s)<\gamma(x, s+1)$ only if a number $\leq \gamma(x, s)$ is enumerated into D at stage $s+1$ and $\gamma^{*}(x)=\lim _{s \geq 0} \gamma(x, s)<\omega$ exists. (Note that this implies that γ^{*} is computable in D.) Then we guarantee $X \leq_{\mathrm{T}} D$ for $X=A_{i}, B_{i}, C$ by enumerating a number x into X at stage $s+1$ only if a number $\leq \max _{x^{\prime} \leq x} \gamma\left(x^{\prime}, s\right)$ enters D at the same stage. (See the proof of Claim 6 for details.)

In order to meet the requirements we adjust the strategies introduced in the proof of Theorem 77. Recall that the only strategies which enumerate numbers into the sets under construction are the nonordering strategies. If such a strategy \mathcal{N}_{α} wants to enumerate a follower or a trace, now this has to be γ-permitted by D. This may force \mathcal{N}_{α} to enumerate numbers also at stages where α is not accessible. This is not compatible with the minimal pair strategy which allows the enumeration of "small" numbers only at successor stages of expansionary stages. This problem is overcome by adding the set C to the meets which allows us to use the branching degree strategy
in place of the minimal pair strategy. For this sake, any number x associated with a nonordering strategy \mathcal{N}_{α} will be assigned a C-trace z first, before it is allowed to be enumerated into its target and if x is enumerated then the trace z is simultaneously enumerated into C. It will be crucial that these C-traces are appointed at stages at which α is accessible (and that they are greater than the stage at which they are appointed). Moreover, if for critical \mathcal{N}_{α} an A_{j}-trace x_{l+1}^{α} and the corresponding B_{j}-trace y_{l+1}^{α} and C-trace z_{l+1}^{α} are enumerated into their targets at a stage $s+1$ then the C-trace z_{l}^{α} for the traces x_{l}^{α} and y_{l}^{α} which might be enumerated next is appointed at a stage $>s+1$ at which α is accessible. So both sides of a computation (related to a meet requirement) we may be concerned with have recovered and z_{l}^{α} will be "big" hence not interfere with the current computations. Note that, in contrast to the A - and B-traces which are assigned in order to meet the join requirements, the C-traces are assigned in order to meet the meet requirements.

An additional effect of the permitting constraint is that we cannot argue that a single follower will eventually be permitted. So if a follower x or, in case of a critical nonordering strategy, a member of the entourage of x waits to be permitted, we have to assign a new follower. In case of the noncritical nonordering requirements, by the standard permitting argument (using that D is noncomputable) we may argue that eventually one of the followers is permitted, hence the strategy remains finitary.

For a critical nonordering strategy \mathcal{N}_{α} (say $|\alpha|=4 e+i$), the situation is more delicate. Here we need that not only one of the followers but also all of its traces are permitted. To achieve this we have to use that D is uniformly multiply permitting. So fix a strictly increasing computable function f such that D is uniformly multiply permitting via f (and $\left\{D_{s}\right\}_{s \geq 0}$) and for any number x let $\gamma(x, 0)=f(x)+1$ be the initial position of the marker $\gamma(x)$.

Then, in order to exploit the uniform multiple permitting property of D, given a follower $x^{\alpha, p}$, at the first stage $s+1$ (if any) such that the entourage of $x^{\alpha, p}$ is complete at stage $s+1$ i.e., such that $x^{\alpha, p}$ becomes realized at stage $s+1$ and the A-part of the entourage, $x^{\alpha, p}=x_{0}^{\alpha, p}, x_{1}^{\alpha, p}, \ldots, x_{m_{p}}^{\alpha, p}$ is extended at stage $s+1$ by adding the B-traces $y_{m_{p}, p}^{\alpha, p}, y_{0}^{\alpha, p}$ (as in the basic construction) and the C-trace $z_{m_{p}}^{\alpha, p}$ (for the sake of the meet strategies) - we assign an interval $F=F_{p}^{\alpha}$ to $x^{\alpha, p}$ where $x^{\alpha, p}=\min F$ and $|F| \geq m_{p}+2$. The latter allows us to define a (uniformly) partial computable function ψ on F, such that (assuming the strategy is on the true path) the attack via $x^{\alpha, p}$ can be completed since $D \gamma$-permits the enumeration of all of the members in the entourage of $x^{\alpha, p}-$ provided that, for any $x \in F, D$ changes below $f(x)+1$ after stage $\psi(x)$ (if the latter is defined).

This leads to the following strategy: at any α-stage s such that, for all existing \mathcal{N}_{α}-followers $x^{\alpha, p^{\prime}}\left(p^{\prime} \leq p\right)$, the corresponding attacks on $N_{|\alpha|}$ are stuck waiting for a required permission by D (namely either the permission to raise the γ-marker position of $x^{\alpha, p^{\prime}}$ above $f\left(\max F_{p^{\prime}}^{\alpha}\right)$ or to enumerate some numbers in the entourage into their targets), we appoint a new greater follower $x^{\alpha, p+1}$ at stage $s+1$. Then we can argue that if \mathcal{N}_{α} acts infinitely often without being initialized then an infinite ascending sequence $x^{\alpha, 0}, x^{\alpha, 1}, x^{\alpha, 2}, \ldots$ of permanent \mathcal{N}_{α}-followers (i.e., followers that are never canceled) will be defined such that the associated intervals $F_{0}^{\alpha}, F_{1}^{\alpha}, F_{2}^{\alpha}, \ldots$ form a very strong array of intervals and the partial computable function ψ defined on these intervals as indicated above, contradicts the fact that D is $\left\{F_{n}^{\alpha}\right\}_{n \geq 0}$-permitting via f. So, we may argue that, for some follower $x^{\alpha, p}$, we can complete the attack and enumerate $x^{\alpha, p}$ into its target A_{i}.

The latter, however, is not quite sufficient in order to argue that \mathcal{N}_{α} is satisfied. Namely, it
might happen that, for the follower $x^{\alpha, p}$ for which the attack is completed, the current approximation of the computation $\Phi_{e}^{B_{0} B_{1} C}\left(x^{\alpha, p}\right)$ is injured by the action of a lesser follower $x^{\alpha, p^{\prime}}$ with $p^{\prime}<p$ (namely a number in the entourage of $x^{\alpha, p^{\prime}}$ which is less than the use of the current approximation of $\Phi_{e}^{B_{0} B_{1} C}\left(x^{\alpha, p}\right)$ may be enumerated into one of the oracle sets of this computation). So we cannot argue that enumerating $x^{\alpha, p}$ into A_{i} guarantees that $A_{i}\left(x^{\alpha, p}\right) \neq \Phi_{e}^{B_{0} B_{1} C}\left(x^{\alpha, p}\right)$. This problem can be overcome, however, by the following observation. If a number of the entourage of $x^{\alpha, p^{\prime}}$ is enumerated into its target (after $x^{\alpha, p}$ has been realized hence F_{p}^{α} has been defined) then this requires permission by D. But this permission by D allows to raise the γ-position of $x^{\alpha, p^{\prime}}$ above $f\left(\max F_{p}^{\alpha}\right)$. So by making F_{p}^{α} sufficiently large by adding numbers for all members of the higher priority entourages of \mathcal{N}_{α}, we may argue that D will permit $x^{\alpha, p^{\prime}}$ to enter A_{i}, too. This way we may conclude that the least follower $x^{\alpha, p^{\prime}}$ entering A_{i} will not be injured and will witness that $N_{4 e+i}$ is met.

In order to deal with the just described interactions between the followers of a critical nonordering strategy \mathcal{N}_{α}, we say an \mathcal{N}_{α}-follower x is stronger than an \mathcal{N}_{α}-follower x^{\prime} if $x<x^{\prime}$, i.e., if x is appointed earlier than x^{\prime}. Then if a number in the entourage of x is enumerated into its target (thereby possibly injuring x^{\prime}) we cancel x^{\prime} and its entourage if the interval F^{\prime} corresponding to x^{\prime} has not yet been defined and we declare x^{\prime} to be injured if F^{\prime} is defined already. In the latter case x^{\prime} is not canceled but no further action for x^{\prime} is taken. (Note that we cannot cancel an interval F once it is assigned (unless the strategy is initialized). Otherwise, assuming that \mathcal{N}_{α} acts infinitely often (without being initialized), we cannot argue that the permanent intervals define a very strong array.)

For the formal construction we need some further notions and notation. A new large number x at stage $s+1$ is a number $x>s+1$ such that x is greater than all numbers y used in the construction by the end of stage s where a number y is used by the end of stage s if either y has been appointed as a follower or (potential) trace by the end of this stage or y is in one of the intervals F_{p}^{α} defined by the end of this stage.

For a follower $x^{\alpha, p}$ of a critical strategy \mathcal{N}_{α}, an interval F_{p}^{α} becomes associated with $x^{\alpha, p}$ at the stage at which the follower becomes realized. A realized follower $x^{\alpha, p}$ becomes admissible at a stage $s+1$ if permission is given to let $\gamma\left(x^{\alpha, p}, s+1\right)>f\left(\max F_{p}^{\alpha}\right)$. As long as $x^{\alpha, p}$ is not realized, the entourage of $x^{\alpha, p}$ consists of A-numbers only and its members (in increasing order, i.e., in order of appointment) are denoted by $x^{\alpha, p}=x_{0}^{\alpha, p}, x_{1}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}(m \geq 0)$. Once realized, the entourage of $x^{\alpha, p}$ has the form $x^{\alpha, p}=x_{0}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}, y_{m}^{\alpha, p}, \ldots, y_{0}^{\alpha, p}, z_{m}^{\alpha, p}$ or $x^{\alpha, p}=x_{0}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}, y_{m}^{\alpha, p}, \ldots, y_{0}^{\alpha, p}$ where $x_{0}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}$ are A-numbers, $y_{m}^{\alpha, p}, \ldots, y_{0}^{\alpha, p}$ are B-numbers and $z_{m}^{\alpha, p}$ is a C-number. In the former case the follower $x^{\alpha, p}$ is called C-certified. At the stage at which $x^{\alpha, p}$ becomes realized, the entourage has its maximum length. The entourage of $x^{\alpha, p}$ becomes reduced only if the follower is admissible and C-certified. If such a reduction takes place, the greatest A-, B - and C-numbers in the entourage are enumerated into their targets. Hence, just after such a reduction, the follower is not C-certified. So, following any reduction step, the follower has to get a new C-certificate before the next reduction can take place. This certification happens at a stage where α is accessible.

The follower $x^{\alpha, p}$ of a noncritical strategy \mathcal{N}_{α} has a C-trace whenever it is realized.
We say a strategy \mathcal{N}_{α} gets permitting via a number x at stage $s+1$ if

$$
\begin{equation*}
D_{s+1} \upharpoonright \gamma(x, s)+1 \neq D_{s} \upharpoonright \gamma(x, s)+1 \tag{2.61}
\end{equation*}
$$

and, at the end of stage $s, x=x^{\alpha, p}$ is a follower of \mathcal{N}_{α} and one of the following holds.
(I) \mathcal{N}_{α} is critical and $x^{\alpha, p}$ is admissible, C-certified and not injured.
(II) \mathcal{N}_{α} is uncritical and $x^{\alpha, p}$ is realized.

We say that \mathcal{N}_{α} gets permitting at stage $s+1$ if \mathcal{N}_{α} gets permitting via some number x at stage $s+1$.

Now the construction is as follows.

Construction.

Stage 0. All sets under construction are empty at stage 0 and all strategies are initialized (i.e., no parameters are associated with any strategy and no number is used at stage 0). Moreover, $\gamma(x, 0)=f(x)+1$ for all $x \geq 0$.

Stage $s+1$. A strategy \mathcal{N}_{α} with $|\alpha|=n$ requires attention at stage $s+1$ if \mathcal{N}_{α} is not satisfied at the end of stage s and either \mathcal{N}_{α} gets permitting at stage $s+1$ (in that case, say \mathcal{N}_{α} requires attention via permitting) or $\alpha \sqsubseteq \delta_{s}$ and one of the following holds.
(i) No follower is assigned to \mathcal{N}_{α} at the end of stage s.
(ii) \mathcal{N}_{α} is critical and has the followers $x^{\alpha, 0}<\ldots<x^{\alpha, p-1}$ at the end of stage s and, for all $r \leq p-1, x^{\alpha, r}$ is realized and $x^{\alpha, r}$ is injured or C-certified.
(iii) \mathcal{N}_{α} is critical and has a follower $x^{\alpha, p}$ at the end of stage s such that $x^{\alpha, p}$ is not yet realized and $\Phi_{e, s}^{B_{0, s} B_{1, s} C_{s}}\left(x^{\alpha, p}\right)=0$ where $n=4 e+i$.
(iv) \mathcal{N}_{α} is critical and has an admissible follower $x^{\alpha, p}$ at the end of stage s such that $x^{\alpha, p}$ is not injured and not C-certified.
(v) \mathcal{N}_{α} is uncritical and has the followers $x^{\alpha, 0}<\ldots<x^{\alpha, p-1}$ at the end of stage s and all of them are realized at the end of stage s.
(vi) \mathcal{N}_{α} is uncritical and has a follower $x^{\alpha, p}$ at the end of stage s such that $x^{\alpha, p}$ is not yet realized and $\Phi_{e, s}^{A_{1-i, s} B_{1-i, s} C_{s}}\left(x^{\alpha, p}\right)=0$ where $n=4 e+2+i$.

Fix the least α such that \mathcal{N}_{α} requires attention at stage $s+1$. If \mathcal{N}_{α} requires attention via permitting, fix the least follower $x^{\alpha, p}$ such that \mathcal{N}_{α} gets permitting via $x^{\alpha, p}$ and perform the following action according to the case via which \mathcal{N}_{α} gets permitting.
(I) Let $x_{0}^{\alpha, p}, x_{1}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}, y_{m}^{\alpha, p}, \ldots y_{0}^{\alpha, p}, z_{m}^{\alpha, p}$ be the entourage of $x^{\alpha, p}=x_{0}^{\alpha, p}$ at the end of stage s and fix $j \leq 1$ such that $x_{m}^{\alpha, p}$ is targeted for A_{j} (hence $y_{m}^{\alpha, p}$ is targeted for $\left.B_{j}\right)$. Enumerate $x_{m}^{\alpha, p}$ into $A_{j}, y_{m}^{\alpha, p}$ into B_{j} and $z_{m}^{\alpha, p}$ into C. Declare that \mathcal{N}_{α} is not C certified. Delete $x_{m}^{\alpha, p}, y_{m}^{\alpha, p}$ and $z_{m}^{\alpha, p}$ from the entourage of $x_{0}^{\alpha, p}$. If $m>0$ then appoint $y_{m-1}^{\alpha, p}$ as the B_{1-j}-trace of $x_{m-1}^{\alpha, p}$ (replacing the old A_{j}-trace $x_{m}^{\alpha, p}$ of $x_{m-1}^{\alpha, p}$; note that $x_{m-1}^{\alpha, p}$ and $y_{m-1}^{\alpha, p}$ have been previously targeted for A_{1-j} and B_{1-j}, respectively). If $m=0$ (i.e., the follower itself has just been enumerated into its target set), declare \mathcal{N}_{α} to be satisfied.
In either case fix $q \geq p$ maximal such that F_{q}^{α} is defined at the end of stage s. Let

$$
\gamma\left(x^{\alpha, p}, s+1\right)=\max \left\{\gamma\left(x^{\alpha, p}, s\right), f\left(\max F_{q}^{\alpha}\right)\right\}+1
$$

cancel all followers $x_{0}^{\alpha, r}$ with $r>q$ and their entourages (if any) and declare all $x_{0}^{\alpha, r}$ with $p<r \leq q$ to be injured (if any).
(II) Fix i such that $x^{\alpha, p}$ is targeted for B_{i}. Enumerate $x^{\alpha, p}$ into B_{i}, enumerate the C-trace $y^{\alpha, p}$ of $x^{\alpha, p}$ into C and declare \mathcal{N}_{α} to be satisfied.

Otherwise, perform the following action according to the first clause above via which \mathcal{N}_{α} requires attention where in case of (iii), (iv) and (vi) the corresponding follower $x^{\alpha, p}$ is chosen to be minimal. (Actually, it will follow by construction that at most one of these clauses may apply and if (iii), (iv) or (vi) applies then the corresponding follower $x^{\alpha, p}$ is uniquely determined.)
(i) Assign the least new large number $x^{\alpha, 0}$ as a first follower to \mathcal{N}_{α}. If N_{n} is critical of the form $A_{i} \neq \Phi_{e}^{B_{0} B_{1} C}$, declare the entourage of $x^{\alpha, 0}$ to be $x_{0}^{\alpha, 0}=x^{\alpha, 0}$ and $x^{\alpha, 0}$ to be targeted for A_{i}. If N_{n} is uncritical of the form $B_{i} \neq \Phi_{e}^{A_{1-i} B_{1-i} C}$, declare $x^{\alpha, 0}$ to be targeted for B_{i}.
(ii) Assign the least new large number $x^{\alpha, p}$ as an additional follower to \mathcal{N}_{α}, declare the entourage of $x^{\alpha, p}$ to be $x_{0}^{\alpha, p}=x^{\alpha, p}$ and $x^{\alpha, p}$ to be targeted for A_{i} where N_{n} is of the form $A_{i} \neq \Phi_{e}^{B_{0} B_{1} C}$.
(iii) Declare $x^{\alpha, p}$ to be realized. Let $x^{\alpha, p}=x_{0}^{\alpha, p}, x_{1}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}$ be the entourage of $x^{\alpha, p}$ at the end of stage s (note that the entourage consists of A-numbers only). Add the least new large numbers $y_{m}^{\alpha, p}<y_{m-1}^{\alpha, p}<\ldots<y_{0}^{\alpha, p}<z_{m}^{\alpha, p}$ to the entourage of $x^{\alpha, p}$ as new (potential) traces. For $0 \leq l \leq m$, declare $y_{l}^{\alpha, p}$ to be targeted for $B_{j_{l}}$ where j_{l} is such that $x_{l}^{\alpha, p}$ is targeted for $A_{j_{l}}$ and declare $z_{m}^{\alpha, p}$ to be targeted for C. Moreover, declare $y_{m}^{\alpha, p}$ to be the $B_{j_{m}}$-trace of $x_{m}^{\alpha, p}$, declare $z_{m}^{\alpha, p}$ to be the C-trace of $x_{m}^{\alpha, p}$ and $y_{m}^{\alpha, p}$ and declare $x^{\alpha, p}$ to be C-certified. Finally, let $F_{p}^{\alpha}=\left[x_{0}^{\alpha, p}, u\right]$ where u is chosen so that $\left|F_{p}^{\alpha}\right|=m+2+\sum_{r<p}\left|F_{r}^{\alpha}\right|$.
(iv) Let $x^{\alpha, p}=x_{0}^{\alpha, p}, x_{1}^{\alpha, p}, \ldots, x_{m}^{\alpha, p}, y_{m}^{\alpha, p}, y_{m-1}^{\alpha, p}, \ldots, y_{0}^{\alpha, p}$ be the entourage of $x^{\alpha, p}$ at the end of stage s (note that the entourage consists of A-numbers $x_{l}^{\alpha, p}$ and B-numbers $y_{l}^{\alpha, p}$ only). Append the least new large number $z_{m}^{\alpha, p}$ to the entourage of $x^{\alpha, p}$, target $z_{m}^{\alpha, p}$ for C and let $z_{m}^{\alpha, p}$ be the C-trace of $x_{m}^{\alpha, p}$ and $y_{m}^{\alpha, p}$. Moreover, declare $x^{\alpha, p}$ to be C-certified.
(v) Assign the least new large number $x^{\alpha, p}$ as an additional follower to \mathcal{N}_{α} targeted for B_{i} where N_{n} is of the form $B_{i} \neq \Phi_{e}^{A_{1-i} B_{1-i} C}$.
(vi) Declare $x^{\alpha, p}$ to be realized. Assign the least new large number $y^{\alpha, p}$ as a trace of $x^{\alpha, p}$ targeted for C.

In any case, declare that \mathcal{N}_{α} receives attention or becomes active at stage $s+1$ (via $x^{\alpha, p}$ where $p=0$ for Clause (i)) and initialize all strategies \mathcal{N}_{β} with $\alpha<\beta$, i.e., declare them to be unsatisfied and cancel all followers, entourages and intervals of such strategies. Furthermore, for any $\beta<\alpha$, to any existing entourage whose last element $x_{m}^{\beta, p}$ is targeted for some A_{i}, append a new large number $x_{m+1}^{\beta, p}$ as a trace of $x_{m}^{\beta, p}$ targeted for A_{1-i}. Finally, for any critical strategy \mathcal{N}_{β} and any follower $x=x^{\beta, p}$ of \mathcal{N}_{β} such that x is realized but not admissible at the end of stage s and (2.61) holds, let $\gamma\left(x^{\beta, p}, s+1\right)=\max \left\{\gamma\left(x^{\beta, p}, s\right), f\left(\max F_{p}^{\beta}\right)\right\}+1$ and declare that $x^{\beta, p}$ becomes admissible at stage $s+1$.
(Any sets, concepts and parameters remain unchanged unless mentioned otherwise above.)
This completes the construction.

Verification.

We begin with a few observations and explanations before we turn to proving that the constructed sets have the required properties.

We let $x^{\alpha, 0}[s], x^{\alpha, 1}[s], \ldots, x^{\alpha, p}[s]$ denote the followers of \mathcal{N}_{α} at the end of stage s in order of their appointment (if any). Similarly, if \mathcal{N}_{α} is critical we denote the entourage of $x^{\alpha, r}[s]$ by $x_{0}^{\alpha, r}[s], \ldots, x_{m}^{\alpha, r}[s]$ (if $x^{\alpha, r}[s]$ is not yet realized) respectively by $x_{0}^{\alpha, r}[s], \ldots, x_{m}^{\alpha, r}[s], y_{m}^{\alpha, r}[s], \ldots$, $y_{0}^{\alpha, r}[s]$ (if $x^{\alpha, r}[s]$ is realized but not C-certified) respectively $x_{0}^{\alpha, r}[s], \ldots, x_{m}^{\alpha, r}[s], y_{m}^{\alpha, r}[s], \ldots, y_{0}^{\alpha, r}[s]$, $z_{m}^{\alpha, r}[s]$ (if $x^{\alpha, r}[s]$ is realized and C-certified) where the x-numbers are targeted for A_{0} or A_{1}, the y-numbers are targeted for B_{0} or B_{1} and the z-numbers are targeted for C. We drop the parameter $[s]$ if it is obvious from the context. Since followers and traces are appointed in order, $x^{\alpha, 0}[s]<x^{\alpha, 1}[s]<\ldots<x^{\alpha, p}[s]$ and the members of any entourage are strictly increasing. Moreover, if there is more than one \mathcal{N}_{α}-follower at the same stage then the members of the entourage of the stronger follower are less than all members of the entourage of the weaker follower unless the weaker follower is injured:

$$
\text { If } p<p^{\prime}, x^{\alpha, p}[s] \text { and } x^{\alpha, p^{\prime}}[s] \text { are defined, } x^{\alpha, p^{\prime}}[s] \text { is not injured and } v \text { and } v^{\prime} \text { are }
$$ in the entourage of $x^{\alpha, p}[s]$ and $x^{\alpha, p^{\prime}}[s]$, respectively, then $x^{\alpha, p}[s]$ is realized and $v<v^{\prime}$.

The first part of 2.62 is immediate since a new \mathcal{N}_{α}-follower is appointed only if all stronger followers are realized. For a proof of the second part, it suffices to show that v^{\prime} is appointed later than v. Fix the stage $t+1<s$ such that $x^{\alpha, p}[s]$ becomes realized at stage $t+1$. Then $x^{\alpha, p^{\prime}}[s]$ is appointed after stage $t+1$. So if v is appointed by the end of stage $t+1$ then the claim is trivial. This leaves the case that v is appointed after stage $t+1$. Then v must be a C-trace and there must be stages t^{\prime} and $t^{\prime \prime}$ such that $t<t^{\prime}<t^{\prime \prime}<s, \mathcal{N}_{\alpha}$ gets permitting via $x^{\alpha, p}[s]$ at stage $t^{\prime}+1$ and acts accordingly and v is appointed as a C-trace at stage $t^{\prime \prime}+1$ where $t^{\prime \prime}+1$ is the least stage $>t^{\prime}+1$ at which α is accessible and \mathcal{N}_{α} becomes active via $x^{\alpha, p}[s]$ or a weaker follower (since, for any α-stage \hat{t} with $t^{\prime}<\hat{t} \leq t^{\prime \prime}, \mathcal{N}_{\alpha}$ requires attention via $x^{\alpha, p}[s]$ and Clause (iv) at stage $\hat{t}+1$). Since all followers weaker than $x^{\alpha, p}[s]$ are canceled or injured at stage $t^{\prime}+1$, it follows that $x^{\alpha, p^{\prime}}[s]$ is appointed at a stage $t^{\prime \prime \prime}+1>t^{\prime}+1$. In fact, since $t^{\prime \prime \prime}$ is an α-stage and \mathcal{N}_{α} acts at stage $t^{\prime \prime \prime}+1$ via $x^{\alpha, p^{\prime}}[s]$, it follows by minimality of $t^{\prime \prime}$ that $t^{\prime \prime}<t^{\prime \prime \prime}$. So v^{\prime} is appointed later than v in this case, too.

Finally, observe that whenever a number y enters any set, there is a C-trace $z \geq y$ entering C at the same stage.

We prove a series of claims very similar to those in the proof of Theorem 77 to show that the constructed sets have the required properties. Claims 1,2 and 5 and their proofs are the same as there.
Claim 3. Every strategy \mathcal{N}_{α} on the true path (i.e., $\alpha \sqsubset f$) is initialized only finitely often and requires attention only finitely often. Moreover, $N_{|\alpha|}$ is met.

Proof. The proof is by induction on $|\alpha|$. Fix $\alpha \sqsubset f$. By Claim 2 and by inductive hypothesis, we may fix the least stage s_{0} such that $\alpha \leq \delta_{s}$ for all $s \geq s_{0}$ and no strategy \mathcal{N}_{β} with $\beta \sqsubset \alpha$ requires
attention after stage s_{0}. Since no $\gamma<_{\mathrm{L}} \alpha$ is accessible after stage s_{0}, it follows that there are only finitely many followers which are assigned to strategies \mathcal{N}_{β} with $\beta<_{\mathrm{L}} \alpha$. Since any strategy acts via the same follower only finitely often (and since a follower is assigned to one strategy only), this implies that there is a stage s such that no strategy $\mathcal{N}_{\beta}, \beta<_{\mathrm{L}} \alpha$, requires attention after stage s. So, since there are infinitely many α-stages, we may let $s_{1} \geq s_{0}$ be the least α-stage such that $\alpha \leq \delta_{s}$ for all $s \geq s_{1}$ and no strategy \mathcal{N}_{β} with $\beta<\alpha$ requires attention after stage s_{1}. Then \mathcal{N}_{α} acts whenever it requires attention and is not initialized after stage s_{1}. Moreover, by minimality of $s_{1}, \mathcal{N}_{\alpha}$ is initialized at the end of stage s_{1} (hence is not satisfied at the end of stage s_{1}) and a follower $x_{0}^{\alpha, 0}$ of \mathcal{N}_{α} is appointed at stage $s_{1}+1$. Since \mathcal{N}_{α} is not initialized after stage s_{1} and since $x_{0}^{\alpha, 0}$ is the strongest \mathcal{N}_{α}-follower existing after stage $s_{1}, x_{0}^{\alpha, 0}$ is never canceled hence permanent.

Case 1. \mathcal{N}_{α} is critical.
Fix $e \geq 0$ and $i \leq 1$ such that $|\alpha|=4 e+i$. Now, first assume that \mathcal{N}_{α} is declared to be satisfied at a stage $s+1 \geq s_{1}+1$. Then \mathcal{N}_{α} does not require attention after stage $s+1$. Moreover, $N_{|\alpha|}$ is met. Namely, fix the follower $x^{\alpha, p}$ such that \mathcal{N}_{α} gets permitting via $x^{\alpha, p}$ and Clause (I) at stage $s+1$. Then $x^{\alpha, p}$ is admissible - hence realized - and not injured at stage s and $x^{\alpha, p}$ is enumerated into A_{i} at stage $s+1$. Moreover, for the stage $s^{\prime}+1<s+1$ at which $x^{\alpha, p}$ becomes realized, $\Phi_{e, s^{\prime}}^{B_{0, s^{\prime}} B_{1, s^{\prime}} C_{s^{\prime}}}\left(x^{\alpha, p}\right)=0$. So it suffices to show that no number $\leq s^{\prime}$ enters any of the sets B_{0}, B_{1}, C after stage s^{\prime}. By initialization and by choice of s_{1} no strategy \mathcal{N}_{β} with $\beta \neq \alpha$ will enumerate numbers $\leq s^{\prime}$ after stage s^{\prime}. Moreover no numbers from entourages of \mathcal{N}_{α}-followers stronger than $x^{\alpha, p}$ are enumerated after stage s^{\prime}. (Namely, this had to happen by stage s thereby injuring $x^{\alpha, p}$.) On the other hand any weaker \mathcal{N}_{α}-followers acting after stage s^{\prime} are appointed after this stage hence may enumerate only numbers $>s^{\prime}$. Finally, the $B_{0^{-}}, B_{1^{-}}$and C-numbers in the entourage of $x^{\alpha, p}$ are appointed at stage $s^{\prime}+1$ or at later stages hence are greater than s^{\prime}, too.

Next assume that there is a permanent \mathcal{N}_{α}-follower $x^{\alpha, p}$ which is never realized (i.e., such that \mathcal{N}_{α} never acts via $x^{\alpha, p}$ and Clause (iii)). Then, once $x^{\alpha, p}$ is appointed, no weaker $\mathcal{N}_{\alpha^{-}}$ follower may be appointed, hence there are only finitely many \mathcal{N}_{α}-followers. Since a strategy receives attention via a fixed follower only finitely often, it follows that \mathcal{N}_{α} receives attention only finitely often, hence, by choice of s_{1}, requires attention only finitely often. It follows that for all sufficiently large α-stages $s, \Phi_{e, s}^{B_{0, s} B_{1, s} C_{s}}\left(x^{\alpha, p}\right) \neq 0$ hence $\Phi_{e}^{B_{0} B_{1} C}\left(x^{\alpha, p}\right) \neq 0$. Moreover, $x^{\alpha, p}$ is not enumerated into A_{i}. So $N_{|\alpha|}$ is met.

By the preceding observations, it suffices to show that \mathcal{N}_{α} will be satisfied at some stage $\geq s_{1}+1$ or will have a permanent follower $x^{\alpha, p}$ which is never realized. For a contradiction, assume that neither is the case. Then \mathcal{N}_{α} requires (hence receives) attention infinitely often. (Namely, assume not and fix the least α-stage $s \geq s_{1}+1$ such that \mathcal{N}_{α} does not require attention after stage s. Then there are \mathcal{N}_{α}-followers at the end of stage s and none of this followers acts later. Since, by assumption, all of these followers are realized and since \mathcal{N}_{α} is not satisfied at any stage $\geq s$, any of these followers must be injured or C-certified at stage s (since otherwise \mathcal{N}_{α} will require attention via Clause (iv) at stage $s+1$). But this implies that \mathcal{N}_{α} requires attention via Clause (ii) at stage $s+1$, a contradiction.) Since a strategy receives attention via a fixed follower only finitely often, it follows that there are
infinitely many \mathcal{N}_{α}-followers. In fact, since after stage s_{1} an \mathcal{N}_{α}-follower can be canceled only if a stronger \mathcal{N}_{α}-follower acts, there are infinitely many permanent \mathcal{N}_{α}-followers, say $x^{\alpha, 0}<x^{\alpha, 1}<x^{\alpha, 2}<\ldots$. Moreover, these followers are just the \mathcal{N}_{α}-followers which become realized, i.e., which get an interval F assigned to it after stage s_{1}. (Namely, once realized, an \mathcal{N}_{α}-follower x cannot be canceled by stronger \mathcal{N}_{α}-followers. So any \mathcal{N}_{α}-follower x realized after stage s_{1} is permanent. The converse holds by assumption.) It follows that the sequence of the permanent followers is computable and so is the sequence $\mathcal{F}=\left\{F_{p}^{\alpha}\right\}_{p \geq 0}$ of the intervals associated with these followers. Since, by definition, $\max F_{p}^{\alpha}<\min F_{p+1}^{\alpha}$ and $\left|F_{p}^{\alpha}\right|<\left|F_{p+1}^{\alpha}\right|$, this implies that \mathcal{F} is a very strong array of intervals. Moreover, the stage t_{p} such that $x^{\alpha, p}$ becomes realized at stage $t_{p}+1$ hence F_{p}^{α} becomes assigned to $x^{\alpha, p}$ at stage $t_{p}+1$ and the entourage

$$
x_{0}^{\alpha, p}=x^{\alpha, p}, \ldots x_{m_{p}}^{\alpha, p}, y_{0}^{\alpha, p}, \ldots, y_{m_{p}}^{\alpha, p}, z_{m_{p}}^{\alpha, p}
$$

of $x^{\alpha, p}$ defined at the end of this stage can be computed from p. Note that $t_{p}<t_{p+1}$ and that $x^{\alpha, p}$ is not injured at stage $t_{p}+1(p \geq 0)$. Moreover, for any stage $t \geq t_{p}+1$, the followers $x<x^{\alpha, p}$ of \mathcal{N}_{α} at stage t are just the followers $x^{\alpha, 0}, \ldots, x^{\alpha, p-1}$ and all of them are realized at stage t.

Moreover, by definition, for any p the interval F_{p}^{α} is large enough so that we can effectively (uniformly in p) split an appropriate initial segment of F_{p}^{α} into intervals $I_{p, r}^{\alpha}, r \leq p$ such that

$$
I_{p, p}^{\alpha} \text { contains the } m_{p}+2 \text { least elements } x_{0}^{\alpha, p}<\hat{x}_{0}^{\alpha, p, p}<\cdots<\hat{x}_{m_{p}}^{\alpha, p, p} \text { of } F_{p}^{\alpha}
$$

(note that $x^{\alpha, p}=x_{0}^{\alpha, p}$ is the least element of F_{p}^{α}) and, for $r<p$,

$$
I_{p, r}^{\alpha} \text { contains the } m_{r}+1 \text { least elements } \hat{x}_{0}^{\alpha, p, r}<\cdots<\hat{x}_{m_{r}}^{\alpha, p, r} \text { of } F_{r}^{\alpha} \text {. }
$$

Based on these effective partitions define the partial computable function ψ on $F_{p}^{\alpha}(p \geq 0)$ by letting

$$
\begin{equation*}
\psi\left(x_{0}^{\alpha, p}\right)=t_{p}+1 \tag{2.63}
\end{equation*}
$$

and

$$
\begin{gathered}
\psi\left(\hat{x}_{m}^{\alpha, p, r}\right)=\mu t>t_{p}+1\left[z_{m}^{\alpha, r}[t] \downarrow \text { and } x^{\alpha, r} \text { is admissible at stage } t\right. \\
\text { and } \left.\gamma\left(x^{\alpha, r}, t\right)>f\left(\max F_{p}^{\alpha}\right)\right]
\end{gathered}
$$

(for $p \geq 0, r \leq p, m \leq m_{r}$). Now, since D is \mathcal{F}-permitting via f, we may fix p minimal such that

$$
\begin{equation*}
\forall x \in F_{p}^{\alpha}\left(\psi(x) \downarrow \Rightarrow D \upharpoonright f(x)+1 \neq D_{\psi(x)} \upharpoonright f(x)+1\right) \tag{2.64}
\end{equation*}
$$

holds. In order to get the desired contradiction, distinguish the following two cases.
First assume that $x^{\alpha, p}$ is never injured. (We will show that \mathcal{N}_{α} becomes satisfied via $x^{\alpha, p}$ contrary to assumption.) Note that, by (2.63) and 2.64, $x^{\alpha, p}$ becomes admissible, say at stage $t^{\prime}+1>t_{p}+1$. So, since \mathcal{N}_{α} does not become satisfied, we may fix $m \leq m_{p}$ maximal such that $x_{m}^{\alpha, p}$ is not enumerated into $A_{0} \cup A_{1}$. Now if $m=m_{p}$ then $t^{\prime \prime}=t^{\prime}+1$ is the least stage such that $z_{m_{p}}^{\alpha, p}$ is defined and $x^{\alpha, p}$ is admissible. If $m<m_{p}$ then, since $x^{\alpha, p}$ is never injured, there is an α-stage $t^{\prime \prime}-1 \geq t^{\prime}+1$ such that \mathcal{N}_{α} acts via $x^{\alpha, p}$ according to Clause
(iv) at stage $t^{\prime \prime}$ and the C-trace $z_{m}^{\alpha, p}$ is appointed as the maximum element of the entourage $x_{0}^{\alpha, p}, \ldots x_{m}^{\alpha, p}, y_{m}^{\alpha, p}, \ldots, y_{0}^{\alpha, p}, z_{m}^{\alpha, p}$ at this stage. In either case this implies that $\psi\left(\hat{x}_{m}^{\alpha, p, p}\right)=t^{\prime \prime}$. So, by (2.64), there is a stage $t^{\prime \prime \prime}+1>t^{\prime \prime}$ such that \mathcal{N}_{α} gets permitting via $x^{\alpha, p}$ at stage $t^{\prime \prime \prime}+1$. Moreover, since $x^{\alpha, p}$ does not become injured at stage $t^{\prime \prime \prime}+1, \mathcal{N}_{\alpha}$ acts via $x^{\alpha, p}$. So $x_{m}^{\alpha, p}$ is enumerated into $A_{0} \cup A_{1}$ contrary to choice of m.

Finally assume that $x^{\alpha, p}$ becomes injured. Then there are a number $r<p$ and a stage $t+1>t_{p}+1$ such that \mathcal{N}_{α} gets permitting and acts via $x^{\alpha, r}$ at stage $t+1$. Fix the least such r and fix the least corresponding t. (We will show that \mathcal{N}_{α} becomes satisfied via $x^{\alpha, r}$ contrary to assumption.) Note that, by minimality of $r, x^{\alpha, r}$ is never injured while, by choice of t,

$$
\begin{equation*}
\forall s \geq t+1\left(\gamma\left(x^{\alpha, r}, s\right)>f\left(\max F_{p}^{\alpha}\right)\right) \tag{2.65}
\end{equation*}
$$

and the entourage of $x^{\alpha, r}$ at the end of stage $t+1$ has the form $x_{0}^{\alpha, r}, \ldots, x_{m^{*}}^{\alpha, r}, y_{m^{*}}^{\alpha, r}, \ldots, y_{0}^{\alpha, r}$ for some $m^{*} \geq 0$. (Note that the entourage cannot be empty since \mathcal{N}_{α} is not satisfied.) So, since \mathcal{N}_{α} is not satisfied after stage t_{p}, there is a greatest number $m \leq m^{*}$ such that $x_{m}^{\alpha, r}$ is not enumerated into $A_{0} \cup A_{1}$. But this is impossible. Namely, as in the first case, we may argue that there is a stage $t^{\prime \prime}>t+1$ at which the C-trace $z_{m}^{\alpha, r}$ becomes appended to the entourage $x_{0}^{\alpha, r}, \ldots x_{m}^{\alpha, r}, y_{m}^{\alpha, r}, \ldots, y_{0}^{\alpha, r}$ of $x^{\alpha, r}$ and that (by 2.65) $\psi\left(\hat{x}_{m}^{\alpha, p, r}\right)=t^{\prime \prime}$. So, by 2.64 (and 2.65), \mathcal{N}_{α} will get permitting via $x^{\alpha, r}$ after stage $t^{\prime \prime}$ and $x_{m}^{\alpha, r}$ will be enumerated into $A_{0} \cup A_{1}$ contrary to choice of m.

Case 2. \mathcal{N}_{α} is uncritical.
Fix $e \geq 0$ and $i \leq 1$ such that $|\alpha|=4 e+2+i$. If \mathcal{N}_{α} is declared to be satisfied at a stage $s+1 \geq s_{1}+1$ or if there is a permanent \mathcal{N}_{α}-follower which is never realized then, by a straightforward variant of the argument given in the first case, we may argue that \mathcal{N}_{α} requires attention only finitely often and requirement $N_{|\alpha|}$ is met. So it suffices to show that \mathcal{N}_{α} will be satisfied at some stage $\geq s_{1}+1$ or will have a permanent follower $x^{\alpha, p}$ which is never realized.

For a contradiction, assume that neither is the case. Then \mathcal{N}_{α} requires (hence receives) attention via Clause (v) infinitely often. So infinitely many followers $x^{\alpha, 0}<x^{\alpha, 1}<\ldots$ are assigned to \mathcal{N}_{α} after stage s_{1}, say at stages $t_{0}+1<t_{1}+1<\ldots$. All of these followers are permanent and eventually realized. (Namely, if $x^{\alpha, p}$ is appointed at stage $t_{p}+1$ then the followers $x^{\alpha, 0}, \ldots, x^{\alpha, p-1}$ are realized at stage t_{p} and, since \mathcal{N}_{α} does not become satisfied after stage $s_{1}, \mathcal{N}_{\alpha}$ does not get permitting via any of these followers after stage t_{p} hence does not act via any of these followers after stage t_{p}. So $x^{\alpha, p}$ is permanent.) So we may fix the stage $t_{p}^{\prime}+1$ at which $x^{\alpha, p}$ becomes realized $(p \geq 0)$. Note that the sequences $\left\{x^{\alpha, p}\right\}_{p \geq 0}$ and $\left\{t_{p}^{\prime}\right\}_{p \geq 0}$ are computable and strictly increasing. Moreover, since \mathcal{N}_{α} does not get permitting via $x^{\alpha, p}$ after stage $t_{p}^{\prime}+1$, it follows (by $x \leq \gamma(x, s)$ for all x, s) that $D \upharpoonright x^{\alpha, p}+1=D_{t_{p}^{\prime}+1} \upharpoonright x^{\alpha, p}+1$ for $p \geq 0$. So D is computable, a contradiction.

Claim 4. For $n \geq 0$, requirement M_{n} is met.
Proof. The proof is similar to the proof of the corresponding claim in the proof of Theorem 77. In particular, assume that M_{n} is infinitary and define s_{0} and $S=\left\{s_{l}: l \geq 0\right\}$ as there (where the
existence of s_{0} can be established in a similar way as we established the existence of s_{1} in the proof of Claim 3). Observe that, by choice of S, at every stage $s_{l}+1$ with $s_{l} \in S$, a strategy \mathcal{N}_{β} with $\alpha 0 \sqsubset \beta$ becomes active and hence all strategies \mathcal{N}_{γ} with $\alpha 0<_{\mathrm{L}} \gamma$ are initialized at stage $s_{l}+1$. So, for all nodes γ and $s_{l} \in S$, the following holds.

If \mathcal{N}_{γ} enumerates a number $x \leq s_{l}$ into some set at stage $t+1$ and $t \geq s_{l}$ then $\alpha 0 \sqsubset \gamma$.
We prove one more auxiliary observation before we proceed with the same case distinction as above. We claim that for all $t_{0}, t, y, z \geq 0$, the following holds.

$$
\left.\begin{array}{l}
y \text { is enumerated into any set at stage } t_{0}+1 \tag{2.67}\\
C_{t_{0}} \upharpoonright y=C \upharpoonright y \\
z \text { is a } C \text {-trace active at stage } t_{0}+1 \\
z \text { is enumerated into } C \text { at stage } t+1
\end{array}\right\} \Rightarrow t=t_{0}
$$

For a proof, first observe that, as z is active at stage $t_{0}+1, t_{0} \leq t$ holds. Since z enters C at stage $t+1$ and since $C_{t_{0}} \upharpoonright y=C \upharpoonright y$, it follows that $y \leq z$. Now assume for a contradiction that $t_{0}<t$. Fix nodes β and γ such that y is enumerated for the sake of \mathcal{N}_{β} and z enters C for the sake of \mathcal{N}_{γ}. Observe that \mathcal{N}_{β} acts at stage $t_{0}+1$ while \mathcal{N}_{γ} is not initialized at any stage s with $t_{0}+1 \leq s \leq t+1$. Hence $\gamma \leq \beta$. Moreover, if $\gamma<\beta$, then at the stage $t_{z}+1$ where z is appointed to $\mathcal{N}_{\gamma}, \mathcal{N}_{\beta}$ is initialized. Hence, as z is active at stage $t_{0}+1, z$ is appointed before y is appointed to \mathcal{N}_{β}, hence $z<y$ contradicting $y \leq z$. It follows that $\beta=\gamma$. If \mathcal{N}_{β} is uncritical, then a realized follower of \mathcal{N}_{β} is enumerated and \mathcal{N}_{β} is declared to be satisfied at stage $t_{0}+1$. This implies that no trace of \mathcal{N}_{β} active at stage $t_{0}+1$ is enumerated by \mathcal{N}_{β} after $t_{0}+1$, contradicting the assumption $t_{0}<t$. This leaves the case that \mathcal{N}_{β} is critical. Then there are followers $x^{\beta, p}$ and $x^{\beta, p^{\prime}}$ such that, at the end of stage t_{0}, y is in the entourage of $x^{\beta, p}$ and z is in the entourage of $x^{\beta, p^{\prime}}$. Moreover, none of these followers is injured (or canceled) by the end of stage $t_{0}+1$, since \mathcal{N}_{β} acts via $x^{\beta, p}$ and $x^{\beta, p^{\prime}}$ at stage $t_{0}+1$ and $t+1$, respectively. Since \mathcal{N}_{β} enumerates y at stage $t_{0}+1$ hence injures or cancels all weaker \mathcal{N}_{β}-followers it follows that $p^{\prime} \leq p$. So, by $y \leq z$ and 2.62 (applied to stage $\left.s=t_{0}\right), p^{\prime}=p$. So z is the unique C-trace in the entourage of $x^{\beta, p}$ at the end of stage t_{0}. Hence z is enumerated together with y at stage $t_{0}+1$, which implies $t=t_{0}$. This completes the proof of (2.67). Now distinguish the following cases.

Case 1: $n=3 e+2$.
For given x, fix $s_{k} \in S$ minimal such that $l\left(n, s_{k}\right)>x$ and such that the following holds for $i=0$ and $i=1$.

$$
C_{s_{k}} \upharpoonright \varphi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}} C_{s_{k}}}(x)=C \upharpoonright \varphi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}} C_{s_{k}}}(x) .
$$

Note that s_{k} exists by the assumption that M_{n} is infinitary and that s_{k} is computable in C. As in Case 1 of the above proof, we show that $\Phi_{e}^{A_{0} B_{0} C}(x)=\Phi_{e, s_{k}}^{A_{0, s_{k}} B_{0, s_{k}} C_{s_{k}}}(x)$ by proving that for all $l \geq k$, the following holds.

$$
\begin{equation*}
\exists i\left(\Phi_{e, s_{l+1}}^{A_{i, s_{l+1}} B_{i, s_{l+1}} C_{s_{l+1}}}(x)=\Phi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}} C_{s_{l}}}(x)\right) \tag{2.68}
\end{equation*}
$$

Simultaneously, we show by induction that the following holds for all $l \geq k$.

$$
\begin{equation*}
\forall i\left(C_{s_{l}} \upharpoonright \varphi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}} C_{s_{l}}}(x)=C \upharpoonright \varphi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}} C_{s_{l}}}(x)\right) \tag{2.69}
\end{equation*}
$$

For k in place of $l, 2.69$ is immediate by choice of k. So assume that 2.69 holds for some $l \geq k$. We prove (2.68) as well as (2.69) for $l+1$ in place of l where we refer to the latter as $2^{2.69}{ }_{l+1}$.

If, for both $i=0$ and $i=1$,

$$
\begin{equation*}
A_{i, s_{l+1}} B_{i, s_{l+1}} \upharpoonright \varphi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}} C_{s_{l}}}(x)=A_{i, s_{l}} B_{i, s_{l}} \upharpoonright \varphi_{e, s_{l}}^{A_{i, s_{l}} B_{i, s_{l}} C_{s_{l}}}(x), \tag{2.70}
\end{equation*}
$$

then 2.68 and $2.69 l+1$ are immediate by 2.69 . Assume for the rest of the proof that 2.70) fails for some i and let $t_{0}+1>s_{l}$ be the least stage witnessing that. Note that $t_{0}<s_{l+1}$. By symmetry, w.l.o.g. assume that $i=0$. By this assumption, fix a number $y_{0}<\varphi_{e, s_{l}}^{A_{0, s_{l}} B_{0, s_{l}} C_{s_{l}}}(x)$ such that y_{0} enters $A_{0} B_{0}$ at stage $t_{0}+1$.

We claim that 2.70) holds for $i=1$. Assume not and fix t_{1} with $t_{0} \leq t_{1}<s_{l+1}$ such that a number $y_{1}<\varphi_{e, s_{l}}^{A_{1, s_{l}} B_{1, s_{l}} C_{s_{l}}}(x)$ is enumerated into $A_{1} B_{1}$ at stage $t_{1}+1$ by some strategy \mathcal{N}_{γ}. Then, a C-trace z is enumerated at stage $t_{1}+1$ and, by 2.66, $\alpha 0 \sqsubset \gamma$. As z is appointed to \mathcal{N}_{γ} at a stage $t+1$ where γ is accessible and by $s_{l+1}>t_{1}$, it follows that z is appointed at a stage $\leq s_{l}+1$, hence active at stage $t_{0}+1$ (note that by construction, z cannot be appointed at stage $t_{0}+1$). As $y_{0}<\varphi_{e, s_{l}}^{A_{0, s_{l}} B_{0, s_{l}} C_{s_{l}}}(x)$, together with 2.69), it follows that the hypotheses of 2.67) hold for $t=t_{1}$ and $y=y_{0}$, so $t_{0}=t_{1}$. Hence y_{0} enters $A_{0} B_{0}$ and y_{1} enters $A_{1} B_{1}$ at the same stage, contradicting the construction. So 2.70 holds for $i=1$ which implies 2.68.
Finally, assume that $2.69{ }_{l+1}$ fails. By this assumption, fix $z<\varphi_{e, s_{l+1}}^{A_{i, s_{l+1}} B_{i, s_{l+1}} C_{s_{l+1}}}(x)$ entering C at stage $t+1$ where $t \geq s_{l+1}$ for the sake of \mathcal{N}_{γ}. Then, $z \leq s_{l+1}$, hence $\alpha 0 \sqsubset \gamma$ by 2.66). It follows that z is appointed at a stage $\leq s_{l}+1$, hence, as above, z is active at stage $t_{0}+1$. So, again, the hypotheses of 2.67 hold for $y=y_{0}$, so $t=t_{0}$. But $t_{0}<s_{l+1} \leq t$, a contradiction. This completes the proof for Case 1.

Case 2. $n=3 e+i$.
Given x, fix s_{k} minimal such that the following hold.
(a) $l\left(n, s_{k}\right)>x$,
(b) none of the numbers targeted for B_{i} or C which exist at the end of stage s_{k} will enter its target after stage s_{k}.

Similarly as in Case 2 of the proof of Claim 4 in the proof of Theorem 77, we can argue that such a k exists. Since k can be computed from $B_{i} C$ uniformly in x, it suffices to show

$$
\begin{equation*}
\Phi_{e}^{A_{i} B_{i} C}(x)=\Phi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}} C_{s_{k}}}(x) \tag{2.71}
\end{equation*}
$$

As above, it suffices to define a strictly increasing function g such that, for all $r \geq 0$, the following hold.

$$
\begin{align*}
\Phi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}} C_{s_{g(r)}}}(x) & =\Phi_{e, s_{k}}^{A_{i, s_{k}} B_{i, s_{k}} C_{s_{k}}}(x), \tag{2.72}\\
B_{i, s_{g(r)}} C_{s_{g(r)}} \upharpoonright \varphi_{e, s_{g(r)}}^{A_{i, s_{j}}} B_{i, s_{g(r)}} C_{s_{g(r)}}(x) & =B_{i} C \upharpoonright \varphi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}} C_{s_{g(r)}}}(x), \tag{2.73}\\
B_{i, s_{g(r)}} C_{s_{g(r)}} \upharpoonright \varphi_{e, s_{g(r)}}^{B_{0, s(r)}} B_{1, s_{g(r)}} C_{s_{g(r)}}(x) & =B_{i} C \upharpoonright \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}} C_{s_{g(r)}}(x) .} . \tag{2.74}
\end{align*}
$$

Define the function g correspondingly as in the corresponding case above: let $g(0)=k$ and, for $r \geq 0$, let $g(r+1)=g(r)+1$ unless the nonordering strategy \mathcal{N}_{β} which acts at stage $s_{g(r)}+1$ is critical and acts via Clause (iii) or (iv). In this case, let $g(r+1)=q$ where $q>g(r)$ is minimal such that \mathcal{N}_{β} does not act via any of its followers existing at the end of stage $s_{g(r)}+1$ at any stage $\geq s_{q}+1$. Note that here, we cannot argue that \mathcal{N}_{β} acts at stage $s_{g(r+1)-1}+1$, but by definition of g we may fix the greatest stage t_{r} (which is not necessarily a β-stage) such that \mathcal{N}_{β} acts at stage $t_{r}+1$ via some follower existing at the end of stage $s_{g(r)}+1$ and such that $s_{g(r+1)-1}+1 \leq t_{r}<s_{g(r+1)}$.
For $r=0, g(r)=k$, hence 2.72, 2.73 and 2.74 are immediate by choice of k. Now fix $r \geq 0$ such that 2.72, (2.73) and 2.74 hold. We need to establish 2.72, 2.73) and 2.74) for $r+1$ in place of r, to which we refer as $\left.2.72{ }_{r+1}, 2.73\right)_{r+1}$ and 2.74$)_{r+1}$, respectively. For establishing $2.72 r_{r+1}$, by inductive hypotheses and as $l\left(n, s_{g(r+1)}\right)>l\left(n, s_{g(r)}\right) \geq l\left(n, s_{k}\right)>$ x, it is enough to prove the following.

$$
\begin{gather*}
\Phi_{e, s_{g(r+1)}}^{A_{i, s_{g(r+1)}} B_{i, s_{g(r+1)}} C_{s_{g(r+1)}}(x)=\Phi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}} C_{s_{g(r)}}(x)}} \begin{array}{c}
\text { or } \\
\Phi_{e, s_{g(r+1)}}^{B_{0, s_{g(r+1)}} B_{1, s_{g(r+1)}} C_{s_{g(r+1)}}}(x)=\Phi_{e, s_{g(r)}}^{B_{0, s}(r)} B_{1, s}{ }_{g(r)} C_{s_{g(r)}}(x)
\end{array} .
\end{gather*}
$$

Fix β such that \mathcal{N}_{β} acts at stage $s_{g(r)}+1$. Note that we cannot prove 2.55 anymore, as now strategies \mathcal{N}_{γ} are allowed to act at stages at which γ it not accessible. However, we know that \mathcal{N}_{β} acts at stages $s_{g(r)}+1$ and $t_{r}+1$ (where $s_{g(r+1)-1} \leq t_{r}<s_{g(r+1)}$) without being initialized in between and that all assignments of B - and C-traces to a strategy \mathcal{N}_{γ} are still performed only at stages where γ is accessible, so the following variant of 2.55 holds.

$$
\begin{align*}
& \text { No strategy } \mathcal{N}_{\gamma} \text { with } \gamma<\beta \text { gets any } B \text { - or } C \text {-trace assigned } \tag{2.76}\\
& \text { at any stage } s+1 \text { with } s_{g(r)}+1 \leq s+1 \leq s_{g(r+1)} .
\end{align*}
$$

We begin with showing that at least one of the following holds.

$$
\begin{align*}
& A_{i, s_{g(r+1)}} \upharpoonright \varphi_{e, s_{g(r)}}^{A_{i, s_{g(r)}}} B_{i, s_{g(r)}} C_{s_{g(r)}}(x)=A_{i, s_{g(r)}} \upharpoonright \varphi_{e, s_{g(r)}}^{A_{i, s_{g(r)}} B_{i, s_{g(r)}} C_{s_{g(r)}}}(x), \tag{2.77}\\
& B_{1-i, s_{g(r+1)}} \upharpoonright \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}} C_{s_{g(r)}}(x)=B_{1-i, s_{g(r)}} \upharpoonright \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}} C_{s_{g(r)}}}(x) ~} \tag{2.78}
\end{align*}
$$

For a contradiction assume failure of both 2.77 (witnessed by $y_{0}<\varphi_{e, s_{g(r)}}^{A_{i, s_{(r)}} B_{\left.i, s_{g(r)}\right)} C_{s_{g(r)}}(x)}$ entering A_{i} at stage $t_{0}+1$ where $s_{g(r)} \leq t_{0}<s_{g(r+1)}$) and 2.78 (witnessed by $y_{1}<$ $\varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}}}{ }^{B_{1, s_{g(r)}} C_{s}}{ }_{g(r)}(x)$ entering B_{0} at stage $t_{1}+1$ where $\left.s_{g(r)} \leq t_{1}<s_{g(r+1)}\right)$. Similarly as in Case 1, we can use 2.66 and 2.67) to argue that $t_{0}=t_{1}$. So y_{0} enters A_{i} and y_{1} enters B_{1-i} at the same stage. By construction, this cannot happen, a contradiction. So, 2.77) or 2.78 holds which together with (2.73) and (2.74) implies 2.75).

If now suffices to show $2.73 r_{r+1}$ and $2.74 r_{r+1}$. In case both 2.77 and 2.78 hold, these are immediate by inductive hypotheses. So from now on assume failure of either 2.77) or 2.78) (witnessed by $z_{0}<\max \left\{\varphi_{e, s_{g(r)}}^{\left.A_{i, s_{g(r)}} B_{i, s_{g(r)}} C_{s_{g(r)}}(x), \varphi_{e, s_{g(r)}}^{B_{0, s_{g(r)}} B_{1, s_{g(r)}} C_{s_{g(r)}}}(x)\right\}<s_{g(r)}}\right.$ enumerated into either A_{i} or B_{1-i} at a stage $t_{0}+1>s_{g(r)}$ where $\left.t_{0}+1 \leq s_{g(r+1)}\right)$ and, for a contradiction, assume failure of $2.73 r_{r+1}$ or $2.74{ }_{r+1}$ (witnessed by a number $z_{1}<$
 a stage $\left.t_{1}+1>s_{g(r+1)}\right)$.

Fix β^{\prime} such that z_{0} is enumerated by $\mathcal{N}_{\beta^{\prime}}$. Let $t_{0}^{\prime}+1$ be the stage at which z_{0} is appointed. Then, the following holds by choice of z_{0} and t_{0}.

$$
\begin{equation*}
t_{0}^{\prime}+1<z_{0}<s_{g(r)}<t_{0}+1 \leq s_{g(r+1)} \tag{2.79}
\end{equation*}
$$

and z_{0} is not canceled at any stage $t+1$ with $t_{0}^{\prime} \leq t \leq t_{0}$. Moreover, by 2.66 for $l=g(r)$, $\alpha 0 \sqsubset \beta^{\prime}$.
Similarly, if we fix $\beta^{\prime \prime}$ such that z_{1} is enumerated into its target by $\mathcal{N}_{\beta^{\prime \prime}}$ and the stage $t_{1}^{\prime}+1$ at which z_{1} is appointed to $\mathcal{N}_{\beta^{\prime \prime}}$, the following holds

$$
\begin{equation*}
t_{1}^{\prime}+1<z_{1}<s_{g(r+1)}<t_{1}+1 \tag{2.80}
\end{equation*}
$$

z_{1} is not canceled at any stage $t+1$ with $t_{1}^{\prime} \leq t \leq t_{1}$ and by 2.66 for $l=g(r+1), \alpha 0 \sqsubset \beta^{\prime \prime}$ holds. Furthermore, as z_{1} is a B - or a C-number, t_{1}^{\prime} is a $\beta^{\prime \prime}$ - hence an $\alpha 0$-stage. Note that 2.79) and 2.80 imply that $t_{0}+1<t_{1}+1$. Moreover, by inductive hypotheses 2.73) and (2.74), $z_{0}<z_{1}$ hence $t_{0}^{\prime}+1 \leq t_{1}^{\prime}+1$.

We claim that $\beta^{\prime}=\beta^{\prime \prime} \leq \beta$. First observe that z_{0} is not canceled at stage $s_{g(r)}+1$ whence $\beta^{\prime} \leq \beta$ holds.

Now assume $\beta<\beta^{\prime \prime}$. Then $\mathcal{N}_{\beta^{\prime \prime}}$ is initialized at stage $t_{r}+1$ (recall that \mathcal{N}_{β} acts at stage $t_{r}+1$ where $\left.s_{g(r+1)-1} \leq t_{r}<s_{g(r+1)}\right)$. Hence, by 2.80), $t_{1}^{\prime}+1>t_{r}+1$. As t_{1}^{\prime} is an $\alpha 0$-stage, it follows that $t_{1}^{\prime}+1 \geq s_{g(r+1)}+1$, contradicting 2.80). So $\beta^{\prime \prime} \leq \beta$ holds, as well.
Next, assume that $\beta^{\prime}<\beta^{\prime \prime}$. Then $\mathcal{N}_{\beta^{\prime \prime}}$ is initialized at stage $t_{0}+1$, hence, by 2.79) and 2.80), $t_{1}^{\prime}+1>t_{0}+1$ holds. Moreover, as $\beta^{\prime \prime} \leq \beta, \mathcal{N}_{\beta}$ is initialized at stage $t_{0}+1$, as well, hence, by 2.79), $t_{0}+1>t_{r}+1$. As t_{1}^{\prime} is an $\alpha 0$-stage, it follows altogether that $t_{1}^{\prime}+1 \geq s_{g(r+1)}+1$, contradicting 2.80 as in the preceding case. It follows that $\beta^{\prime \prime} \leq \beta^{\prime}$.
If $\beta^{\prime \prime}=\beta$, then it follows that $\beta^{\prime}=\beta^{\prime \prime}=\beta$, hence $\beta^{\prime}=\beta^{\prime \prime} \leq \beta$ is immediate. So finally assume that $\beta^{\prime \prime}<\beta$. Then, by 2.80 and by $2.76, t_{1}^{\prime}+1 \leq s_{g(r)}$. So, by $t_{0}^{\prime}+1 \leq t_{1}^{\prime}+1 \leq s_{g(r)}$ and by $2.79, z_{0}$ exists and is not canceled at stage $t_{1}^{\prime}+1$. Hence $\beta^{\prime} \leq \beta^{\prime \prime}$ whence $\beta^{\prime}=\beta^{\prime \prime} \leq \beta$ follows in this case, too.

Having established that z_{0} and z_{1} are both associated with $\mathcal{N}_{\beta^{\prime}}$, we may use a very similar argument as in Case 2 of the proof of Claim 4 in the proof of Theorem 77 to get to a contradiction. For completeness, we repeat it here with the necessary adjustments.

First assume that \mathcal{N}_{β} acts via permitting or via one of the Clauses (i), (ii), (v) or (vi) at stage $s_{g(r)}+1$. Then $g(r+1)=g(r)+1$. Since t_{1}^{\prime} is an $\alpha 0$-stage and $t_{1}^{\prime}+1<s_{g(r+1)}$, the latter implies that $t_{1}^{\prime} \leq s_{g(r)}$. In fact, since z_{1} becomes appointed as a $B_{i^{-}}$or C-trace of $\mathcal{N}_{\beta^{\prime}}$ at stage $t_{1}^{\prime}+1$ and since no new trace is appointed at stage $s_{g(r)}+1, t_{1}^{\prime}<s_{g(r)}$ holds.

Now assume that \mathcal{N}_{β} acts at stage $s_{g(r)}+1$ via Clause (iii) or (iv). Then, by definition of g, any of the B - or C-numbers associated with a follower of \mathcal{N}_{β} existing at the end of stage
$s_{g(r)}+1$ (where a number z is associated with a follower y if $z=y$ or z is a trace of y or z is in the entourage of y) which enter their targets later do so by the end of stage $t_{r}+1 \leq s_{g(r+1)}$. Hence, if we assume that $\beta=\beta^{\prime}$, then (by 2.80 and as t_{1}^{\prime} in an $\alpha 0$-stage),

$$
\begin{equation*}
s_{g(r)}+1<t_{1}^{\prime}+1 \leq s_{g(r+1)-1}+1 \leq t_{r}+1 \tag{2.81}
\end{equation*}
$$

holds and z_{1} is associated with a follower x^{β} of \mathcal{N}_{β} that has not yet existed at the end of stage $s_{g(r)}+1$. As \mathcal{N}_{β} is not initialized at any stage $t+1$ with $s_{g(r)}+1 \leq t+1 \leq t_{r}+1$, if follows with 2.81) and as followers are assigned in order of magnitude that x^{β} is weaker than all followers of \mathcal{N}_{β} existing at the end of stage $s_{g(r)}+1$. In particular, by choice of t_{r}, x^{β} is weaker than the follower via which \mathcal{N}_{β} acts at stage $t_{r}+1$ whence x^{β} is canceled or injured at stage $t_{r}+1 \leq s_{g(r+1)}$, contradicting the enumeration of z_{1} after stage $s_{g(r+1)}$. It follows that $\beta^{\prime}<\beta$, hence, by 2.80 and 2.76), $t_{1}^{\prime} \leq s_{g(r)}$. As β acts at stage $s_{g(r)}+1$, it follows that $t_{1}^{\prime}<s_{g(r)}$.

So, in both cases, $t_{1}^{\prime}<s_{g(r)}$ holds. Moreover, $\mathcal{N}_{\beta^{\prime}}$ becomes active via (iii) or (iv) at stage $t_{1}^{\prime}+1$. Now, in order to get the desired contradiction, we look at the size of t_{1}^{\prime}. If $t_{1}^{\prime}<s_{g(0)}$ then z_{1} is associated with $\mathcal{N}_{\beta^{\prime}}$ at the end of stage $s_{g(0)}$ and enters B_{i} or C after stage $s_{g(0)}$. Since $g(0)=k$ this contradicts the choice of k.

So w.l.o.g. we may assume that $t_{1}^{\prime} \geq s_{g(0)}$. Fix the unique number $r^{\prime}<r$ such that $s_{g\left(r^{\prime}\right)} \leq$ $t_{1}^{\prime}<s_{g\left(r^{\prime}+1\right)}$ and fix the strategy $\mathcal{N}_{\beta^{\prime \prime \prime}}$ which acts at stage $s_{g\left(r^{\prime}\right)}+1$. Now, if $t_{1}^{\prime}=s_{g\left(r^{\prime}\right)}$ then $\beta^{\prime \prime \prime}=\beta^{\prime}, \mathcal{N}_{\beta^{\prime}}$ becomes active via (iii) or (iv) at stage $s_{g\left(r^{\prime}\right)}+1$ and z_{1} is appointed as a $B_{i^{-}}$ or C-trace at stage $s_{g\left(r^{\prime}\right)}+1$. So, by definition of g, z_{1} cannot be enumerated after stage $t_{r^{\prime}}+1$. So, by $r^{\prime}<r, t_{1}+1 \leq t_{r^{\prime}}+1<s_{g(r+1)}$ contrary to choice of t_{1}.

This leaves the case that $s_{g\left(r^{\prime}\right)}<t_{1}^{\prime}<s_{g\left(r^{\prime}+1\right)}$. Since t_{1}^{\prime} is an $\alpha 0$-stage, it follows that $s_{g\left(r^{\prime}\right)+1}<s_{g\left(r^{\prime}+1\right)}$ and that $t_{1}^{\prime} \leq s_{g\left(r^{\prime}+1\right)-1}$. By the former, $\mathcal{N}_{\beta^{\prime \prime \prime}}$ becomes active via Clause (iii) or (iv) at stage $s_{g\left(r^{\prime}\right)}+1$. Since a $B_{i^{-}}$or C-trace is assigned to $\mathcal{N}_{\beta^{\prime}}$ at stage $t_{1}^{\prime}+1$, it follows by 2.76 (applied to $\beta^{\prime \prime \prime}$ and r^{\prime} in place of β and r) that $\beta^{\prime \prime \prime} \leq \beta^{\prime}$. If $\beta^{\prime}=\beta^{\prime \prime \prime}$, using the same argument (considering the strength of the follower $x^{\beta^{\prime}}$ such that z_{1} is associated with $x^{\beta^{\prime}}$) as in the case above that $\beta=\beta^{\prime}$ and that \mathcal{N}_{β} acts via Clause (iii) or (iv) at stage $s_{g(r)}+1$, we get to a contradiction. Hence we may conclude that $\beta^{\prime \prime \prime}<\beta^{\prime}$, so $\mathcal{N}_{\beta^{\prime}}$ is initialized at stage $t_{r^{\prime}}+1 \geq s_{g\left(r^{\prime}+1\right)-1}+1 \geq t_{1}^{\prime}+1$ and z_{1} is canceled. By the latter, $t_{1}+1<t_{r^{\prime}}+1 \leq s_{g(r+1)}$. But, just as in the preceding case, this contradicts the choice of t_{1}.

All in all, it follows that $(2.73)_{r+1}$ and $(2.74)_{r+1}$ hold which completes the proof of Claim 4.

Claim 6. $A_{0}, A_{1}, B_{0}, B_{1}, C \leq_{\mathrm{T}} D$.
Proof. The marker function $\gamma(x, s)$ is computable and nondecreasing in the second argument. Moreover, if $\gamma(x, s)<\gamma(x, s+1)$ then x is a follower of a critical strategy \mathcal{N}_{α} and either x becomes admissible at stage $s+1$ or \mathcal{N}_{α} acts via x at stage $s+1$ and $D_{s+1} \upharpoonright \gamma(x, s)+1 \neq D_{s} \upharpoonright \gamma(x, s)+1$. Since any follower becomes admissible only once and since any strategy acts via the same follower only finitely often, the former implies that $\gamma^{*}(x)=\lim _{s \rightarrow \omega} \gamma(x, s)=\sup _{s \rightarrow \omega} \gamma(x, s)<\omega$ exists, while the latter implies that the function $\gamma^{*}(x)$ is computable in D. Since any number y enters
any set under construction at stage $s+1$ only if it is in the entourage of a follower x - hence $x \leq y$ - and $D_{s+1} \upharpoonright \gamma(x, s)+1 \neq D_{s} \upharpoonright \gamma(x, s)+1$, it follows that $A_{0}, A_{1}, B_{0}, B_{1}, C \leq D$.

As Claims 2 to 6 imply that the constructed sets have the required properties, this completes the proof of Theorem 79

Chapter 3

Join and Meet Preservation for Bounded Turing Reducibilities

3.1 Introduction

Various notions of reducibilities stronger than Turing reducibility have been studied in computability theory, e.g., the so called classical strong reducibilities: one-one reducibility (1-reducibility), many-one reducibility (m-reducibility), truth-table reducibility (tt-reducibility) and weak truthtable reducibility (wtt-reducibility) (see e.g. Odifreddi Odi81). More recently, one has started to look at the so called strongly bounded Turing reducibilities: identity bounded Turing reducibility (ibT-reducibility) and computable Lipschitz reducibility (cl-reducibility) which are defined in terms of Turing functionals where the use is bounded by the identity function and the identity function plus a constant and which were introduced by Soare [Soa04 and Downey, Hirschfeldt and LaForte DHL01, DHL04, respectively. cl-reducibility is not only a notion of relative complexity but can also be viewed as a notion of relative randomness and hence is important in the field of algorithmic randomness (see the monograph [DH10] by Downey and Hirschfeldt for more background). The degree structures of the strongly bounded Turing reducibilities on the c.e. sets have been studied intensively. Barmpalias [Bar05] showed that the partial ordering ($\mathbf{R}_{\mathrm{cl}}, \leq$) of the c.e. cl-degrees has no maximal elements; Barmpalias and Fan and Lu FL05 showed that there are maximal pairs, hence the partial orderings of the ibT- and cl-degrees are not upper semilattices; and Barmpalias and Lewis BL06b and Day Day10 showed that these partial orderings are not dense. In another article, Barmpalias and Lewis LB06 prove various decidability results for the global structure of cl-degrees and further results on this reducibility. Ambos-Spies, Bodewig, Kräling and Yu ASBKY] embedded the nonmodular lattice \mathcal{N}_{5} into the c.e. ibT- and cl-degrees thereby showing that these partial orderings are not distributive and Ambos-Spies [AS17] proved some global results; e.g., he showed that the first order theories of the partial orderings of the c.e. ibT- and cl-degrees are undecidable. Recently, Ambos-Spies [ASb] introduced a more general class of bounded Turing reducibilities, the uniformly bounded Turing reducibilities. A reducibility r is a (uniformly) bounded Turing reducibility ((u)bT-reducibility) if there is a family \mathcal{F} of (uniformly) computable functions such that, for all sets A and B, A is r-reducible to B if and only if A is

Turing reducible to B with use bounded by some function f in \mathcal{F}. We call a (uniformly) bounded Turing reducibility admissible if it is reflexive and transitive and we call it monotone if it is induced by a family of strictly increasing functions. Examples of monotone admissible ubT-reducibilities are the strongly bounded Turing reducibilities ibT and cl as well as the linearly bounded and the primitive recursively bounded Turing reducibilities. An example of a monotone admissible bT-reducibility which is not uniformly bounded is wtt-reducibility. Here, we mainly look at the monotone admissible bT reducibilities.

If a reducibility r is stronger than a reducibility r^{\prime}, of course, every upper r-bound for some sets A_{0} and A_{1} is also an upper r^{\prime}-bound for A_{0} and A_{1} and the same holds for lower bounds. But this does not necessarily imply that least upper r-bounds (joins) have to be least upper r^{\prime}-bounds, too. Again, the same holds for greatest lower bounds (meets). Here, we ask the question for which reducibilities r and r^{\prime}, joins and meets in the c.e. r-degrees are preserved in the c.e. r^{\prime}-degrees. We say $r-r^{\prime}$ join (meet) preservation holds if, for all noncomputable c.e. sets A_{0}, A_{1} and B such that the r-degree of B is the join (meet) of the r-degrees of A_{0} and A_{1}, it holds that the r^{\prime}-degree of B is the join (meet) of the r^{\prime}-degrees of A_{0} and A_{1}, too.

For most of the classical strong reducibilities mentioned above, the structure of the c.e. degrees is an upper semilattice where the join of the degrees of two sets A_{0} and A_{1} is induced by the effective disjoint union $A_{0} \oplus A_{1}$. So, for two such reducibilities where r is stronger than r^{\prime}, of course, $r-r^{\prime}$ join preservation holds. So, for example, m-tt join preservation, tt -wtt join preservation and wtt-T join preservation hold. For reducibilities r whose degree structures are not upper semilattices with join induced by the effective disjoint union, the question of $r-r^{\prime}$ join preservation is less obvious. For the classical strong reducibilities, 1-reducibility is an example of such a reducibility, but, as one can easily show (see Lemma 82 below), 1-m join preservation holds. It easily follows that $r-r^{\prime}$ join preservation holds for all classical strong reducibilities where r is stronger than r^{\prime}. For the (uniformly) bounded Turing reducibilities, the question of join preservation is less straightforward. Ambos-Spies, Ding, Fan and Merkle ASDFM13 showed that ibT-cl join preservation holds and Ambos-Spies, Bodewig, Kräling and Yu (see AS17) showed that cl-wtt join preservation holds, too. This may lead one to conjecture that - just as in case of the classical strong reducibilities -$r-r^{\prime}$ join preservation holds for any monotone admissible (u)bT-reducibilities where r is stronger than r^{\prime}, too. As we show here, however, this is not the case. In fact, for $r=\mathrm{ibT}$, cl and for any monotone admissible ubT-reducibility r^{\prime} which is strictly weaker than $\mathrm{cl}, r-r^{\prime}$ join preservation fails (see Theorem 87 below).

We complement the main result of this chapter by considering meet preservation in the monotone admissible bT-reducibilities, too. There we generalize the result in ASDFM13 that ibT-cl meet preservation holds by showing that indeed, $r-r^{\prime}$ meet preservation holds for all monotone admissible bT-reducibilities r and r^{\prime} such that r is stronger than r^{\prime} (see Lemma 89).

So, for the monotone admissible (uniformly) bounded Turing reducibilities, meet preservation holds in general while, in some instances, join preservation fails. For the classical reducibilities, i.e., the classical strong reducibilities ($1-, \mathrm{m}-$, tt-, and wtt-reducibility) together with Turing reducibility, the converse is true. There join preservation holds in general, whereas, as Downey and Stob DS86 showed, wtt-T meet preservation fails. We complete the picture by showing that 1-m meet preservation holds while $r-r^{\prime}$ meet preservation fails for all other pairs of classical reducibilities r and r^{\prime} such that r is strictly stronger than r^{\prime}.

The outline of the chapter is as follows. In Section 3.2, we give the definitions and notation needed. In Section 3.3, we show that join preservation holds in general in the classical strong reducibilities together with Turing reducibility. Contrasting this, we see in Section 3.4 that, while join preservation holds in many cases of admissible ubT-reducibilities, there are examples of nonmonotone admissible ubT-reducibilities where join preservation fails. Our main result of this chapter shows that there are also cases of monotone admissible ubT-reducibilities where join preservation fails. On the other hand, meet preservation holds in general for the monotone admissible bounded Turing reducibilities as we show in Section 3.5. In Section 3.6, we give a complete picture of meet preservation in the classical strong reducibilities together with Turing reducibility. Finally, in Section 3.7, we state some open problems.

Large parts of this chapter have been published in two papers by Losert in Lecture Notes in Computer Science Los15] as well as in Information and Computation Los17.

3.2 Preliminaries

A reducibility r is admissible if it is reflexive and transitive. For two reducibilities r and r^{\prime}, we say that r is stronger than r^{\prime} (denoted by $r \preceq r^{\prime}$) if, for all sets A and B, from $A \leq_{r} B$, it follows that $A \leq_{r^{\prime}} B$ and r is strictly stronger than $r^{\prime}\left(r \prec r^{\prime}\right)$ if $r \preceq r^{\prime}$ and $r \neq r^{\prime}$.

Definition 80. For two admissible reducibilities r and r^{\prime}, we say that $r-r^{\prime}$ join preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A_{0}, A_{1} and B,

$$
\operatorname{deg}_{r}\left(A_{0}\right) \vee \operatorname{deg}_{r}\left(A_{1}\right)=\operatorname{deg}_{r}(B) \Rightarrow \operatorname{deg}_{r^{\prime}}\left(A_{0}\right) \vee \operatorname{deg}_{r^{\prime}}\left(A_{1}\right)=\operatorname{deg}_{r^{\prime}}(B)
$$

holds. Otherwise, we say that $r-r^{\prime}$ join preservation fails. Similarly, $r-r^{\prime}$ meet preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A_{0}, A_{1} and B,

$$
\operatorname{deg}_{r}\left(A_{0}\right) \wedge \operatorname{deg}_{r}\left(A_{1}\right)=\operatorname{deg}_{r}(B) \Rightarrow \operatorname{deg}_{r^{\prime}}\left(A_{0}\right) \wedge \operatorname{deg}_{r^{\prime}}\left(A_{1}\right)=\operatorname{deg}_{r^{\prime}}(B)
$$

holds and $r-r^{\prime}$ meet preservation fails otherwise.
Note that, if r is not stronger than r^{\prime} on the noncomputable c.e. sets (i.e., if there are noncomputable c.e. sets A and B such that $A \leq_{r} B$ and $A \not \mathbb{r}_{r^{\prime}} B$), then $r-r^{\prime}$ join preservation fails. This can be seen by considering the degrees of such sets A and B. Namely, $\operatorname{deg}_{r}(A) \vee d e g_{r}(B)=d e g_{r}(B)$, but $\operatorname{deg}_{r^{\prime}}(A) \vee \operatorname{deg}_{r^{\prime}}(B) \neq \operatorname{deg}_{r^{\prime}}(B)$ because B is not an upper r^{\prime}-bound for A and B. Similarly, in that case, $r-r^{\prime}$ meet preservation fails. So in the following we discuss join and meet preservation only for reducibilities r and r^{\prime} such that r is stronger than r^{\prime}.

From the enumeration $\left\{\Phi_{e}^{X}\right\}_{e \geq 0}$ of all Turing functionals, we obtain an enumeration $\left\{\Phi_{e}^{X, f}\right\}_{e \geq 0}$ of all f-bounded Turing functionals by bounding the use of each Φ_{e}^{X} on input x by $f(x)+1$ (by making the computation divergent in case of greater oracle queries). For any pair of sets A and B, A is f-bounded Turing reducible to B if and only if there is an index e such that $A=\Phi_{e}^{B, f}$. By letting $f=i d$, we obtain an enumeration $\left\{\hat{\Phi}_{e}^{X}\right\}_{e \geq 0}$ of all identity bounded Turing functionals.

We call a reducibility r a bounded Turing reducibility (bT-reducibility) if there is a family \mathcal{F} of computable functions such that $A \leq_{r} B$ if and only if $A \leq_{f-\text { т }} B$ for some function $f \in \mathcal{F}$; in this case we say that r is induced by \mathcal{F}. If \mathcal{F} is uniformly computable, r is called a uniformly bounded Turing reducibility (ubT-reducibility). We call a bounded Turing reducibility monotone
if it is induced by a family \mathcal{F} which only consists of strictly increasing functions. Note that ibT and cl are monotone admissible ubT-reducibilities which are induced by $\mathcal{F}_{\text {ibT }}=\{i d\}$ and $\mathcal{F}_{\mathrm{cl}}=\{i d+e: e \geq 0\}$, respectively. Another example of a monotone admissible ubT-reducibility we consider here is linearly bounded Turing reducibility. Note that lbT-reducibility is induced by $\mathcal{F}_{\mathrm{lbT}}=\left\{x \mapsto c_{0} x+c_{1}: c_{0}, c_{1} \geq 0\right\}$. The strength of ubT-reducibilities is determined by the growth rates of the corresponding bounds:

Lemma 81 (Ambos-Spies ASb). Let r and r^{\prime} be admissible ubT-reducibilities. Then, $r \preceq r^{\prime}$ if and only if there are uniformly computable families \mathcal{F} and \mathcal{F}^{\prime} that induce r and r^{\prime}, respectively, such that $\mathcal{F} \leq^{*} \mathcal{F}^{\prime}$, i.e., for every function $f \in \mathcal{F}$, there is a function $f^{\prime} \in \mathcal{F}^{\prime}$ such that $f(x) \leq f^{\prime}(x)$ for almost all $x \geq 0$.

3.3 Join Preservation in the Classical Strong Reducibilities

It is a straightforward observation that $r-r^{\prime}$ join preservation holds for reducibilities r and r^{\prime} such that r is stronger than r^{\prime} and such that the structures of the c.e. r-degrees and of the c.e. r^{\prime}-degrees form upper semilattices with join induced by the effective disjoint union. This is the case for all pairs $r, r^{\prime} \in\{\mathrm{m}, \mathrm{tt}, \mathrm{wtt}, \mathrm{T}\}$ such that r is stronger than r^{\prime}, so in these cases, $r-r^{\prime}$ join preservation holds. We show that this is still true if we include the strongest classical reducibility, namely 1-reducibility. The c.e. 1-degrees do not form an upper semilattice, but it is possible to generalize the above observation as follows.

Lemma 82. Let r and r^{\prime} be admissible reducibilities such that $r \preceq r^{\prime}$ and, for any c.e. sets A_{0} and A_{1}, the following hold.

$$
\begin{gather*}
A_{i} \leq_{r} A_{0} \oplus A_{1}(i \leq 1) \tag{3.1}\\
\operatorname{deg}_{r^{\prime}}\left(A_{0}\right) \vee \operatorname{deg}_{r^{\prime}}\left(A_{1}\right)=\operatorname{deg}_{r^{\prime}}\left(A_{0} \oplus A_{1}\right) \tag{3.2}
\end{gather*}
$$

Then, $r-r^{\prime}$ join preservation holds.
Proof. Given c.e. sets A_{0}, A_{1} and B such that

$$
\begin{equation*}
\operatorname{deg}_{r}\left(A_{0}\right) \vee \operatorname{deg}_{r}\left(A_{1}\right)=\operatorname{deg}_{r}(B) \tag{3.3}
\end{equation*}
$$

holds, it suffices to show that $A_{0} \oplus A_{1}={ }_{r^{\prime}} B$.
For a proof of $A_{0} \oplus A_{1} \leq_{r^{\prime}} B$ it suffices to note that by (3.3) and by $r \preceq r^{\prime}, A_{0}, A_{1} \leq_{r^{\prime}} B$, hence $A_{0} \oplus A_{1} \leq{ }_{r^{\prime}} B$ by (3.2). Finally, for a proof of $B \leq{ }_{r^{\prime}} A_{0} \oplus A_{1}$, note that $B \leq_{r} A_{0} \oplus A_{1}$ by (3.1) and 3.3), hence $B \leq_{r^{\prime}} A_{0} \oplus A_{1}$ by $r \preceq r^{\prime}$.

Theorem 83. Let $r, r^{\prime} \in\{1, \mathrm{~m}, \mathrm{tt}, \mathrm{wtt}, \mathrm{T}\}$ be given such that $r \preceq r^{\prime}$. Then, $r-r^{\prime}$ join preservation holds.

Proof. This is immediate by the preceding lemma as for all $r \in\{1, \mathrm{~m}, \mathrm{tt}, \mathrm{wtt}, \mathrm{T}\}, 3.1$ holds and for all $r^{\prime} \in\{\mathrm{m}, \mathrm{tt}, \mathrm{wtt}, \mathrm{T}\},(3.2)$ holds.

3.4 Join Preservation in the ubT-Reducibilities

For the admissible ubT-reducibilities, we will see that join preservation does not always hold as it is the case for the classical reducibilities. First, we give some positive examples from the literature.

Theorem 84 (Ambos-Spies ASb]). Let r be an admissible ubT-reducibility such that $\mathrm{lbT} \preceq r$. Then, the following are equivalent.
(i) r is monotone.
(ii) For any c.e. sets A_{0} and $A_{1}, \operatorname{deg}_{r}\left(A_{0}\right) \vee \operatorname{deg}_{r}\left(A_{1}\right)$ exists.
(iii) For any c.e. sets A_{0} and A_{1}, $\operatorname{deg}_{r}\left(A_{0}\right) \vee \operatorname{deg}_{r}\left(A_{1}\right)=\operatorname{deg}_{r}\left(A_{0} \oplus A_{1}\right)$ holds.

This implies that for monotone ubT-reducibilities r and r^{\prime} such that $\mathrm{lbT} \preceq r \prec r^{\prime}, r-r^{\prime}$ join preservation holds. In fact, the following is true.

Corollary 85. Let r and r^{\prime} be admissible ubT-reducibilities such that $\mathrm{lbT} \preceq r \prec r^{\prime}$ and such that r or r^{\prime} is monotone. Then, $r-r^{\prime}$ join preservation holds if and only if r^{\prime} is monotone.

Proof. If r^{\prime} is monotone, then $r-r^{\prime}$ join preservation holds by Lemma 82, Namely, by lbT $\preceq r$, (3.1) holds while, by Theorem $84,3.2$ holds.

On the other hand, if r^{\prime} is not monotone, then r is monotone. Hence, by Theorem $84, \operatorname{deg}_{r}\left(A_{0}\right) \vee$ $\operatorname{deg}_{r}\left(A_{1}\right)=\operatorname{deg}_{r}\left(A_{0} \oplus A_{1}\right)$ holds for all c.e. sets A_{0} and A_{1} while, again by Theorem 84 there are c.e. sets A_{0} and A_{1} such that $\operatorname{deg}_{r^{\prime}}\left(A_{0}\right) \vee \operatorname{deg}_{r^{\prime}}\left(A_{1}\right)=\operatorname{deg}_{r^{\prime}}\left(A_{0} \oplus A_{1}\right)$ fails. It follows that $r-r^{\prime}$ join preservation fails.

For admissible bounded Turing reducibilities r and r^{\prime} such that r is strictly stronger than lbT, we cannot apply Lemma 82 to show that $r-r^{\prime}$ join preservation holds, because here, 3.1 in general fails. Still, some positive results are known.

Lemma 86 (Ambos-Spies, Ding, Fan and Merkle ASDFM13; Ambos-Spies AS17). ibT-cl, ibTwtt and cl-wtt join preservation hold.

Together with the fact that $r-r^{\prime}$ join preservation holds for all monotone ubT-reducibilities r and r^{\prime} such that lbT $\preceq r \prec r^{\prime}$, this leads to the question if $r-r^{\prime}$ join preservation holds for all monotone admissible (uniformly) bounded Turing reducibilities with $r \preceq r^{\prime}$. If we consider the nonmonotone case, Corollary 85 gives us a counterexample, namely two admissible ubT-reducibilities weaker than lbT where join preservation fails, as follows. For admissible reducibilities r and r^{\prime} such that $\mathrm{lbT} \preceq$ $r \prec r^{\prime}$ and such that r is monotone and r^{\prime} is nonmonotone, $r-r^{\prime}$ join preservation fails by Corollary 85. Such reducibilities exist because lbT-reducibility is monotone and in Ambos-Spies ASb it has been shown that, for any admissible ubT-reducibility r, there is a nonmonotone admissible ubTreducibility r^{\prime} with $r \preceq r^{\prime}$. Since nonmonotone ubT-reducibilities are rather artificial, a further question is whether there are also natural examples of (monotone) ubT-reducibilities such that join preservation fails.

In the following, we give such an example. We show that cl- r^{\prime} join preservation (as well as ibTr^{\prime} join preservation) fails for all monotone admissible ubT-reducibilities r^{\prime} with $\mathrm{cl} \prec r^{\prime}$. So, for example, join preservation fails for the naturally defined monotone admissible ubT-reducibilities cl and lbT .

Theorem 87. Let r^{\prime} be a monotone admissible ubT-reducibility such that $\mathrm{cl} \prec r^{\prime}$. Then, for $r=\mathrm{ibT}, \mathrm{cl}, r-r^{\prime}$ join-preservation fails.

Proof. By Lemma 86, ibT-cl join preservation holds. So, it is enough to prove the theorem for $r=\mathrm{ibT}$. Since, by cl $\prec r^{\prime}$, any upper ibT-bound for two sets A_{0} and A_{1} is also an upper r^{\prime}-bound for A_{0} and A_{1}, it suffices to construct c.e. sets A_{0}, A_{1}, B and C such that $\operatorname{deg}_{\mathrm{ibT}}\left(A_{0}\right) \vee d e g_{\mathrm{ibT}}\left(A_{1}\right)=$ $\operatorname{deg}_{\mathrm{ibT}}(B)$ and such that $A_{0}, A_{1} \leq_{r^{\prime}} C$ but $B \mathbb{Z}_{r^{\prime}} C$. Let \mathcal{F} be a uniformly computable family of strictly increasing functions such that r^{\prime} is induced by \mathcal{F}. As \mathcal{F} is uniformly computable, we can fix a computable function f such that $f \geq^{*} h$ for all $h \in \mathcal{F}$. As $\mathrm{cl} \prec r^{\prime}$, hence $r^{\prime} \npreceq \mathrm{cl}$, $\mathcal{F} \not \mathbb{Z}^{*}\{i d+e: e \geq 0\}$ holds, so, there is a function $g \in \mathcal{F}$ such that $\{g\} \not \mathbb{Z}^{*}\{i d+e: e \geq 0\}$, i.e., for any $e \geq 0, g(x)>x+e$ for infinitely many x. Since g is strictly increasing, this implies that for all $e \geq 0, g(x)>x+e$ for all but finitely many x, so, $i d+e \leq^{*} g$ for all $e \geq 0$. So, in order to complete the proof, it suffices to show that the following lemma holds.

Lemma 88. Let g be a strictly increasing computable function such that id $+e \leq^{*} g$ for all e and let f be any computable function (in particular, f can be chosen as above). Then, there are c.e. sets A_{0}, A_{1}, B and C such that the following hold.

$$
\begin{gather*}
d e g_{\mathrm{ibT}}\left(A_{0}\right) \vee d e g_{\mathrm{ibT}}\left(A_{1}\right)=d e g_{\mathrm{ibT}}(B), \tag{3.4}\\
A_{0}, A_{1} \leq_{g-\mathrm{T}} C, \tag{3.5}\\
B \not \leq_{f-\mathrm{T}} C . \tag{3.6}
\end{gather*}
$$

Proof. We enumerate c.e. sets A_{0}, A_{1}, B and C such that (3.4) to (3.6) hold using a tree argument. We let $A_{0, s}, A_{1, s}, B_{s}$ and C_{s} be the finite parts of A_{0}, A_{1}, B and C enumerated by the end of stage s, respectively. Moreover, for any of these sets X, we write $x \searrow_{s+1} X$ if x enters X at stage s, i.e., if $x \in X_{s+1} \backslash X_{s}$.

In order to guarantee (3.4), we use the join technique introduced in ASBKY where it is shown that the nondistributive lattice \mathcal{N}_{5} can be embedded into the partial orderings $\left(\mathbf{R}_{\mathrm{ibT}}, \leq\right)$ and $\left(\mathbf{R}_{\mathrm{cl}}, \leq\right)$. The proof we give is self-contained hence duplicates some of the arguments given there and some parts of our proof follow the corresponding parts in ASBKY quite closely.

To guarantee that (3.5) holds and that B is an upper ibT-bound for A_{0} and A_{1}, we meet the following global permitting (or coding) requirement for $i=0,1$.

$$
\begin{equation*}
\left(x \searrow_{s+1} A_{i} \Rightarrow \exists y \leq x\left(y \searrow_{s+1} B\right)\right) \&\left(x \searrow_{s+1} A_{i} \Rightarrow \exists y \leq g(x)\left(y \searrow_{s+1} C\right)\right) \tag{3.7}
\end{equation*}
$$

To guarantee that B is in fact the least upper ibT-bound for A_{0} and A_{1}, i.e., that (3.4) holds, we meet the following join requirements for $e \geq 0$ (where, here and in the following, $e=\left\langle e_{0}, e_{1}, e_{2}\right\rangle$).

$$
Q_{e}: A_{0}=\hat{\Phi}_{e_{1}}^{W_{e_{0}}} \& A_{1}=\hat{\Phi}_{e_{2}}^{W_{e_{0}}} \Rightarrow B \leq_{\mathrm{ibT}} W_{e_{0}}
$$

Finally, we satisfy condition (3.6) by meeting the nonordering requirements

$$
P_{e}: B \neq \Phi_{e}^{C, f}
$$

for $e \geq 0$.
Before giving the actual construction, we explain the ideas underlying the strategies for meeting the individual requirements and how to combine them.

As the join requirements Q_{e} are conditional requirements whose hypotheses are not decidable, we have to guess on the correctness of the hypotheses. We define the length of agreement between A_{0} and $\hat{\Phi}_{e_{1}}^{W_{e_{0}}}$ and between A_{1} and $\hat{\Phi}_{e_{2}}^{W_{e_{0}}}$ at stage s by letting

$$
l(e, s)=\max \left\{x: \forall y<x\left(A_{0, s}(y)=\hat{\Phi}_{e_{1}, s}^{W_{e_{0}, s}}(y) \& A_{1, s}(y)=\hat{\Phi}_{e_{2}, s}^{W_{e_{0}, s}}(y)\right)\right\}
$$

Note that $l(e, s)$ is computable. Moreover, the functionals $\hat{\Phi}_{e_{i}}$ are bounded, so for all $e \geq 0$, $\lim _{s \rightarrow \infty} l(e, s) \leq \infty$ exists and the following holds.

$$
\begin{equation*}
\left(A_{0}=\hat{\Phi}_{e_{1}}^{W_{e_{0}}} \& A_{1}=\hat{\Phi}_{e_{2}}^{W_{e_{0}}}\right) \Leftrightarrow \lim _{s \rightarrow \infty} l(e, s)=\infty \Leftrightarrow \limsup _{s \rightarrow \infty} l(e, s)=\infty \tag{3.8}
\end{equation*}
$$

We call a join requirement Q_{e} infinitary if its hypothesis is true (i.e., if $\lim _{s \rightarrow \infty} l(e, s)=\infty$) and we call Q_{e} finitary otherwise. The strategy for meeting the join requirements is the join technique introduced by Ambos-Spies, Bodewig, Kräling and Yu in ASBKY. Assuming Q_{e} is infinitary, we aim to make the conclusion $\left(B \leq_{\mathrm{ibT}} W_{e_{0}}\right)$ true by a permitting strategy (up to some computable subset of B). We define a computable set $S=\left\{s_{n}: n \geq 0\right\}$ of $Q_{e^{-}}$expansionary stages, i.e., stages $s_{0}<s_{1}<s_{2}<\ldots$ such that $l\left(e, s_{0}\right)<l\left(e, s_{1}\right)<l\left(e, s_{2}\right)<\ldots$. Between stages $s_{n}+1$ and $s_{n+1}+1$, only numbers that are greater than $s_{n}+1$ are allowed to enter B. The subset of B consisting of the numbers that enter B at a stage that is not expansionary will hence be computable. Furthermore, the subset of B consisting of the numbers that enter B at an expansionary stage but are greater or equal to the length of agreement at that stage is computable, too. So, only numbers x that enter B at a stage $s+1$ where $s \in S$ and $x<l(e, s)$ need permitting by $W_{e_{0}}$, i.e., some number $\leq x$ has to be enumerated into $W_{e_{0}}$ after stage s. We cannot control $W_{e_{0}}$ directly, but we put a sufficiently small number into A_{0} or A_{1}. Then, $W_{e_{0}}$ is forced to also enumerate a small number, otherwise the hypothesis of Q_{e} would become false. As one can easily check, this is achieved by guaranteeing the following for all numbers x.

$$
\begin{align*}
x \searrow_{s+1} B \& x<l(e, s) \Rightarrow & \exists y<\min \left\{x^{\prime}, l(e, s)\right\}\left(y \searrow_{s+1} A_{0} \text { or } y \searrow_{s+1} A_{1}\right) \tag{3.9}\\
& \text { where } x^{\prime}=\mu z\left(z>x \& z \notin W_{e_{0}, s}\right) .
\end{align*}
$$

In case that the hypothesis of Q_{e} is true, a Turing functional Γ that computes $B(x)$ given $W_{e_{0}} \upharpoonright$ $x+1$ works as follows. On input x, find a Q_{e}-expansionary stage s with $l(e, s)>x$ such that $W_{e_{0}, s} \upharpoonright x+1=W_{e_{0}} \upharpoonright x+1$. Then, let $\Gamma^{W_{e_{0}}}(x)=B_{s}(x)$. By the assumption that the hypothesis of Q_{e} is true and by (3.9), $B(x)$ cannot change after stage s, i.e., $\Gamma^{W_{e_{0}}}(x)=B_{s}(x)=B(x)$.

For meeting the nonordering requirements P_{e}, we use the standard Friedberg-Muchnik strategy. For some fixed new number x (i.e., a number that has not yet been enumerated into any of the sets we construct), we wait for a stage s such that $\Phi_{e, s}^{C_{s}, f}(x)=0$. If such a stage does not exist, we never enumerate x into B, so, by the use principle, P_{e} is met. Otherwise, at stage $s+1$, we put x into B and, in order to preserve the computation $\Phi_{e, s}^{C_{s, s}}(x)$, we impose a restraint of length $f(x)+1$ on C, thereby ensuring

$$
\begin{equation*}
B(x)=1 \neq 0=B_{s}(x)=\Phi_{e, s}^{C_{s}, f}(x)=\Phi_{e}^{C, f}(x) \tag{3.10}
\end{equation*}
$$

In the presence of the join requirements and the global permitting requirement, this strategy needs some amendments. To describe the potential conflicts, consider the situation in which we wish to meet requirement P_{e} and simultaneously meet the global permitting requirement (3.7) and follow
the join technique 3.9 for a single infinitary join requirement $Q_{e^{\prime}}\left(e^{\prime}=\left\langle e_{0}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right\rangle\right)$ of higher priority.

When we put a number x into B at stage $s+1$ in order to guarantee 3.10, then, according to (3.9), we have to put a number $y<x^{\prime}$ into A_{0} or A_{1} at stage $s+1$ where

$$
x^{\prime}=\mu z\left(z>x \& z \notin W_{e_{0}^{\prime}, s}\right)
$$

(In the actual construction, we choose to put y into A_{1}.) If we do so, then, as long as $x \leq y$, this is consistent with the first part of condition (3.7). But, for the second part of this condition, we have to put a number $z \leq g(y)$ into C. In case that $z \leq f(x)$, however, this injures the restraint imposed on C in order to preserve the computation $\Phi_{e, s}^{C_{s}, f}(x)$. In order to overcome this problem, we make sure that we can find a number y such that $f(x)<y<x^{\prime}$ where y is not yet in A_{1} and the interval $[y, g(y)]$ is not yet completely enumerated into C. (Then putting y into A_{1} and some new number z with $y \leq z \leq g(y)$ into C makes the enumeration of x into B compatible with (3.7) and (3.9).)

For that matter, we assign a sufficiently long interval I_{n} of unused numbers to P_{e}. I_{n} contains finitely many candidates $x_{n, k}$ for a possible attack on P_{e} where these numbers are chosen so that $x_{n, k+1}>f\left(x_{n, k}\right)$ and $g\left(x_{n, k}\right) \geq x_{n, k}+k+2$ for all k. (Note that the latter can be achieved since, by choice of $g, g(y)>y+k+2$ for all sufficiently large y; also note that $g\left(x_{n, k}\right) \geq x_{n, k}+k+2$ implies $g(y) \geq y+k+2$ for all $y \geq x_{n, k}$.) We arrange that, for some k (and some stage s), $\left(x_{n, k}, x_{n, k+1}\right] \subseteq$ $W_{e_{0}^{\prime}, s}$ where $x_{n, k}$ is not in $B_{s}, x_{n, k+1}$ is not in $A_{1, s}$ and the interval $\left[x_{n, k+1}, g\left(x_{n, k+1}\right)\right]$ is not completely contained in C_{s}. (Hence, for $x=x_{n, k}$ and $y=x_{n, k+1}, y<x^{\prime}$ whence we can ensure (3.10) and simultaneously obey (3.7) and (3.9) by putting $x_{n, k}$ into $B, x_{n, k+1}$ into A_{1} and some unused number from the interval $\left[x_{n, k+1}, g\left(x_{n, k+1}\right)\right]$ into C at stage $s+1$.)

In order to ensure $\left(x_{n, k}, x_{n, k+1}\right] \subseteq W_{e_{0}^{\prime}}$ for some k, we will successively and in decreasing order put numbers w from I_{n} into A_{0} at stages $s+1$ where $l\left(e^{\prime}, s\right)$ is greater than the endpoint of I_{n}. This forces $W_{e_{0}^{\prime}}$ to respond by enumerating more and more numbers from I_{n} (or smaller ones). As we will argue, this implies that, at some point s, there is a subinterval $\left(x_{n, k}, \ldots x_{n, k+1}\right] \subset I_{n}$ such that the enumeration of the numbers $\geq x_{n, k}+1$ from I_{n} into A_{0} has forced all the numbers $x_{n, k}+1, \ldots, x_{n, k+1}$ into $W_{e_{0}^{\prime}}$. (In the actual construction, all the numbers have to be forced simultaneously into all sets $W_{e_{0}^{\prime}}$ attached to the infinitary higher priority join requirements, but we will show that this can be achieved by the above strategy.) So we can use $x_{n, k}$ for an attack on P_{e} - provided that $x_{n, k} \notin B_{s}, x_{n, k+1} \notin A_{1, s}$ and $\left[x_{n, k+1}, g\left(x_{n, k+1}\right)\right] \nsubseteq C_{s}$.

The latter, however, is not trivially true, since to make the enumeration of w into A_{0} compatible with 3.7, simultaneously, we have to put a trace $w_{B} \leq w$ into B and a trace $w_{C} \leq g(w)$ into C. So whenever we put w into A_{0}, then, we simultaneously put w into B (which is compatible with (3.9) since w also goes into A_{0}) and a number from the interval $[w, g(w)]$ into C. Since we put only numbers $w>x_{n, k}$ into A_{0} this procedure also puts only numbers $>x_{n, k}$ into B and no numbers into A_{1} hence guarantees $x_{n, k} \notin B_{s}$ and $x_{n, k+1} \notin A_{1, s}$. To ensure that $\left[x_{n, k+1}, g\left(x_{n, k+1}\right)\right] \nsubseteq C_{s}$, however, we have to carefully choose the trace $w_{C} \in[w, g(w)]$ to be put into C. Here we let $w_{C}=w+k^{\prime}+1$ for the unique k^{\prime} such that $w \in\left(x_{n, k^{\prime}}, x_{n, k^{\prime}+1}\right]$. Note that, by choice of the numbers $x_{n, k^{\prime}}$, this ensures that $w_{C} \leq g(w)$. On the other hand, this ensures that $x_{n, k+1}+k+2$ is not enumerated into C since, if $w \in I_{n}$, for $w \leq x_{n, k+1}$, then $w_{C} \leq w+k+1<x_{n, k+1}+k+2$ while, for $x_{n, k+1}<w$, then $w_{C} \geq w+(k+1)+1>x_{n, k+1}+k+2$ and if $w \in I_{n^{\prime}}$ for $n^{\prime} \neq n$, then the
definition of the intervals will ensure that either $w_{C}<x_{n, 0}<x_{n, k+1}+k+2$ or $w_{C}>x_{n, k+1}+k+2$.
This completes the discussion of the basic conflicts among the different goals of the construction and how these conflicts can be resolved.

Before giving the construction of the sets, we need the following notions and notation. We implement the guesses about which of the join requirements are infinitary on the full binary tree $T=\{0,1\}^{<\omega}$. A node α of length n codes a guess about the hypotheses of the first n join requirements Q_{0}, \ldots, Q_{n-1} where, for $e<n, \alpha(e)=0$ codes the guess that Q_{e} is infinitary and $\alpha(e)=1$ codes the guess that Q_{e} is finitary. The true path $f: \omega \rightarrow\{0,1\}$ of the construction is defined by

$$
f(e)= \begin{cases}0 & \text { if } A_{0}=\hat{\Phi}_{e_{1}}^{W_{e_{0}}} \& A_{1}=\hat{\Phi}_{e_{2}}^{W_{e_{0}}} \\ 1 & \text { otherwise }\end{cases}
$$

To each node α of length e, we assign a strategy \mathcal{P}_{α} for meeting requirement P_{e} which is based on the guess α. We show that the strategy $\mathcal{P}_{f \upharpoonright e}$ on the true path succeeds in meeting P_{e}.

At any stage s of the construction we have an approximation δ_{s} of $f \upharpoonright s$, i.e., a guess on which of the first s join requirements are infinitary. For the definition of δ_{s}, we inductively define α-stages for each node α as follows. Each stage $s \geq 0$ is a λ-stage. If s is an α-stage, then we call $s \alpha$-expansionary if $l(|\alpha|, s)>l(|\alpha|, t)$ for all α-stages $t<s$ and we call s an $\alpha 0$-stage if s is α-expansionary and an $\alpha 1$-stage if s is an α-stage but not α-expansionary. Now, for each $s \geq 0$, let $\delta_{s} \in T$ be the unique α of length s such that s is an α-stage. It easily follows from (3.8) that the true path is the leftmost path visited infinitely often in the construction.

The intervals I_{n} which might be assigned to the strategies for meeting the nonordering requirements are inductively defined as follows, where the nth interval I_{n} consists of $n\left(x_{n, 0}+1\right)$ many subintervals $I_{n, k}=\left(x_{n, k}, x_{n, k+1}\right]$.

$$
\begin{aligned}
& x_{0,0}= \mu x(g(x) \geq x+2), \\
& x_{n, k}= \mu x\left(x>x_{n, k-1}, f\left(x_{n, k-1}\right) \& g(x) \geq x+k+2\right) \\
& \text { for } n \geq 0 \text { and } 1 \leq k \leq n\left(x_{n, 0}+1\right), \\
& x_{n+1,0}= \mu x\left(x>x_{\left.n, n\left(x_{n, 0}+1\right)+n\left(x_{n, 0}+1\right)+2 \& g(x) \geq x+2\right) \text { for } n \geq 0,}^{I_{n, k}=}\right. \\
&=\left(x_{n, k}, x_{n, k+1}\right] \text { for } n \geq 0 \text { and } 0 \leq k \leq n\left(x_{n, 0}+1\right)-1, \\
& I_{n}= \bigcup_{k=0}^{n\left(x_{n, 0}+1\right)-1} I_{n, k} .
\end{aligned}
$$

Note that this definition ensures that $x_{n, k+1}>f\left(x_{n, k}\right), g(w) \geq w+k+2$ and $w+k+2<x_{n+1,0}$ for $w \in I_{n, k}$.

For a node α of length e, we call a number $x \in I_{n} \cup\left\{x_{n, 0}\right\} \alpha$-safe at stage s if for $e^{\prime}=\left\langle e_{0}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right\rangle$, the following hold.

$$
\begin{gather*}
x=x_{n, k} \text { for some } k \text { with } 0 \leq k \leq n\left(x_{n, 0}+1\right)-1, \tag{3.11}\\
x \notin B_{s}, x_{n, k+1} \notin A_{1, s} \text { and } x_{n, k+1}+k+2 \notin C_{s}, \tag{3.12}\\
\forall e^{\prime}\left(\left[e^{\prime}<e \& \alpha\left(e^{\prime}\right)=0\right] \Rightarrow I_{n, k} \subseteq W_{e_{0}^{\prime}, s}\right) . \tag{3.13}
\end{gather*}
$$

Now we are ready to give the actual construction of the sets A_{0}, A_{1}, B and C.

Construction.

Stage 0 is vacuous (i.e., $A_{0,0}=A_{1,0}=B_{0}=C_{0}=\emptyset$).
Stage $s+1$. A strategy \mathcal{P}_{α} with $|\alpha|=e$ requires attention at stage $s+1$ if $\alpha \sqsubseteq \delta_{s}, \mathcal{P}_{\alpha}$ is not satisfied at the end of stage s and one of the following holds.
(i) No interval is assigned to \mathcal{P}_{α} at the end of stage s.
(ii) Interval $I_{n}=\left(x_{n, 0}, x_{n, n\left(x_{n, 0}+1\right)}\right]$ is assigned to \mathcal{P}_{α} at the end of stage s,

$$
\begin{equation*}
\forall e^{\prime}\left(\left[e^{\prime}<e \& \alpha\left(e^{\prime}\right)=0\right] \Rightarrow l\left(e^{\prime}, s\right)>x_{n, n\left(x_{n, 0}+1\right)}\right) \tag{3.14}
\end{equation*}
$$

holds, no number $x \in I_{n} \cup\left\{x_{n, 0}\right\}$ is α-safe at stage s and $I_{n} \nsubseteq A_{0, s}$.
(iii) Interval I_{n} is assigned to \mathcal{P}_{α} at the end of stage $s, 3.14$ holds and there is a number $x \in I_{n} \cup\left\{x_{n, 0}\right\}$ such that x is α-safe at stage s and $B_{s}(x)=\Phi_{e, s}^{C_{s}, f}(x)=0$.

Fix the least α such that \mathcal{P}_{α} requires attention at stage $s+1$ (as $\mathcal{P}_{\delta_{s}}$ requires attention at stage $s+1$, there is such an α). Declare that \mathcal{P}_{α} receives attention or becomes active at stage $s+1$, initialize all strategies \mathcal{P}_{β} with $\alpha<\beta$ (i.e., if an interval is assigned to \mathcal{P}_{β} at the end of stage s, then cancel this assignment and if \mathcal{P}_{β} is satisfied at the end of stage s, then declare \mathcal{P}_{β} to be unsatisfied) and perform the following action according to the clause above via which \mathcal{P}_{α} requires attention.
(i) Assign I_{s+1} to \mathcal{P}_{α}. (Note that $e<s+1$.)
(ii) Let y be the greatest number in $I_{n} \backslash A_{0, s}$. Put y into A_{0} and B and, for the unique k such that $y \in I_{n, k}$, put $y+k+1$ into C.
(iii) Let x be the greatest α-safe number in $I_{n} \cup\left\{x_{n, 0}\right\}$ such that $B_{s}(x)=\Phi_{e, s}^{C_{s, s}, f}(x)=0$. Let k be the unique number such that $x=x_{n, k}$. Put x into $B, x_{n, k+1}$ into A_{1} and $x_{n, k+1}+k+2$ into C. Then, declare \mathcal{P}_{α} to be satisfied.

This completes the construction.

Verification.

Note that all constructed sets are c.e. We prove a series of claims to show that the construction meets all of our requirements.

Claim 1 (True Path Lemma). $f=\liminf _{s \rightarrow \infty} \delta_{s}$, i.e., for any $\alpha, \alpha \sqsubset f$ if and only if $\alpha \sqsubset \delta_{s}$ for infinitely many s and there are only finitely many s such that $\delta_{s}<_{L} \alpha$.

Proof. This is immediate by (3.8) and by definition of δ_{s} and f.

Claim 2. Every strategy \mathcal{P}_{α} on the true path (i.e., $\alpha \sqsubset f$) is initialized only finitely often and requires attention only finitely often. Moreover, for any such strategy, there is an interval I_{n} which is permanently assigned to it, i.e., there is a stage such that I_{n} is assigned to \mathcal{P}_{α} and this assignment is never canceled after stage s.

Proof. The proof is by induction on $|\alpha|$. Given α and $e=|\alpha|$, by Claim 1 and by inductive hypothesis fix s_{0} minimal such that $\alpha \leq \delta_{s}$ for all $s \geq s_{0}$ and such that no strategy \mathcal{P}_{β} with $\beta \sqsubset \alpha$ requires attention after stage s_{0}. Then, \mathcal{P}_{α} is not initialized after stage s_{0}. So \mathcal{P}_{α} receives attention whenever it requires attention after stage s_{0}. Moreover, by minimality of s_{0}, an interval I_{n} is permanently assigned to \mathcal{P}_{α} at stage $s_{1}+1$ where s_{1} is the least α-stage $\geq s_{0}$ (note that s_{1} exists because \mathcal{P}_{α} is on the true path). Then, after stage $s_{1}+1, P_{\alpha}$ receives attention at most $\left|I_{n}\right|$ many times via Clause (ii) and at most once via Clause (iii), hence P_{α} requires attention only finitely often.

Claim 3. The global permitting requirement (3.7) is met.
Proof. It is crucial to note that numbers x with $x_{n, 0} \leq x<x_{n+1,0}$ can be enumerated into any of the sets under construction at stage $s+1$ only by the strategy \mathcal{P}_{α} to which I_{n} is assigned at this stage. So, it follows by a straightforward induction that if a strategy \mathcal{P}_{α} acts via (ii) at stage $s+1$ then, for the number y being enumerated there, neither y is in B_{s} nor $y+k+1$ is in C_{s}. And, similarly, if a strategy \mathcal{P}_{α} acts via (iii) and some $x_{n, k}$ at stage $s+1$ then neither $x_{n, k}$ is in B_{s} nor $x_{n, k+1}+k+2$ is in C_{s} by α-safeness of $x_{n, k}$. This easily implies the claim, since a number x is enumerated into A_{0} at some stage $s+1$ only if some strategy \mathcal{P}_{α} acts at stage $s+1$ via (ii), hence $x \in I_{n, k}$ for some k and, at stage $s+1, x$ is enumerated into B and $x+k+1$ is enumerated into C where $x+k+1 \leq g(x)$ by choice of $I_{n, k}$; and since a number x is enumerated into A_{1} at some stage $s+1$ only if some strategy \mathcal{P}_{α} acts at stage $s+1$ via (iii), hence $x=x_{n, k+1}$ for some n, k and, at stage $s+1, x_{n, k}<x_{n, k+1}$ is enumerated into B and $x_{n, k+1}+k+2$ is enumerated into C where by choice of $x_{n, k+1}, x_{n, k+1}+k+2 \leq g(x)$.

Claim 4. The join requirements Q_{e} are met.
Proof. Fix e such that Q_{e} is infinitary, so, $\alpha 0 \sqsubset f$ for $\alpha=f \upharpoonright e$. (Otherwise, the requirement is trivially met.) Hence there are infinitely many $\alpha 0$-stages. By Claims 1 and 2 , we can fix an $\alpha 0$-stage $s_{0}>e$ such that no strategy \mathcal{P}_{β} with $\beta \leq \alpha 0$ becomes active after this stage. Let $S=\left\{s_{n}: n \geq 0\right\}$ be the set of the $\alpha 0$-stages $\geq s_{0}$. Then, S is computable, $s_{0}<s_{1}<s_{2}<\ldots$ and $l\left(e, s_{0}\right)<l\left(e, s_{1}\right)<l\left(e, s_{2}\right)<\ldots$. So, as explained in the discussion of the strategy for meeting the requirements Q_{e}, it suffices to show that (3.9) holds for $s \in S$. But this is immediate by construction since at a stage $s_{m}+1$ only a strategy \mathcal{P}_{β} with $\alpha 0 \sqsubseteq \beta$ may act. Namely, if \mathcal{P}_{β} acts via (ii) then the number x enumerated into B is simultaneously enumerated into A_{0} and if \mathcal{P}_{β} acts via (iii) then the claim follows from the corresponding action by β-safeness of the number x put into B.

Claim 5. The nonordering requirements P_{e} are met.
Proof. The proof closely follows the proof of the corresponding claim in ASBKY. For fixed e, assume for a contradiction that P_{e} is not met. Let $\alpha=f \upharpoonright e$, let I_{n} be the interval permanently assigned to \mathcal{P}_{α} and let $s_{1}+1(=n)$ be the stage at which I_{n} is assigned to \mathcal{P}_{α}. Then the assumption that P_{e} is not met easily implies that \mathcal{P}_{α} is not satisfied after stage $s_{1}+1$ and that no number in I_{n} is α-safe after stage $s_{1}+1$. So all numbers in I_{n} are enumerated into A_{0} in decreasing order after stage $s_{1}+1$ according to Clause (ii) in the definition of requiring and receiving attention. For $x \in I_{n}$, fix the α-stage $t_{x}>s_{1}$ such that x is enumerated into A_{0} at stage $t_{x}+1$ and let $t_{x_{n, 0}}$ be
the least α-stage greater than $t_{x_{n, 0+1}}$. (Note that, for $x \in I_{n}, t_{x}<t_{x-1}$ since numbers from I_{n} are enumerated into A_{0} in decreasing order.) Since, for any $x \in I_{n}$, 3.14) holds for $s=t_{x}$, it follows that

$$
W_{e_{0}^{\prime}, t_{x}} \upharpoonright x+1 \neq W_{e_{0}^{\prime}, t_{x-1}} \upharpoonright x+1
$$

for any infinitary higher priority join requirement $Q_{e^{\prime}}$. So, for

$$
J=\left\{e_{0}^{\prime}: \exists e_{1}^{\prime}, e_{2}^{\prime}\left(\left\langle e_{0}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right\rangle<e \& Q_{\left\langle e_{0}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right\rangle} \text { is infinitary }\right)\right\}
$$

the following holds.

$$
\begin{equation*}
\forall j \in J \forall x \in I_{n}\left(W_{j, t_{x}} \upharpoonright x+1 \subset W_{j, t_{x-1}} \upharpoonright x+1\right) . \tag{3.15}
\end{equation*}
$$

For $x \in I_{n}$ and $j \in J$, let

$$
w_{j}(x)=\left|W_{j, t_{x}} \upharpoonright x+1\right| \text { and } w_{J}(x)=\sum_{j \in J} w_{j}(x)
$$

and call x unsaturated if $x \notin W_{j, t_{x}}$ for some $j \in J$. By definition, $|J| \leq e$ and $w_{j}(x) \leq x+1$, hence

$$
\begin{equation*}
w_{J}\left(x_{n, 0}\right) \leq e\left(x_{n, 0}+1\right) \tag{3.16}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
w_{J}\left(x_{n, 0}\right) \geq \mid\left\{x \in I_{n}: x \text { is unsaturated }\right\} \mid \tag{3.17}
\end{equation*}
$$

holds. Namely, it follows by 3.15 that, for $x \in I_{n}, w_{j}(x-1) \geq w_{j}(x)$ if $x \in W_{j, t_{x}}$ and $w_{j}(x-1)>$ $w_{j}(x)$ if $x \notin W_{j, t_{x}}$, whence $w_{J}(x-1) \geq w_{J}(x)$ and $w_{J}(x-1)>w_{J}(x)$ if x is unsaturated.

Now, by (3.16) and (3.17), in order to get the desired contradiction, it suffices to show that

$$
\begin{equation*}
\mid\left\{x \in I_{n}: x \text { is unsaturated }\right\} \mid>e\left(x_{n, 0}+1\right) \tag{3.18}
\end{equation*}
$$

This is done as follows. For a number $x=x_{n, k} \in I_{n} \cup\left\{x_{n, 0}\right\}\left(0 \leq k \leq n\left(x_{n, 0}+1\right)-1\right)$, as $x \notin A_{0, t_{x}}$, as \mathcal{P}_{α} is not satisfied at stage t_{x} and by choice of the numbers w_{C} enumerated into C together with numbers w entering A_{0} (see also the discussion preceding the construction), 3.12 holds for $s=t_{x}$. So, since there are no α-safe numbers in $I_{n} \cup\left\{x_{n, 0}\right\}$ after stage $s_{1}+1,3.13$ must fail for $s=t_{x}$. It follows that, for every k, at least one number in $I_{n, k}$ must be unsaturated. As there are $n\left(x_{n, 0}+1\right)$ many subintervals $I_{n, k}$ in I_{n} each of which must contain at least one unsaturated number and as $e<n$ by construction, it follows that there are at least $(e+1)\left(x_{n, 0}+1\right)$ many unsaturated numbers in I_{n}. So (3.18) holds.

Claims 3 to 5 show that the constructed sets have the required properties, hence this completes the proof of Lemma 88 .

As we have seen, this also completes the proof of Theorem 87 .

3.5 Meet Preservation in the ubT-Reducibilities

In contrast to Theorem 87 meet preservation holds for the monotone admissible bounded Turing reducibilities in general. This is immediate by the following theorem which generalizes the observation by Ambos-Spies, Ding, Fan and Merkle in ASDFM13 that ibT-cl and cl-wtt meet preservation hold.

Theorem 89. Let r and r^{\prime} be admissible bounded Turing reducibilities such that r is stronger than r^{\prime} and such that r^{\prime} is monotone. Then, $r-r^{\prime}$ meet preservation holds.

Proof. The proof is essentially the same as the one for the results in ASDFM13. Let \mathcal{F}^{\prime} be a family of strictly increasing computable functions inducing r^{\prime}. As shown by Ambos-Spies in ASb, w.l.o.g., we may assume that \mathcal{F}^{\prime} is closed under composition. Let A_{0}, A_{1} and B be c.e. sets such that

$$
\begin{equation*}
\operatorname{deg}_{r}\left(A_{0}\right) \wedge \operatorname{deg}_{r}\left(A_{1}\right)=\operatorname{deg}_{r}(B) \tag{3.19}
\end{equation*}
$$

holds. As r is stronger than r^{\prime}, B is also a lower r^{\prime}-bound for A_{0} and A_{1}, so, it suffices to show that for a given c.e. set C such that $C \leq_{r^{\prime}} A_{0}, A_{1}, C \leq_{r^{\prime}} B$ holds. Fix functions $f_{i} \in \mathcal{F}^{\prime}$ such that $C \leq_{f_{i}-\mathrm{T}} A_{i}$ for $i=0,1$. Since \mathcal{F}^{\prime} is closed under composition, $f_{0} \circ f_{1}=f \in \mathcal{F}^{\prime}$ and, since f_{0} and f_{1} are strictly increasing, $\max \left\{f_{0}, f_{1}\right\} \leq f$. It follows that $C \leq_{f-\mathrm{T}} A_{0}, A_{1}$. Let $C_{f}=\{f(x): x \in C\}$ be the f-shift of C. Then, $C_{f} \leq_{\text {ibT }} A_{0}, A_{1}$. As ibT is stronger than $r, C_{f} \leq_{r} A_{0}, A_{1}$, so, by (3.19), $C_{f} \leq_{r} B$, hence $C_{f} \leq_{r^{\prime}} B$. We know that $C \leq_{f-\mathrm{T}} C_{f}$, hence by $f \in \mathcal{F}^{\prime}, C \leq_{r^{\prime}} C_{f}$, so, by transitivity of $r^{\prime}, C \leq_{r^{\prime}} B$.

3.6 Meet Preservation in the Classical Strong Reducibilities

While we have seen in Section 3.3 that $r-r^{\prime}$ join preservation holds for all classical strong reducibilities such that r is stronger than r^{\prime}, meet preservation does not always hold in the classical strong reducibilities. Downey and Stob DS86 use an embedding result into the c.e. T-degrees together with the distributivity of the c.e. wtt-degrees to prove the following.

Lemma 90 ($(\overline{\mathrm{DS} 86})$. There is a wtt-minimal pair that is not a T-minimal pair.
Proof. The proof uses the fact that sufficiently complex nondistributive lattices can be embedded into the c.e. T-degrees while the c.e. wtt-degrees are distributive. Namely, the nondistributive finite 1-4-1 lattice can be embedded into the c.e. T-degrees preserving the least element, i.e., there are noncomputable c.e. sets $A_{0}, A_{1}, A_{2}, A_{3}$ and A such that for all $i, j \in\{0,1,2,3\}$ with $i \neq j$, the following hold.

$$
\begin{align*}
& A_{i} \text { and } A_{j} \text { are a T-minimal pair, } \\
& d e g_{\mathrm{T}}\left(A_{i}\right) \vee d e g_{\mathrm{T}}\left(A_{j}\right)=d e g_{\mathrm{T}}(A) . \tag{3.20}
\end{align*}
$$

Now consider the sets $A_{0} \oplus A_{1}$ and $A_{2} \oplus A_{3}$. By distributivity of the c.e. wtt-degrees (shown by Lachlan; see e.g. Stob [Sto83]), $A_{0} \oplus A_{1}$ and $A_{2} \oplus A_{3}$ form a wtt-minimal pair. Namely, for given c.e. $B \leq_{\mathrm{wtt}} A_{0} \oplus A_{1}, A_{2} \oplus A_{3}$, it suffices to show that B is computable. By distributivity, as $B \leq_{\mathrm{wtt}} A_{0} \oplus A_{1}$, there are c.e. sets $B_{0} \leq_{\mathrm{wtt}} A_{0}$ and $B_{1} \leq_{\mathrm{wtt}} A_{1}$ such that $B_{0} \oplus B_{1}=B$. Moreover, again by distributivity, as $B_{0}, B_{1} \leq_{\mathrm{wtt}} B \leq_{\mathrm{wtt}} A_{2} \oplus A_{3}$, there are c.e. sets $B_{02} \leq_{\mathrm{wtt}} A_{2}$ and $B_{03} \leq_{\mathrm{wtt}} A_{3}$ such that $B_{02} \oplus B_{03}=B_{0}$ and c.e. sets $B_{12} \leq_{\mathrm{wtt}} A_{2}$ and $B_{13} \leq_{\mathrm{wtt}} A_{3}$ such that $B_{12} \oplus B_{13}=B_{1}$. Altogether, it follows that $B_{i j} \leq_{\mathrm{wtt}} A_{i}, A_{j}$ for $i \in\{0,1\}$ and $j \in\{2,3\}$. But, as A_{i} and A_{j} form a T-minimal pair and hence a wtt-minimal pair, this implies that all $B_{i j}$ are computable. So $B=\left(B_{02} \oplus B_{03}\right) \oplus\left(B_{12} \oplus B_{13}\right)$ is computable, too.

On the other hand, by 3.20 and by noncomputability of $A, A_{0} \oplus A_{1}$ and $A_{2} \oplus A_{3}$ do not form a T-minimal pair.

Using an embedding result into the c.e. tt-degrees by Fejer and Shore, this idea can be transferred to show that there is an m-minimal pair that is not a tt-minimal pair. Furthermore, we can use a similar method to show that there is a tt-minimal pair that is not a wtt-minimal pair.

Lemma 91. There is an m-minimal pair that is not a tt-minimal pair.
Proof. Fejer and Shore have shown in [FS85] that every finite lattice can be embedded into the c.e. tt-degrees preserving the least element. So, in particular, the 1-4-1 lattice can be embedded into the c.e. tt-degrees preserving zero. Since the c.e. m-degrees are distributive (Lachlan Lac70), we can apply the argument used in the proof of Lemma 90 .

Lemma 92. There is a tt-minimal pair that is not $a \mathrm{wtt}$-minimal pair.
Proof. Suppose that every tt-minimal pair is also a wtt-minimal pair. As shown by Jockusch and Mohrherr in JM85, the diamond lattice can be embedded into the c.e. tt-degrees preserving both least and greatest elements, i.e., there are noncomputable c.e. sets A_{0} and A_{1} such that

$$
\begin{aligned}
& A_{0} \text { and } A_{1} \text { form a tt-minimal pair, } \\
& d e g_{\mathrm{tt}}\left(A_{0}\right) \vee \operatorname{deg}_{\mathrm{tt}}\left(A_{1}\right)=d e g_{\mathrm{tt}}\left(\emptyset^{\prime}\right)
\end{aligned}
$$

Since, by Theorem 83, tt-wtt join preservation holds and by assumption, it follows that

$$
\begin{aligned}
& A_{0} \text { and } A_{1} \text { form a wtt-minimal pair, } \\
& d e g_{\mathrm{wtt}}\left(A_{0}\right) \vee d e g_{\mathrm{wtt}}\left(A_{1}\right)=d e g_{\mathrm{wtt}}\left(\emptyset^{\prime}\right)
\end{aligned}
$$

which is a contradiction to the nondiamond theorem for the wtt-degrees stated by Ladner and Sasso in LS75.

We give an alternative and direct proof of Lemma 92, showing that there is a pair of noncomputable c.e. sets that form a tt-minimal pair but which are wtt-comparable, hence they have a noncomputable wtt-meet.

Theorem 93. There are c.e. sets A_{0} and A_{1} such that the following hold.

$$
\begin{gather*}
A_{0} \text { is not computable } \tag{3.21}\\
A_{0} \leq_{\mathrm{wtt}} A_{1}\left(\text { in fact }, A_{0} \leq_{\mathrm{ibT}} A_{1}\right) \tag{3.22}\\
\operatorname{deg}_{\mathrm{tt}}\left(A_{0}\right) \wedge \operatorname{deg}_{\mathrm{tt}}\left(A_{1}\right)=\mathbf{0} \tag{3.23}
\end{gather*}
$$

Proof. We enumerate sets c.e. A_{0} and A_{1} in stages such that $3.21,3.22$ and 3.23 hold.
To guarantee that 3.21 holds, we meet the following noncomputability requirements for all $e \geq 0$.

$$
P_{e}: A_{0} \neq \varphi_{e}
$$

To make sure that 3.22 holds, we have the global permitting requirement as follows.

$$
x \searrow_{s+1} A_{0} \Rightarrow x \searrow_{s+1} A_{1}
$$

Finally, to guarantee that 3.23 holds, we meet the following minimal pair requirements for all $e=\left\langle e_{0}, e_{1}\right\rangle$.
Q_{e} : If $\Phi_{e_{0}}$ and $\Phi_{e_{1}}$ are tt-functionals and $\Phi_{e_{0}}^{A_{0}}=\Phi_{e_{1}}^{A_{1}}=f$, then f is computable.
For a priority ordering of the requirements, we let $R_{2 i}=P_{i}$ and $R_{2 i+1}=Q_{i}$ for $i \geq 0$.
Our strategy is as follows. To meet the noncomputability requirements, we use a standard diagonalization strategy, i.e., we appoint a follower x to P_{e} and wait for a stage s such that $\varphi_{e, s}(x)=0$. If such a stage exists, we put x into A_{0} at stage $s+1$. For the sake of the global permitting requirement, in that case, we also put x into A_{1}.

To meet the minimal pair requirements, we aim to destroy their hypothesis. To do so, we wait for a stage s such that it is possible to achieve $\Phi_{e_{0}, s+1}^{A_{0, s+1}}(x) \neq \Phi_{e_{1}, s+1}^{A_{1, s+1}}(x)$ by putting finitely many numbers into A_{1} at stage $s+1$ without changing A_{0}. We can then show that if we do not succeed in destroying the hypothesis, then the conclusion holds.

For resolving conflicts between different requirements, we use a standard finite injury strategy, i.e., we force lower priority requirements to respect restraints imposed by higher priority requirements, so each requirement is injured at most finitely often and is eventually met. This is achieved by choosing the stage $s+1$ as the follower that can be appointed to any diagonalization requirement at some stage $s+1$ and by ensuring that a minimal pair requirement acting at some stage $s+1$ can only enumerate numbers greater than s^{\prime} where $s^{\prime}+1$ is the last stage before $s+1$ at which a requirement of higher priority has acted. So, by the convention that if a computation is defined at some stage s, the use of this computation is less than s, all computations seen at stages less than or equal to such stages s^{\prime} are not changed if we enumerate followers appointed at stages greater than s^{\prime} or if a lower priority minimal pair requirement acts after s^{\prime}. Now we are ready to give the actual construction of the sets A_{0} and A_{1} where $A_{0, s}$ and $A_{1, s}$ denote the finite parts of A_{0} and A_{1} enumerated by the end of stage s, respectively.

Construction.

Stage 0 is vacuous, i.e., $A_{0,0}=A_{1,0}=\emptyset$.
Stage $s+1$. We first define under which circumstances a requirement R_{i} requires attention at a stage $s+1$.

Case 1. $R_{i}=P_{e}$ for some $e \geq 0$.
P_{e} requires attention at stage $s+1$ if $e \leq s, P_{e}$ is not satisfied at the end of stage s and one of the following holds.
(i) P_{e} has no follower at the end of stage s.
(ii) P_{e} has a follower x at the end of stage s and $\varphi_{e, s}(x)=0$.

Case 2. $R_{i}=Q_{e}$ for some $e \geq 0, e=\left\langle e_{0}, e_{1}\right\rangle$.
Q_{e} requires attention at stage $s+1$ if $e \leq s, Q_{e}$ is not satisfied at the end of stage s and there is a number $x<s$ such that all of the following hold.

- $\Phi_{e_{0}, s}^{A_{0, s}}(x) \downarrow$,
- $\Phi_{e_{1}, s+1}^{\sigma}(x) \downarrow$ for all $\sigma \in\{0,1\}^{s+1}$,
- There is a string $\sigma \in\{0,1\}^{s+1}$ such that $A_{1, s} \subseteq \sigma$ (i.e., for all $x^{\prime}<s$, if $A_{1, s}\left(x^{\prime}\right)=1$ holds, then $\sigma\left(x^{\prime}\right)=1$ holds, too), such that, for the greatest $s^{\prime}<s$ such that a requirement $R_{i^{\prime}}$ with $i^{\prime}<i$ becomes active at stage $s^{\prime}+1, A_{1, s} \upharpoonright s^{\prime}+1=\sigma \upharpoonright s^{\prime}+1$ holds and such that $\Phi_{e_{0}, s}^{A_{0, s}}(x) \neq \Phi_{e_{1}, s+1}^{\sigma}(x)$.

If no requirement requires attention at stage $s+1$, let $A_{0, s+1}=A_{0, s}$ and $A_{1, s+1}=A_{1, s}$. Otherwise, fix the least i such that R_{i} requires attention at stage $s+1$. We say R_{i} becomes active or receives attention.

Case 1. $R_{i}=P_{e}$ for some $e \geq 0$.
Perform the following action according to the clause via which P_{e} requires attention.
(i) Appoint $s+1$ as a follower to P_{e}.
(ii) Let $A_{0, s+1}=A_{0, s} \cup\{x\}, A_{1, s+1}=A_{1, s} \cup\{x\}$ and declare P_{e} to be satisfied.

Case 2. $R_{i}=Q_{e}$ for some $e \geq 0$.
Let $A_{0, s+1}=A_{0, s}$ and for the least x and σ that make the conditions for Q_{e} to require attention true, let $A_{1, s+1}=\sigma$ and declare Q_{e} to be satisfied.

In all cases, cancel all followers of requirements of lower priority than R_{i} (i.e., of requirements $R_{i^{\prime}}$ such that $i^{\prime}<i$) and declare these requirements to be unsatisfied.

This completes the construction. For the verification, we prove a series of claims.

Verification.

It is immediate by construction that A_{0} and A_{1} are c.e., so it remains to show the following claims.

Claim 1. Every requirement requires attention at most finitely often.
Proof. The proof is by a standard induction argument. For fixed R_{i}, by inductive hypothesis fix the least stage s_{0} such that no requirement $R_{i^{\prime}}$ with $i^{\prime}<i$ requires attention after stage s_{0}.

If $R_{i}=P_{e}$ for some $e \geq 0$, a follower x is permanently assigned to P_{e} at some stage $s_{1}+1>s_{0}$. Then, P_{e} becomes active at most once after stage $s_{1}+1$. Since P_{e} receives attention whenever it requires attention after stage s_{0}, it follows that P_{e} requires attention at most finitely often.

If $R_{i}=Q_{e}$ for some $e \geq 0, Q_{e}$ becomes active at most once after stage s_{0}, so, as in the case of P_{e}, Q_{e} requires attention at most finitely often.

Claim 2. The noncomputability requirements P_{e} are met.
Proof. For fixed e, by Claim 1, fix a stage s_{0} such that no requirement of higher priority than P_{e} requires attention after stage s_{0} and a stage $s_{1}+1>s_{0}$ such that a follower $x\left(=s_{1}+1\right)$ becomes permanently assigned to P_{e} at stage $s_{1}+1$. If P_{e} requires attention at some stage $s_{2}+1>s_{1}+1$, this must be via Clause (ii), so $\varphi_{e}(x)=\varphi_{e, s_{2}}(x)=0$ and we put x into A_{0} at stage $s_{2}+1$, so $A_{0}(x)=1$, hence P_{e} is met.

Otherwise, $\varphi_{e}(x) \neq 0$. Furthermore, x never enters A_{0}, so $A_{0}(x)=0$ and P_{e} is met.
Claim 3. The global permitting requirement is met.

Proof. If a number x is enumerated into A_{0}, this can only happen if some noncomputability requirement P_{e} becomes active via Clause (iii). But then, x is also enumerated into A_{1}.

Claim 4. The minimal pair requirements Q_{e} are met.

Proof. Fix e such that the hypothesis of Q_{e} holds, i.e., $\Phi_{e_{0}}$ and $\Phi_{e_{1}}$ are tt-functionals and $\Phi_{e_{0}}^{A_{0}}=$ $\Phi_{e_{1}}^{A_{1}}=f$. (Otherwise, the claim is trivial.) Now, to compute $f(x)$ for some $x \geq 0$, by Claim 1, fix the least stage s_{0} such that neither Q_{e} nor any higher priority requirement requires attention after stage s_{0}. Then, wait for a stage $s_{1}>s_{0}$ such that $\Phi_{e_{0}, s_{1}}^{A_{0, s_{1}}}(x) \downarrow=\Phi_{e_{1}, s_{1}}^{A_{1, s_{1}}}(x)$ and such that $\Phi_{e_{1}, s_{1}+1}^{\sigma} \downarrow$ for all $\sigma \in\{0,1\}^{s_{1}+1}$. Note that such a stage must exist by the assumption that $\Phi_{e_{0}}$ and $\Phi_{e_{1}}$ are tt-functionals and that $\Phi_{e_{0}}^{A_{0}}=\Phi_{e_{1}}^{A_{1}}$. We claim that then, $f(x)=\Phi_{e_{1}}^{A_{1}}(x)=\Phi_{e_{1}, s_{1}}^{A_{1, s_{1}}}(x)$.

Suppose not. As $\Phi_{e_{1}, s_{1}}^{A_{1}}(x)$ is defined, by convention, $\varphi_{e_{1}, s_{1}}^{A_{1}, s_{1}}(x)<s_{1}$. Moreover, by choice of s_{0}, Q_{e} does not require attention at stage $s_{1}+1$, so for all $\sigma \in\{0,1\}^{s_{1}+1}$, if $A_{1, s_{1}} \subseteq \sigma$ and for the greatest $s^{\prime}<s_{1}$ such that a requirement of higher priority than Q_{e} becomes active at stage $s^{\prime}+1$, $A_{1, s_{1}} \upharpoonright s^{\prime}+1=\sigma \upharpoonright s^{\prime}+1$ holds, $\Phi_{e_{1}, s_{1}}^{A_{1, s_{1}}}(x)=\Phi_{e_{0}, s_{1}}^{A_{0, s_{1}}}(x)=\Phi_{e_{1}, s_{1}+1}^{\sigma}(x)$. Hence the enumeration of numbers y with $s^{\prime}<y<s_{1}$ into A_{1} after stage s_{1} does not change the computation of $\Phi_{e_{1}, s_{1}}^{A_{1, s}}(x)$.

So $\Phi_{e_{1}}^{A_{1}}(x)$ can only after stage s_{1} if a number $z \leq s^{\prime}$ enters A_{1} after stage s_{1}. By definition of s_{0}, we know that $s^{\prime}+1 \leq s_{0}$. Since after stage s_{0}, only requirements with lower priority than Q_{e} become active and, by construction, all of them are only allowed to enumerate numbers greater than or equal to s_{0} (because, for the lower priority noncomputability requirements, by definition of s_{0}, all followers get canceled at stage s_{0} and, for the lower priority minimal pair requirements, the corresponding stage $s^{\prime}+1$ in the definition of requiring attention is at least s_{0}, again by definition of s_{0}), hence greater than s^{\prime}, this cannot happen. This completes the proof of Claim 4.

Claims 2 to 4 show that A_{0} and A_{1} have the required properties which completes the proof of Theorem 93 .

Despite of the above negative results, there is a pair of classical strong reducibilities where meet preservation holds as we show next.

Theorem 94. 1-m meet preservation holds.
For the proof of Theorem 94 , we use some facts about simple sets which were defined by Post Pos44 and are widely used in computability theory.

Definition 95 (모44). A set A is simple if it is c.e., coinfinite and for every infinite c.e. set $B, A \cap B \neq \emptyset$ holds.

Before we turn to the proof of Theorem 94 , we need the following lemma.
Lemma 96. Let A_{0} and A_{1} be 1-incomparable c.e. sets such that deg $g_{1}\left(A_{0}\right) \wedge d e g_{1}\left(A_{1}\right)$ exists. Then, A_{0} and A_{1} are neither simple nor computable.

A special case of Lemma 96 - namely that, for 1-incomparable simple sets A_{0} and $A_{1}, \operatorname{deg} 1\left(A_{0}\right) \wedge$ $\operatorname{deg}_{1}\left(A_{1}\right)$ does not exist - is proven in Odifreddi Odi99, Proposition VI.5.1. and attributed to Young You64. The proof of Lemma 96 is similar to the proof of this special case.

First, we state some well known facts on the 1-degrees of simple and computable sets which we later need in the proof.

If A_{1} is computable then $A_{0} \leq_{1} A_{1}$ if and only if A_{0} is computable and $\left|A_{0}\right| \leq\left|A_{1}\right|$ and $\left|\overline{A_{0}}\right| \leq\left|\overline{A_{1}}\right|$ hold.

$$
\begin{equation*}
\text { If } A_{0} \text { and } A_{1} \text { are c.e., } A_{0} \text { is computable and } A_{1} \text { is not computable } \tag{3.25}
\end{equation*}
$$ then $A_{0} \leq{ }_{1} A_{1}$ if and only if A_{0} is cofinite or A_{1} is not simple.

If A_{0} is noncomputable, A_{1} is simple and $A_{0} \leq_{1} A_{1}$ then A_{0} is simple.
If A is simple and $x \in A$ then $A<_{1} A \backslash\{x\}$.

$$
\begin{align*}
& \text { If } A_{0} \text { and } A_{1} \text { are c.e., } A_{0} \text { is infinite, } A_{0} \leq_{1} A_{1} \text { via } f \text { and } A_{1} \not Z_{1} A_{0} \tag{3.27}\\
& \text { then } f\left(\overline{A_{0}}\right) \subset \overline{A_{1}} . \tag{3.28}
\end{align*}
$$

Claims (3.24) through (3.26) are straightforward and Claim (3.27) is due to Dekker (see e.g. Rogers Rog67, Theorem 8.XIV). It remains to show that 3.28 holds. Fix c.e. sets A_{0} and A_{1} such that A_{0} is infinite, $A_{0}<_{1} A_{1}$ and a computable one-one function f such that $A_{0} \leq_{1} A_{1}$ via f. Then, $f\left(\overline{A_{0}}\right) \subseteq \overline{A_{1}}$ is immediate. Now assume that $f\left(\overline{A_{0}}\right)=\overline{A_{1}}$. Then, $\omega=A_{1} \cup \operatorname{range}(f)$. To get a contradiction, we obtain a computable one-one function g such that $A_{1} \leq_{1} A_{0}$ via g as follows. Fix an infinite computable subset B of A_{0} and a computable one-one function b enumerating B. Now, given y, simultaneously enumerate A_{1} and range (f). If y first occurs in the enumeration of $\operatorname{range}(f)$ and if, for the least x such that $f(x)=y, x \notin B$ holds, then let $g(y)=x$. Otherwise, let $g(y)=b(y)$.

We now turn to the proof of Lemma 96
Proof of Lemma 96. First, we show that neither A_{0} nor A_{1} are computable. By symmetry, it suffices to show that A_{0} is not computable. Assume for a contradiction that A_{0} is computable. If A_{1} is computable, too, by 1-incomparability of A_{0} and A_{1}, it follows from 3.24) that either A_{0} is finite and A_{1} is cofinite or vice versa. But then, again by (3.24), A_{0} and A_{1} do not have a common lower bound which contradicts the assumption that $\operatorname{deg}_{1}\left(A_{0}\right) \wedge d e g_{1}\left(A_{1}\right)$ exists.

It remains to consider the case where A_{1} is not computable. Then, by 1-incomparability of A_{0} and A_{1}, it follows from 3.25 that A_{0} is not cofinite and A_{1} is simple. By simplicity of A_{1} and again by 3.25 , the computable sets that are 1-reducible to A_{1} are only the cofinite sets. Since A_{1} is computable but not cofinite, A_{0} and A_{1} do not have a common lower bound which contradicts the assumption as in the case above.

Finally, we prove that A_{0} and A_{1} are not simple. Again, by symmetry, it suffices to consider A_{0}. So assume for a contradiction that A_{0} is simple. W.l.o.g., we may assume that A_{1} is not computable. Let B be a c.e. set such that

$$
\begin{equation*}
\operatorname{deg}_{1}(B)=\operatorname{deg}_{1}\left(A_{0}\right) \wedge \operatorname{deg}_{1}\left(A_{1}\right) \tag{3.29}
\end{equation*}
$$

holds. In order to get a contradiction, it suffices to show that there is a c.e. set \widehat{B} such that the following holds.

$$
\begin{equation*}
B<_{1} \widehat{B} \leq_{1} A_{0}, A_{1} \tag{3.30}
\end{equation*}
$$

By assumption, A_{0} is simple and $B \leq_{1} A_{0}$, so it follows by 3.26 that B is either simple or computable. If B is simple, fix an element $x_{0} \in B$ and let $\widehat{B}=B \backslash\left\{x_{0}\right\}$. Then, by (3.27), $B<_{1} \widehat{B}$.

In order to prove that 3.30 holds, it remains to show that $\widehat{B} \leq A_{i}$ for $i=0,1$. For fixed i, by 1-incomparability of A_{0} and A_{1} and by (3.29), $A_{i} \not \leq B$. Again by (3.29), fix a computable one-one function f such that $B \leq_{1} A_{i}$ via f. Now, by (3.28), $f(\bar{B}) \subset \overline{A_{i}}$ holds. Fix $y_{0} \in \overline{A_{i}} \backslash f(\bar{B})$. Then \widehat{B} is 1-reducible to A_{i} by the computable one-one function \widehat{f} defined as follows.

$$
\widehat{f}(x)= \begin{cases}y_{0} & \text { if } x=x_{0} \\ f(x) & \text { otherwise }\end{cases}
$$

Now consider the case where B is computable. Then, by 3.25 and by simplicity of A_{0}, B is cofinite. By (3.24), the cofinite 1-degrees form an infinite ascending chain. Furthermore, by 3.25), any cofinite set is 1 -reducible to any noncomputable c.e. set. So 3.30 holds for any cofinite set \widehat{B} such that $|\bar{B}|<|\overline{\widehat{B}}|$.

Now we are ready to prove Theorem 94 using Lemma 96

Proof of Theorem 94. Given c.e. sets A_{0}, A_{1}, B and C such that $\operatorname{deg}_{1}\left(A_{0}\right) \wedge \operatorname{deg}_{1}\left(A_{1}\right)=\operatorname{deg}_{1}(B)$ and $C \leq_{\mathrm{m}} A_{0}, A_{1}$ hold, it suffices to show that $C \leq_{\mathrm{m}} B$ holds. If A_{0} and A_{1} are 1-comparable, then this is trivial. So, for the remainder of the proof, we may assume that A_{0} and A_{1} are 1-incomparable, hence, by Lemma 96, neither simple nor computable.

Fix computable functions f_{0} and f_{1} such that C is m-reducible to A_{i} via f_{i} for $i=0,1$. Let

$$
M=\left\{x: \forall i \leq 1 \forall x^{\prime}<x\left(f_{i}\left(x^{\prime}\right) \neq f_{i}(x)\right)\right\}
$$

and let $\widehat{C}=C \cap M$. Then,

$$
\begin{equation*}
C \leq_{\mathrm{m}} \widehat{C} \tag{3.31}
\end{equation*}
$$

via g where g is inductively defined as follows. Let $g(x)=x$ if $x \in M$. Otherwise, let $g(x)=$ $g\left(x^{\prime}\right)$ for the least x^{\prime} such that $f_{i}\left(x^{\prime}\right)=f_{i}(x)$ for some $i \leq 1$. Note that by the definition and computability of M, g is well-defined and computable.

On the other hand, for $i \leq 1$,

$$
\begin{equation*}
\widehat{C} \leq_{1} A_{i} \tag{3.32}
\end{equation*}
$$

via the functions \widehat{f}_{i}, where \widehat{f}_{i} is defined as follows. For $i \leq 1$, fix infinite computable sets $D_{i} \subset \overline{A_{i}}$ (this is possible because A_{0} and A_{1} are neither simple nor computable) together with strictly increasing computable functions d_{i} enumerating D_{i} in order, respectively. Then, let

$$
\widehat{f_{i}}= \begin{cases}f_{i}(x) & \text { if } x \in M \text { and } f_{i}(x) \notin D \\ d_{i}(x) & \text { otherwise }\end{cases}
$$

Now, as $\operatorname{deg}_{1}\left(A_{0}\right) \wedge \operatorname{deg}_{1}\left(A_{1}\right)=\operatorname{deg}_{1}(B)$ and by 3.32 , it follows that $\widehat{C} \leq_{1} B$, hence $\widehat{C} \leq_{\mathrm{m}} B$. Together with 3.31, this gives us $C \leq_{\mathrm{m}} B$, which completes the proof.

We can summarize the results from this section as follows.
Theorem 97. Let $r, r^{\prime} \in\{1, \mathrm{~m}, \mathrm{tt}$, wtt, T$\}$ be given such that $r \prec r^{\prime}$. Then, $r-r^{\prime}$ meet preservation holds if and only if $r=1$ and $r^{\prime}=\mathrm{m}$.

Proof. By Theorem 94, 1-m meet preservation holds. On the other hand, by Lemma 90 , there is a minimal pair in the c.e. wtt-degrees that is not a minimal pair in the c.e. T-degrees; by Lemma 91, there is a minimal pair in the c.e. m-degrees that is not a minimal pair in the c.e. tt-degrees; and by Lemma 92, there is a minimal pair in the c.e. tt -degrees that is not a minimal pair in the c.e. wtt-degrees. Considering the fact that for $r, r^{\prime} \in\{\mathrm{m}, \mathrm{tt}$, wtt, T$\}$ such that $r \preceq r^{\prime}$, every r^{\prime}-minimal pair is also an r-minimal pair, it follows from these results that r - r^{\prime} meet preservation fails for all $r, r^{\prime} \in\{\mathrm{m}, \mathrm{tt}, \mathrm{wtt}, \mathrm{T}\}$ such that $r \prec r^{\prime}$.

For the case of 1-reducibility note that for c.e. sets A_{0} and A_{1} such that $\operatorname{deg}_{\mathrm{m}}\left(A_{0}\right)$ and $\operatorname{deg}_{\mathrm{m}}\left(A_{1}\right)$ form a minimal pair in the c.e. m-degrees, $\operatorname{deg}_{1}\left(2 A_{0}\right)$ and $d e g_{1}\left(2 A_{1}\right)$ form a minimal pair in the c.e. 1-degrees in the sense that $\operatorname{deg}_{1}\left(2 A_{0}\right) \wedge \operatorname{deg}_{1}\left(2 A_{1}\right)=\mathbf{0}_{1}$ where $\mathbf{0}_{1}$ is the 1-degree of the infinite and coinfinite computable sets. Furthermore, $\operatorname{deg}_{\mathrm{m}}\left(A_{i}\right)=\operatorname{deg} g_{\mathrm{m}}\left(2 A_{i}\right)$ for $i=0,1$. Together with the observations above, it follows that 1-tt meet preservation, 1 -wtt meet preservation and 1-T meet preservation all fail. This completes the proof of the theorem.

3.7 Open Problems

Contrasting previous positive results on join preservation in the bounded Turing degrees (see Lemma 86) we have shown that $r-r^{\prime}$ join preservation fails for the strongly bounded Turing reducibilities $r=\mathrm{ibT}$, cl and any monotone admissible uniformly bounded Turing reducibility r^{\prime} with $\mathrm{cl} \prec r^{\prime}$. On the other hand, by Corollary 85, $r-r^{\prime}$ join preservation holds for all monotone admissible uniformly bounded Turing reducibilities r and r^{\prime} such that $\mathrm{lbT} \preceq r \prec r^{\prime}$. This naturally leads to the question of a classification of the monotone admissible (uniformly) bounded Turing reducibilities r and r^{\prime} for which $r-r^{\prime}$ join preservation holds. In particular, can our main theorem be extended to show that, for any monotone admissible uniformly bounded Turing reducibilities r and r^{\prime} such that $\mathrm{lbT} \npreceq r, \mathrm{cl} \prec r^{\prime}$ and $r \prec r^{\prime}, r-r^{\prime}$ join preservation fails? Moreover, one may consider nonmonotone reducibilities, too. For the latter, a classification of the (u)bT-reducibilities for which meet preservation holds is open, too.

Bibliography

[ASa] Klaus Ambos-Spies. Multiple permitting and array noncomputability. In preparation.
[ASb] Klaus Ambos-Spies. Uniformly bounded Turing reducibilities. Submitted.
[AS17] Klaus Ambos-Spies. On the strongly bounded Turing degrees of the computably enumerable sets. In Computability and complexity, volume 10010 of Lecture Notes in Comput. Sci., pages 563-598. Springer, Cham, 2017.
[ASBKY] Klaus Ambos-Spies, Philipp Bodewig, Thorsten Kräling, and Liang Yu. Joins and meets in the computably enumerable cl-degrees. In preparation.
[ASDFM13] Klaus Ambos-Spies, Decheng Ding, Yun Fan, and Wolfgang Merkle. Maximal pairs of computably enumerable sets in the computably Lipschitz degrees. Theory Comput. Syst., 52(1):2-27, 2013.
[ASF88] Klaus Ambos-Spies and Peter A. Fejer. Degree theoretical splitting properties of recursively enumerable sets. J. Symbolic Logic, 53(4):1110-1137, 1988.
[ASL] Klaus Ambos-Spies and Nadine Losert. Universally array noncomputable sets. In preparation.
[ASL86] K. Ambos-Spies and M. Lerman. Lattice embeddings into the recursively enumerable degrees. J. Symbolic Logic, 51(2):257-272, 1986.
[ASLM] Klaus Ambos-Spies, Nadine Losert, and Martin Monath. Array noncomputable leftc.e. reals. In preparation.
[Bar05] George Barmpalias. Computably enumerable sets in the Solovay and the strong weak truth table degrees. In Computability in Europe, volume 3526 of Lecture Notes in Comput. Sci., pages 8-17. Springer, Berlin, 2005.
[BDG10] George Barmpalias, Rod Downey, and Noam Greenberg. Working with strong reducibilities above totally ω-c.e. and array computable degrees. Trans. Amer. Math. Soc., 362(2):777-813, 2010.
[BDN12] Paul Brodhead, Rod Downey, and Keng Meng Ng. Bounded randomness. In Computation, physics and beyond, volume 7160 of Lecture Notes in Comput. Sci., pages 59-70. Springer, Heidelberg, 2012.
[BL06a] George Barmpalias and Andrew E. M. Lewis. A c.e. real that cannot be sw-computed by any Ω number. Notre Dame J. Formal Logic, 47(2):197-209, 2006.
[BL06b] George Barmpalias and Andrew E. M. Lewis. The ibT degrees of computably enumerable sets are not dense. Ann. Pure Appl. Logic, 141(1-2):51-60, 2006.
[Day10] Adam R. Day. The computable Lipschitz degrees of computably enumerable sets are not dense. Ann. Pure Appl. Logic, 161(12):1588-1602, 2010.
[DG06] Rod Downey and Noam Greenberg. Totally $<\omega^{\omega}$ computably enumerable and m topped degrees. In Theory and applications of models of computation, volume 3959 of Lecture Notes in Comput. Sci., pages 46-60. Springer, Berlin, 2006.
[DGW07] Rod Downey, Noam Greenberg, and Rebecca Weber. Totally ω-computably enumerable degrees and bounding critical triples. J. Math. Log., 7(2):145-171, 2007.
[DH10] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity. Theory and Applications of Computability. Springer, New York, 2010.
[DHL01] Rod G. Downey, Denis R. Hirschfeldt, and Geoff LaForte. Randomness and reducibility. In Mathematical foundations of computer science (Mariánské Láznĕ, 2001), volume 2136 of Lecture Notes in Comput. Sci., pages 316-327. Springer, Berlin, 2001.
[DHL04] Rod G. Downey, Denis R. Hirschfeldt, and Geoff LaForte. Randomness and reducibility. J. Comput. System Sci., 68(1):96-114, 2004.
[DJS90] Rod Downey, Carl Jockusch, and Michael Stob. Array nonrecursive sets and multiple permitting arguments. In Recursion theory week (Oberwolfach, 1989), volume 1432 of Lecture Notes in Math., pages 141-173. Springer, Berlin, 1990.
[DJS96] Rod Downey, Carl G. Jockusch, and Michael Stob. Array nonrecursive degrees and genericity. In Computability, enumerability, unsolvability, volume 224 of London Math. Soc. Lecture Note Ser., pages 93-104. Cambridge Univ. Press, Cambridge, 1996.
[Dow90] Rod Downey. Lattice nonembeddings and initial segments of the recursively enumerable degrees. Ann. Pure Appl. Logic, 49(2):97-119, 1990.
[DS86] R. G. Downey and M. Stob. Structural interactions of the recursively enumerable Tand w-degrees. Ann. Pure Appl. Logic, 31(2-3):205-236, 1986.
[Fan09] Yun Fan. The method of the Yu-Ding theorem and its application. Math. Structures Comput. Sci., 19(1):207-215, 2009.
[FL05] Yun Fan and Hong Lu. Some properties of sw-reducibility. Nanjing Daxue Xuebao Shuxue Bannian Kan, 22(2):244-252, 2005.
[FS85] Peter A. Fejer and Richard A. Shore. Embeddings and extensions of embeddings in the r.e. tt- and wtt-degrees. In Recursion theory week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math., pages 121-140. Springer, Berlin, 1985.
[FY11] Yun Fan and Liang Yu. Maximal pairs of c.e. reals in the computably Lipschitz degrees. Ann. Pure Appl. Logic, 162(5):357-366, 2011.
[JM85] Carl G. Jockusch, Jr. and Jeanleah Mohrherr. Embedding the diamond lattice in the recursively enumerable truth-table degrees. Proc. Amer. Math. Soc., 94(1):123-128, 1985.
[KHMS11] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity and the recursion theorem. Trans. Amer. Math. Soc., 363(10):5465-5480, 2011.
[Lac66] A. H. Lachlan. Lower bounds for pairs of recursively enumerable degrees. Proc. London Math. Soc. (3), 16:537-569, 1966.
[Lac70] A. H. Lachlan. Initial segments of many-one degrees. Canad. J. Math., 22:75-85, 1970.
[Lac72] A. H. Lachlan. Embedding nondistributive lattices in the recursively enumerable degrees. In Conference in Mathematical Logic (London, 1970), volume 255 of Lecture Notes in Math., pages 149-177. Springer, Berlin, 1972.
[LB06] Andrew E. M. Lewis and George Barmpalias. Random reals and Lipschitz continuity. Math. Structures Comput. Sci., 16(5):737-749, 2006.
[Los15] Nadine Losert. Where join preservation fails in the bounded Turing degrees of c.e. sets. In Theory and applications of models of computation, volume 9076 of Lecture Notes in Comput. Sci., pages 38-49. Springer, Cham, 2015.
[Los17] Nadine Losert. Where join preservation fails in the bounded Turing degrees of c.e. sets. Inform. and Comput., 256:185-195, 2017.
[LS75] Richard E. Ladner and Leonard P. Sasso, Jr. The weak truth table degrees of recursively enumerable sets. Ann. Math. Logic, 8(4):429-448, 1975.
[Odi81] Piergiorgio Odifreddi. Strong reducibilities. Bull. Amer. Math. Soc. (N.S.), 4(1):3786, 1981.
[Odi99] P. G. Odifreddi. Classical recursion theory. Vol. II, volume 143 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.
[Pos44] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems. Bull. Amer. Math. Soc., 50:284-316, 1944.
[Rog67] Hartley Rogers, Jr. Theory of recursive functions and effective computability. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967.
[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer, Berlin, 1987.
[Soa04] Robert I. Soare. Computability theory and differential geometry. Bull. Symbolic Logic, 10(4):457-486, 2004.
[Sto83] Michael Stob. wtt-degrees and T-degrees of r.e. sets. J. Symbolic Logic, 48(4):921-930 (1984), 1983.
[Tho71] S. K. Thomason. Sublattices of the recursively enumerable degrees. Z. Math. Logik Grundlagen Math., 17:273-280, 1971.
[Wei88] Barry Jay Weinstein. On embeddings of the 1-3-1 into the recursively enumerable degrees. ProQuest LLC, Ann Arbor, MI, 1988.
[YD04] Liang Yu and Decheng Ding. There is no $S W$-complete c.e. real. J. Symbolic Logic, 69(4):1163-1170, 2004.
[You64] Paul R. Young. On reducibility by recursive functions. Proc. Amer. Math. Soc., 15:889-892, 1964.

