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Abstract

We look at various properties of the computably enumerable (c.e.) not totally ω-c.e. Turing degrees.

In particular, we are interested in the variant of multiple permitting given by those degrees. We

define a property of left-c.e. sets called universal similarity property which can be viewed as a

universal or uniform version of the property of array noncomputable c.e. sets of agreeing with any

c.e. set on some component of a very strong array. Using a multiple permitting argument, we

prove that the Turing degrees of the left-c.e. sets with the universal similarity property coincide

with the c.e. not totally ω-c.e. degrees. We further introduce and look at various notions of so-

called universal array noncomputability and show that c.e. sets with those properties can be found

exactly in the c.e. not totally ω-c.e. Turing degrees and that they guarantee a special type of

multiple permitting called uniform multiple permitting. We apply these properties of the c.e. not

totally ω-c.e. degrees to give alternative proofs of well-known results on those degrees as well as

to prove new results. E.g., we show that a c.e. Turing degree contains a left-c.e. set which is not

cl-reducible to any complex left-c.e. set if and only if it is not totally ω-c.e. Furthermore, we prove

that the nondistributive finite lattice S7 can be embedded into the c.e. Turing degrees precisely

below any c.e. not totally ω-c.e. degree.

We further look at the question of join preservation for bounded Turing reducibilities r and r′

such that r is stronger than r′. We say that join preservation holds for two reducibilities r and

r′ if every join in the c.e. r-degrees is also a join in the c.e. r′-degrees. We consider the class of

monotone admissible (uniformly) bounded Turing reducibilities, i.e., the reflexive and transitive

Turing reducibilities with use bounded by a function that is contained in a (uniformly computable)

family of strictly increasing computable functions. This class contains for example identity bounded

Turing (ibT-) and computable Lipschitz (cl-) reducibility. Our main result of Chapter 3 is that join

preservation fails for cl and any strictly weaker monotone admissible uniformly bounded Turing

reducibility. We also look at the dual question of meet preservation and show that for all monotone

admissible bounded Turing reducibilities r and r′ such that r is stronger than r′, meet preservation

holds. Finally, we completely solve the question of join and meet preservation in the classical

reducibilities 1, m, tt, wtt and T.





Zusammenfassung

Wir betrachten verschiedene Eigenschaften der aufzählbaren nicht vollständig ω-aufzählbaren (not

totally ω-c.e.) Turing-Grade. Wir interessieren uns insbesondere für die Varianten des multi-

plen Permittings, die diese Grade ermöglichen. Wir definieren eine Eigenschaft links-aufzählbarer

Mengen, die wir universelle Ähnlichkeitseigenschaft (universal similarity property) nennen und die

man als universelle oder uniforme Version jener Eigenschaft Array-nichtberechenbarer aufzählbarer

Mengen, mit jeder aufzählbaren Menge auf einer Komponente eines Very-Strong-Arrays über-

einzustimmen, auffassen kann. Mithilfe eines multiplen Permitting-Arguments beweisen wir, dass

die Turing-Grade der links-aufzählbaren Mengen mit der universellen Ähnlichkeitseigenschaft mit

den aufzählbaren nicht vollständig ω-aufzählbaren Turing-Graden übereinstimmen. Weiterhin

definieren und betrachten wir verschiedene Begriffe der sogenannten universellen Array-Nicht-

berechenbarkeit (universal array noncomputability) und zeigen, dass aufzählbare Mengen mit diesen

Eigenschaften genau in den aufzählbaren nicht vollständig ω-aufzählbaren Turing-Graden liegen

und dass sie eine spezielle Art des multiplen Permittings ermöglichen, die wir uniformes mul-

tiples Permitting (uniform multiple permitting) nennen. Wir wenden diese Eigenschaften der

aufzählbaren nicht vollständig ω-aufzählbaren Turing-Grade an, um alternative Beweise bekannter

Ergebnisse, die diese Grade betreffen, zu führen und um neue Ergebnisse zu beweisen. Beispiels-

weise zeigen wir, dass ein aufzählbarer Turing-Grad genau dann eine links-aufzählbare Menge

enthält, die nicht cl-reduzierbar auf eine komplexe links-aufzählbare Menge ist, wenn er nicht

vollständig ω-aufzähbar ist. Außerdem beweisen wir, dass der nichtdistributive endliche Verband

S7 genau unterhalb jedes aufzählbaren nicht vollständig ω-aufzählbaren Grades in die aufzählbaren

Turing-Grade eingebettet werden kann.

Wir betrachten außerdem die Frage nach der Join-Erhaltung für beschränkte Turing-Reduzier-

barkeiten r und r′ sodass r stärker als r′ ist. Join-Erhaltung gilt für zwei Reduzierbarkeiten

r und r′, wenn jeder Join in den aufzählbaren r-Graden auch ein Join in den aufzählbaren r′-

Graden ist. Wir betrachten die Klasse der monotonen zulässigen (uniform) beschränkten Turing-

Reduzierbarkeiten, das heißt, der reflexiven und transitiven Turing-Reduzierbarkeiten, deren Use-

Funktion durch eine Funktion beschränkt ist, die in einer (uniform berechenbaren) Familie streng

monoton steigender berechenbarer Funktionen liegt. Diese Klasse enthält zum Beispiel die ibT-

Reduzierbarkeit und die cl-Reduzierbarkeit. Das Hauptergebnis des dritten Kapitels besagt, dass

Join-Erhaltung für cl und eine echt stärkere monotone zulässige uniform beschränkte Turing-

Reduzierbarkeit nicht gelten kann. Wir gehen auch auf die duale Frage nach der Meet-Erhaltung

ein und zeigen, dass diese für alle monotonen zulässigen beschränkten Turing-Reduzierbarkeiten r

und r′ gilt, sodass r stärker als r′ ist. Abschließend beantworten wir die Frage nach der Join- und

Meet-Erhaltung in den klassischen Reduzierbarkeiten 1, m, tt, wtt und T vollständig.
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Chapter 1

Preliminaries

In this chapter, we give the most general definitions, notation and conventions used and assumed

everywhere (unless mentioned otherwise). Further definitions will be given when needed. Familiar-

ity with basic concepts of computability (see e.g. Soare [Soa87] or Downey and Hirschfeldt [DH10])

is assumed.

Natural numbers are denoted by lower case letters like x, y, z, x0, x1, x2 or a, b, c. Letters s, t, u

mostly refer to stages of constructions or approximations while letters f, g, h mostly denote total

functions and lower case Greek letters like ϕ,ψ stand for partial functions. Finite strings are

denoted by lower case Greek letters like σ, τ . Sets of natural numbers are denoted by upper case

letters like A,B,C or A0, A1, A2. We denote Turing functionals with upper case Greek letters (e.g.,

Φ, Ψ) and their use functions with the corresponding lower case Greek letters (e.g., ϕ, ψ).

We identify a set A of natural numbers with its characteristic function A : ω → {0, 1} as

well as with its characteristic sequence A = A(0)A(1)A(2) . . .. A � n denotes the finite string

A(0)A(1) . . . A(n− 1) or, depending of the context, the finite set A∩ {0, . . . , n− 1}. Unless stated

otherwise, we assume that e, n, s, t, x, y, z ≥ 0 and that i ≤ 1.

We begin with reviewing the definition of computable approximations and enumerations.

Definition 1. (a) A computable approximation of a set A is a sequence {As}s≥0 of finite sets

As such that lims→∞As(x) = A(x) for all x ≥ 0 and such that there is a computable function

f with As = Df(s) for all s ≥ 0, i.e., f(s) is the canonical index of As.

(b) A function f̂ : ω × ω → ω is a computable approximation of a unary function f if f̂ is

computable and lims→∞ f̂(x, s) = f(x) holds for all x ≥ 0. If the choice of f̂ is clear from the

context, we let fs(x) = f̂(x, s) for all x and s.

(c) A computable enumeration of a set A is a computable approximation of A such that for all x

and s, As+1(x) ≥ As(x) holds.

Unless mentioned otherwise, in the following, without loss of generality (w.l.o.g.) we assume

that for a given computable approximation {As}s≥0 of a set A, As ⊆ {0, . . . , s− 1} holds for all s.

We turn to looking at universal functions and sets.

Definition 2. (a) An n + 1-ary partial computable function ϕ is universal for the n-ary partial

computable functions (an n-universal partial computable function) if, for every n-ary partial
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computable function ψ, there is an index e such that for all x0, . . . xn−1, ϕe(x0, . . . , xn−1) =

ϕ(e, x0, . . . , xn−1) = ψ(x0, . . . , xn−1) holds.

(b) A c.e. set W is universal for the (unary) computably enumerable sets (a universal computably

enumerable set) if for every c.e. set A, there is an index e such that We = {x : ⟨e, x⟩ ∈W} =

A.

In the following, we sometimes use the term universal function to refer to a unary universal

partial computable function. Unless mentioned otherwise, ϕ denotes the standard universal func-

tion obtained by goedelization of the unary Turing machines (for more details, refer to [Soa87]).

We let ϕe denote the eth branch of ϕ, i.e., ϕe(x) = ϕ(e, x) for all e and x. Note that each ϕe is a

unary partial computable function. We may approximate ϕ in stages, i.e., we let ϕe,s(x) = ϕe(x)

if ϕe(x) is defined within the first s steps and ϕe,s(x) ↑ otherwise for all e, s and x. W.l.o.g., we

assume that for all e, x and s, if ϕe,s(x) ↓, then e, x, ϕe(x) < s holds. We may now use the universal

function ϕ to define a universal c.e. set by letting W = {⟨e, x⟩ : ϕe(x) ↓}. An approximation to

W is given by We,s = {x : ϕe,s(x) ↓}.
We now give the definition of Turing functionals.

Definition 3. (a) An oracle Turing machine is a Turing machine (for the formal definition of

a Turing machine see [Soa87, pp. 11-13]) with an additional read-only tape which we call the

oracle tape.

(b) A Turing functional is a partial function ΦM : POWER(ω) × ω → ω computed by an oracle

Turing machine M depending on the oracle set.

(c) The partial function computed by M with the oracle A is denoted by ΦAM : ω → ω.

(d) We define the use function ϕ of a Turing functional Φ by

ϕX(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y + 1 if ΦX(x) ↓ and y is the greatest oracle query in the computation

0 if ΦX(x) ↓ and there are no oracle queries in the computation

↑ otherwise.

(e) We let {Φe}e≥0 be a standard enumeration of the Turing functionals obtained by goedelization

of the oracle Turing machines and we let ϕe be the use function of Φe.

We use computable enumerations of the functionals and of the corresponding use functions

which are denoted by an additional index s given by the stage of the enumeration. So, for instance,

ΦXe,s is the result of computing ΦXe for s steps and ϕXe,s is the corresponding use. Formally, we

define:

ΦXe,s(x) =

⎧⎨⎩ΦXe (x) if the computation of ΦXe (x) converges in ≤ s steps

↑ otherwise.

ϕXe,s(x) =

⎧⎨⎩ϕXe (x) if the computation of ΦXe (x) converges in ≤ s steps

↑ otherwise.

We assume that if ΦXe,s(x) is defined then e, x,ΦXe,s(x), ϕ
X
e,s(x) < s. Recall the well-known use

principle that we will explicitly and implicitly use in many constructions.
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Lemma 4. For all sets A and B and for all Turing functionals Φ, the following holds.

ΦA(x) ↓ &B � ϕA(x) = A � ϕA(x)

⇓

ΦB(x) = ΦA(x) & ϕB(x) = ϕA(x).

In the course of the following chapters, we look at the following reducibilities.

Definition 5. (a) A set A is one-one (1-) reducible to a set B (A ≤1 B) ( via f) if there is a

computable one-to-one function f such that x ∈ A if and only if f(x) ∈ B.

(b) A set A is many-one (m-) reducible to a set B (A ≤m B) ( via f) if there is a computable

function f such that x ∈ A if and only if f(x) ∈ B.

(c) A set A is truth-table (tt-) reducible to a set B (A ≤tt B) ( via g and h) if there are computable

functions g : ω → ω∗ and h : ω×{0, 1}∗ → {0, 1} such that for all x, if g(x) = y0, . . . , yn, then

A(x) = h(x,B(y0), . . . , B(yn)).

(d) A set A is Turing (T-) reducible to a set B (A ≤T B) if there is a Turing functional Φ such

that ΦB(x) = A(x) for all x ≥ 0.

(e) A set A is f -bounded Turing (f -T) reducible to a set B (A ≤f−T B) if there is a Turing

functional Φ such that ΦB(x) = A(x) and ϕB(x) ≤ f(x) + 1 for all x.

(f) A set A is weak truth-table (wtt-) reducible to a set B (A ≤wtt B) if A is f -bounded Turing

reducible to B for some computable function f .

(g) A set A is linearly bounded Turing (lbT-) reducible to a set B (A ≤lbT B) if A is f -bounded

Turing reducible to B for a linearly bounded function f , i.e., for a function f satisfying f(x) ≤
k0x+ k1 for some numbers k0, k1 > 0 and all numbers x ≥ 0.

(h) A set A is (i+k)-bT reducible to a set B (A ≤(i+k)bT B) if A is f -bounded Turing reducible

to B for f(x) = x+ k (k ≥ 0).

(i) A set A is computably Lipschitz (cl-) reducible to a set B (A ≤cl B) if A is (i+k)-bT-reducible

to B for some k ≥ 0.

(j) A set A is identity bounded Turing (ibT-) reducible to a set B (A ≤ibT B) if A is f -bounded

Turing reducible to B for the identity function f(x) = x.

(k) We call the r-reducibilities for r = ibT, cl strongly bounded Turing reducibilities.

Convention: In the following, r will, if not stated otherwise, refer to any of the reducibilities

r = 1, m, tt, T, wtt, lbT, cl, ibT. For reducibilities ≤r which are preorderings (i.e., reflexive and

transitive), we define r-equivalence by

A =r B ⇔ (A ≤r B &B ≤r A).

Then =r is an equivalence relation. We call the equivalence class of a set A under =r the r-degree

of A:

degr(A) = {B : B =r A}.

3



An r-degree is c.e. if it contains a c.e. set. The partial ordering of the c.e. r-degrees is denoted

by (Rr,≤) and c.e. r-degrees are denoted by bold face lowercase letters (a, b, c, . . .). For r ∈
{tt, T, wtt, lbT, cl, ibT}, we let 0r denote the r-degree of the computable sets. If the reducibility

r is clear from the context, we sometimes write 0 for 0r. We slightly abuse notation by writing

f ≤r a and A ≤r a for a function f , a set A and an r-degree a when we mean degr(f) ≤ a and

degr(A) ≤ a, respectively. We will sometimes only use degree to refer to a Turing degree.

A property P of (c.e.) sets is called r-invariant if for all (c.e.) sets A and B such that P (A)

and A =r B hold, P (B) holds, as well. An r-degree a bounds a set A if A ≤r a holds. For a

class C of sets of natural numbers and a reducibility r, we call a set A r-hard for C if B ≤r A
holds for all B ∈ C and we call A r-complete for C if A is r-hard for C and A ∈ C. An r-degree is

r-hard (r-complete) for C if it contains a set which is r-hard (r-complete) for C. In the following,

we simply say r-hard and r-complete instead of r-hard and r-complete for the class of the c.e. sets,

respectively.

We further recall the definitions of meets, joins and (semi-) lattices, lattice embeddings as well

as maximal and minimal pairs.

Definition 6. Let (P,≤P) be a partial ordering.

(a) Two elements a0, a1 ∈ P have a greatest lower bound or meet if there is an element b ∈ P
such that b ≤P a0, a1 and such that for all c ∈ P with c ≤P a0, a1, c ≤P b holds. We then

write a0 ∧ a1 = b.

(b) Two elements a0, a1 ∈ P have a least upper bound or join if there is an element b ∈ P such

that a0, a1 ≤P b and such that for all c ∈ P with a0, a1 ≤P c, b ≤P c holds. We then write

a0 ∨ a1 = b.

(c) A partial ordering is a lower semilattice if every pair of elements has a meet and it is an upper

semilattice if every pair of elements has a join.

(d) A partial ordering is a lattice if it is a lower semilattice and an upper semilattice.

(e) An upper semilattice (U ,≤U ) is distributive if for all elements a0, a1 and b of U , if b ≤U a0∨a1,
then there are elements b0, b1 ∈ U such that b0 ≤U a0, b1 ≤U a1 and b = b0 ∨ b1 hold and it is

nondistributive otherwise.

(f) A lattice (L,≤L) is modular if for all elements a, b and c of L, if a ≤L c, then a ∨ (b ∧ c) =
(a ∨ b) ∧ c.

Note that every distributive lattice is modular.

Definition 7. Let (L,≤L) be a lattice and let (U ,≤U ) be an upper semilattice. A function p :

L → U is called a lattice embedding ( of L into U) if p is one-to-one and the following hold for all

a, a0, a1, b ∈ L.

(i) a ≤L b if and only if p(a) ≤U p(b).

(ii) If a0 ∧ a1 = b, then p(a0) ∧ p(a1) = p(b) and if a0 ∨ a1 = b, then p(a0) ∨ p(a1) = p(b).

4



A lattice embedding p : L → U is zero-preserving if L has a least element a and p(a) is the least

element of U .

For a lattice (L,≤L) and an upper semilattice (U ,≤U ), we say that L can be embedded into U
if there is a lattice embedding of L into U and, for c ∈ C, we say that L can be embedded into U
below c or that c bounds a (lattice) embedding of L if there is a lattice embedding p of L into U
such that p(a) ≤U c for all a ∈ L.

Definition 8. For a reducibility r, two c.e. (left-c.e.) r-degrees a0 and a1 are called a maximal

pair in the c.e. (left-c.e.) r-degrees or an r-maximal pair in the c.e. (left-c.e.) degrees if they do

not have a common upper bound, i.e., if there is no c.e. (left-c.e.) r-degree b such that a0,a1 ≤ b

holds. If, for two c.e. (left-c.e.) sets A0 and A1, degr(A0) and degr(A1) form a maximal pair in

the c.e. (left-c.e.) r-degrees, we also call A0 and A1 an r-maximal pair in the c.e. (left-c.e.) sets.

Definition 9. For a reducibility r, two nonzero c.e. r-degrees a0 and a1 are called a minimal pair

in the (c.e.) r-degrees or an r-minimal pair if a0∧a1 = 0r. If, for two noncomputable c.e. sets A0

and A1, degr(A0) and degr(A1) form a minimal pair in the (c.e.) r-degrees, we also call A0 and

A1 an r-minimal pair.

Finally, for some constructions, we use the full binary tree T = {0, 1}<ω to model guesses about

requirements. Here, the elements of T are called nodes and |α| denotes the length of node α. For

nodes α and β, α is below β and β is above α (α @ β) if α is a proper initial segment of β. We

write α ⊑ β if α @ β or α = β. We say that α is to the left of β and β is to the right of α (α <L β)

if there is a node γ such that γ0 ⊑ α and γ1 ⊑ β. Finally, we say that α is less than β (α < β or

β > α) if α <L β or α @ β.
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Chapter 2

Not Totally ω-C.E. Degrees and

Multiple Permitting

2.1 Introduction

Permitting arguments are widely used in all kinds of constructions in computability theory. If

we wish to construct a set A below a given – or equally constructed – set B, we make sure that

the approximation of A can only change below some x + 1 if the approximation of B changes

below f(x) + 1 for some appropriate computable function f . The most straightforward version

of permitting is guaranteed by any approximation of any noncomputable set B. It is argued

that, given a strictly increasing computable sequence of numbers x0, x1, . . . together with a strictly

increasing computable sequence of stages s0, s1, . . ., then for some xn, B has to change below xn+1

after stage sn, i.e., permitting has to be given by B for some xn at some point, otherwise the set

would be computable. However, this version of permitting is only sufficient if the construction

requires one change of the constructed set to make sure a single requirement is met. In more

involved constructions, however, we need to successively change A on several numbers or intervals

to meet one requirement. Here, we need what is called multiple permitting.

When examining constructions involving multiple permitting, Downey, Jockusch and Stob

[DJS90] introduced the class of array noncomputable (a.n.c.) c.e. sets and showed that those sets

allow certain multiple permitting constructions. They exploited this fact to investigate properties

of the c.e. sets which are a.n.c. Building on this approach, many properties where discovered that

can be captured with constructions using the multiple permitting given by a.n.c. c.e. sets. E.g.,

it has been shown by Barmpalias, Downey and Greenberg [BDG10] that a c.e. Turing degree a

contains a left-c.e. set which is not cl-reducible to any random left-c.e. set if and only if a is a.n.c.,

i.e., if a contains an a.n.c. c.e. set. This extends the result by Barmpalias and Lewis [BL06a]

that there exists a left-c.e. set that is not cl-reducible to any random left-c.e. set. The notion

of cl-reducibility has been introduced by Downey, Hirschfeldt and LaForte ([DHL01], [DHL04])

and is closely related to randomness notions. For more background on cl-reducibility, refer to the

introduction to Chapter 3.

Another interesting class of degrees related to multiple permitting is the class of the c.e. not
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totally ω-c.e. degrees. They were introduced by Downey, Greenberg and Weber [DGW07] and are

a subclass of the a.n.c. c.e. degrees. They have shown that the c.e. not totally ω-c.e. degrees are

exactly the c.e. degrees below which there is a critical triple in the c.e. Turing degrees. Thus,

these degrees are definable in the c.e. Turing degrees. The question whether the same holds for the

a.n.c. c.e. degrees is open. The c.e. not totally ω-c.e. degrees allow a stronger version of multiple

permitting than the one given by the a.n.c. c.e. degrees. This is often referred to as not-totally-ω-

c.e. permitting and widely used in the literature. E.g., the proof that any c.e. not totally ω-c.e.

degree bounds a critical triple in the c.e. Turing degrees uses it. Later, Barmpalias, Downey and

Greenberg [BDG10] applied it to show that in any c.e. not totally ω-c.e. degree, there is a set which

is not wtt-reducible to any hypersimple set. Another application can be found in [BDN12], where

Brodhead, Downey and Ng show that there is a computably bounded random set in any c.e. not

totally ω-c.e. degree.

When analyzing various constructions using not-totally-ω-c.e. permitting mentioned above, we

find that they all follow a similar pattern. Usually, a known construction of a set with a certain

property is changed in a way that it can be combined with not-totally-ω-c.e. permitting and

possibly with coding. Our goal is to isolate the permitting and coding, which hitherto had to be

explicitly taken care of, from the actual constructions. We define a property of left-c.e. sets based

on an extension of array noncomputability from c.e. sets to the left-c.e. sets called the universal

similarity property and prove that any c.e. not totally ω-c.e. degree contains a left-c.e. set with

this property. To see this, we use exactly the well-know approach of combining the construction

of such a set with not-totally-ω-c.e. permitting and with coding. Then, it can be shown that all

left-c.e. sets with the universal similarity property have most of the special properties mentioned

above. For that matter, it is enough to analyze the basic constructions and to show that any

requirement of the construction can be met within an interval of computably bounded length.

This is a modular approach to dealing with c.e. not totally ω-c.e. degrees. The left-c.e. sets with

the universal similarity property can thus be viewed as generic sets for the c.e. not totally ω-c.e.

degrees.

We exploit this observation to obtain a new result on the c.e. not totally ω-c.e. degrees, namely

that they are exactly the c.e. degrees which contain a left-c.e. set which is not cl-reducible to any

left-c.e. complex set. This result has been conjectured by Greenberg and it parallels the theorem

by Barmpalias, Downey and Greenberg on a.n.c. c.e. degrees and cl-reducibility to random left-c.e.

sets. To prove our result, we transfer it to an equivalent theorem on wtt-hard sets and maximal

pairs in the left-c.e. ibT-degrees where ibT-reducibility has been introduced by Soare [Soa04]. For

more details, again, refer to the introduction to Chapter 3. Maximal pairs in the c.e. as well as

in the left-c.e. ibT-degrees have been extensively studied. The existence of ibT-maximal pairs

in the c.e. sets has been shown by Barmpalias and, independently, by Fan and Lu [FL05] and

the existence of ibT-maximal pairs in the left-c.e. sets has been shown by Yu and Ding [YD04].

Ambos-Spies, Ding, Fan and Merkle [ASDFM13] have shown that the Turing degrees containing

halves of ibT-maximal pairs in the c.e. sets are just the array noncomputable c.e. degrees (and,

similarly, for the wtt-degrees). In contrast to this, Fan and Yu [FY11] have shown that any left-c.e.

set is half of an ibT-maximal pair in the left-c.e. sets. The Fan-Yu result implies that there is an

ibT-maximal pair in the left-c.e. sets where one of the halves is c.e. This fact had previously been

shown by Fan [Fan09] already, by using a more direct argument. By an observation of Downey and
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Hirschfeldt [DH10], however, no pair of c.e. sets is ibT-maximal in the left-c.e. sets. In [ASLM],

Ambos-Spies, Losert and Monath have extended Fan’s result. We combine this extension with the

existence of left-c.e. sets with the universal similarity property in c.e. not totally ω-c.e. degrees to

prove the already mentioned result that each c.e. not totally ω-c.e. degree contains a left-c.e. set

which is not cl-reducible to any complex left-c.e. set.

We will also introduce various notions of universal array noncomputability that demonstrate

the fact that the property of a c.e. degree to be not totally ω-c.e. can be viewed as a uniform or

universal version of a c.e. degree being a.n.c. We show that the notions coincide with each other

up to wtt-equivalence and that the T-degrees of c.e. sets with these notions are exactly the c.e.

not totally ω-c.e. T-degrees. We also use the notions of universal array noncomputability to show

that the c.e. not totally ω-c.e. degrees capture exactly the notion of uniform multiple permitting

which we define based on the formalization of multiple permitting notions by Ambos-Spies in [ASa].

Finally, we give an application of uniform multiple permitting by showing that the nondistributive

finite lattice S7, which contains a critical triple, can be embedded into the c.e. Turing degrees

exactly below every c.e. not totally ω-c.e. degree.

The outline of this chapter is as follows. In Section 2.2, we give basic definitions and facts and

review important results from the literature on a.n.c. c.e. degrees as well as on c.e. not totally

ω-c.e. degrees. In Section 2.3, we show that a c.e. Turing degree contains a left-c.e. set with the

universal similarity property if and only if it is not totally ω-c.e. We then apply this result to give

an alternative proof of the Brodhead-Downey-Ng result on computably bounded random sets and

to prove Greenberg’s conjecture using a result on maximal pairs in the left-c.e. ibT-degrees. In

Section 2.4, we define several notions of universal array noncomputablity for c.e. sets. We make

some basic observations on those notions and see that they capture the notion of uniform multiple

permitting. Furthermore, we show that the different notions coincide with each other up to wtt-

equivalence. We proceed to prove that c.e. sets with the various universal array noncomputability

properties can be found exactly in the c.e. not totally ω-c.e. T-degrees. Finally, we apply uniform

multiple permitting to show that the lattice S7 can be embedded below any c.e. not totally ω-c.e.

Turing degree.

2.2 Preliminaries

In this section, we give more background and details on the notions we will have a closer look at

in this chapter. Many notions and results in this and in the next section have been developed

together with the Heidelberg Logic Group (Klaus Ambos-Spies, Nan Fang, Wolfgang Merkle and

Martin Monath) and some of them will appear in the forthcoming paper [ASLM] by Ambos-Spies,

Losert and Monath. We begin with a few basic definitions.

Definition 10. (a) A computable approximation {As}s≥0 of a set A is a computable almost-

enumeration of A if the following holds.

∀x∀s(x ∈ As \As+1 ⇒ ∃y < x(y ∈ As+1 \As)).

(b) A set A is almost-computably enumerable ( almost-c.e. or a.c.e. for short) if there is a com-

putable almost-enumeration of A.
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As one can easily see, a real α is left-c.e. if and only if the set A such that α = 0.A is almost-

c.e. So we may identify left-c.e. reals, left-c.e. sets and almost-c.e. sets in the following. Recall the

following definition of a very strong array by Downey, Jockusch and Stob.

Definition 11 ([DJS90]). A sequence F = {Fn}n≥0 of finite sets is a very strong array (or v.s.a.

for short) if the following hold.

• There is a computable function f such that Fn = Df(n), i.e., f(n) is the canonical index of

Fn.

• Fn ∩ Fm = ∅ if n ̸= m.

• F0 ̸= ∅ and for all n ≥ 0, |Fn+1| > |Fn|.

For all n, we call Fn a component of F .

Note that in the original definition in [DJS90] the components Fn of a very strong array are

required to form a partition of the natural numbers. Here, we follow Downey and Hirschfeldt

[DH10] and drop this requirement. We will later see that this does not make a difference when

it comes to defining array noncomputablity. However, we need the following definition of special

types of very strong arrays.

Definition 12. Let F = {Fn}n≥0 be a v.s.a.

(a) F is complete (a c.v.s.a.) if
⋃
n≥0 Fn = ω holds.

(b) F is a very strong array of intervals ( v.s.a.i.) if for all n, Fn is an interval and maxFn <

minFn+1 holds.

(c) A complete very strong array of intervals ( c.v.s.a.i.) is a v.s.a.i. which is complete.

By definition, any v.s.a. is given by a single computable function. This implies that we may

uniformly computably enumerate all very strong arrays (together with the initial segments of very

strong arrays) as well as the complete very strong arrays of intervals (again, including initial

segments) in the following way.

For a given partial function ψ, let Fψ0 ↓= Dψ(0) if ψ(0) ↓ and Dψ(0) ̸= ∅ and for given n,

let Fψn+1 ↓= Dψ(n+1) if Fψn and ψ(n + 1) are defined, |Dψ(n+1)| > |Fψn | and for all n′ ≤ n,

Dψ(n+1) ∩ Fψn′ = ∅. Moreover, for the case of complete very strong arrays of intervals, we let

Iψ0 ↓= Fψ0 if Fψ0 ↓ and Fψ0 is an interval with minFψ0 = 0 and, for n ≥ 0, we let Iψn+1 ↓= Fψn+1 if

Iψn ↓, Fψn+1 ↓ and Fψn+1 is an interval such that minFψn+1 = max Iψn + 1. A uniform approximation

of the Fψn is obtained by letting Fψn,s = Fψn if Fψn ↓ and ψs(m) ↓ for all m ≤ n and letting Fψn,s ↑
otherwise for all n. Similarly for Iψn .

Now, let Fψ = {Fψn }n≥0 if Fψn ↓ for all n (then, Fψ is a v.s.a.), otherwise let Fψ = {Fψn }n<m
for the leastm such that Fψm ↑ (then, Fψ is an initial segment of a v.s.a.) and define Iψ analogously.

Given a universal function ϕ, we obtain enumerations {Fϕe}e≥0 and {Iϕe}e≥0 of all very strong

arrays and their initial segments and of all complete very strong arrays of intervals and their initial

segments, respectively. In the following, if the choice of the universal function ϕ is clear from the

context, we write F en, I
e
n, Fe and Ie in place of Fϕe

n , Iϕe
n , Fϕe and Iϕe , respectively.
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Definition 13. For a very strong array F = {Fn}n≥0, two sets A and B are F-similar (denoted

by A ∼F B) if the following holds.

∃∞n : A ∩ Fn = B ∩ Fn.

We are now ready to define array noncomputability following Downey, Jockusch and Stob.

Definition 14 ([DJS90]). (a) Given a very strong array F , a c.e. set A is F-array noncomputable

(F-a.n.c.) if, for every c.e. set B, A is F-similar to B.

(b) A c.e. set A is array noncomputable ( a.n.c.) if there is a v.s.a. F such that A is F-a.n.c.

(c) A c.e. degree a is array noncomputable ( a.n.c.) if there is an a.n.c. c.e. set A ∈ a.

Note that a c.e. set which is array noncomputable is not computable. The requirement to make

a c.e. set a.n.c. may be weakened as follows.

Proposition 15 ([DJS90]). Let F = {Fn}n≥0 be a v.s.a. and let A be a c.e. set such that, for any

c.e. set B, the following holds.

∃n (A ∩ Fn = B ∩ Fn).

Then A is F-a.n.c.

The property of array noncomputable c.e. sets of being F-similar to any given c.e. set for some

v.s.a. F has been exploited to prove that a.n.c. c.e. sets have various properties. E.g., they are

not maximal (as shown by Downey, Jockusch and Stob in [DJS90]; for more details, refer there).

Moreover, properties of almost-c.e. sets of a.n.c. c.e. degree have been studied in the past, e.g., the

following connection between array noncomputability and cl-reducibility to random almost-c.e. sets

established by Barmpalias, Downey and Greenberg. We first recall the definition of (Martin-Löf)

randomness.

Definition 16. (a) A Martin-Löf test (or ML-test for short) is a uniformly c.e. sequence {Un}n≥0

of c.e. sets Un ⊆ {0, 1}∗ such that, for n ≥ 0, µ([Un]) < 2−n.

(b) A real α ∈ {0, 1}ω passes an ML-test {Un}n≥0 if α ̸∈
⋂
n≥0[Un]; and {Un}n≥0 covers α

otherwise.

(c) A set A passes the ML-test {Un}n≥0 (is covered by {Un}n≥0) if the characteristic sequence α

of A passes the ML-test {Un}n≥0 (is covered by {Un}n≥0).

(d) A real α (set A) is (Martin-Löf) random (or (ML-) random for short) if α (A) passes all

ML-tests.

Theorem 17 ([BDG10]). For a c.e. degree a, the following are equivalent.

(i) a is a.n.c.

(ii) There is an almost-c.e. set in a that is not cl-reducible to any random almost-c.e. set.
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As, by Definition 14, array noncomputablity is only defined for c.e. sets (though the definition

can be extended; see [DJS96]) and a.n.c. c.e. sets are only F-similar to all c.e. sets for some v.s.a.

F , this cannot be exploited to prove any results on almost-c.e. sets of a.n.c. c.e. degree. We will

later review a characterization of the a.n.c. c.e. degrees that has been used to prove results like

Theorem 17. However, it seems promising to transfer the similarity property from Definition 14 to

the case of almost-c.e. set. This cannot be done in a straightforward way, as it can be shown that

for any v.s.a. F , there is no almost-c.e. set which is F-similar to all almost-c.e. sets. Therefore,

we consider sets that are locally almost-c.e. with respect to a fixed v.s.a. Formally, we have the

following definition.

Definition 18. Let F = {Fn}n≥0 be a very strong array.

(a) A computable approximation {As}s≥0 is F-compatible if the following hold.

∀n∀x ∈ Fn∀s(x ∈ As \As+1 ⇒ ∃y ∈ Fn(y < x & y ∈ As+1 \As)),

∀x∀s(x /∈
⋃
n≥0

Fn ⇒ As(x) ≤ As+1(x)).

(b) A set A is F-compatibly almost-c.e. (F-almost-c.e. or F-a.c.e. for short) if there is an F-

compatible computable approximation of A.

(c) A set A is purely F-compatibly almost-c.e. (purely F-almost-c.e. or purely F-a.c.e. for short)

if A is F-a.c.e. and A ⊆
⋃
n≥0 Fn holds.

Note that for any v.s.a. F , any F-compatible computable approximation is a computable

almost-enumeration, hence any F-almost-c.e. set is almost-c.e. Note that the converse is not

true, i.e., there is an almost-c.e. set which is not F-almost-c.e. for any v.s.a. F . We may now

define the following notion of array noncomputability for almost-c.e. sets, paralleling Definition 14.

Definition 19. (a) An almost-c.e. set is array noncomputable for the F-almost-c.e. sets (F-

a.c.e.-a.n.c.) for a v.s.a. F if it is F-similar to any F-a.c.e set.

(b) An almost-c.e. set is array noncomputable for the almost-c.e. sets ( a.c.e.-a.n.c.) if it is F-

a.c.e.-a.n.c. for some v.s.a. F .

(c) A c.e. degree is array noncomputable for the almost-c.e. sets ( a.c.e.-a.n.c.) if it contains an

a.c.e.-a.n.c. almost-c.e. set.

Very similarly to Proposition 15, it does not matter whether we require an almost-c.e. set to

agree with a given F-a.c.e. set on infinitely many components of a v.s.a. F or on just one component

to make it F-a.c.e.-a.n.c.

Proposition 20 ([ASLM]). Let F = {Fn}n≥0 be a v.s.a. and let A be an almost-c.e. set such that,

for any F-a.c.e. set B, the following holds.

∃n (A ∩ Fn = B ∩ Fn).

Then A is F-a.c.e.-a.n.c.

It has been shown that the a.c.e.-a.n.c. c.e. degrees coincide with the a.n.c. c.e. degrees.
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Theorem 21 ([ASLM]). A c.e. (wtt- or T-) degree is a.c.e.-a.n.c. if and only if it is a.n.c.

We will later see that this fact can be exploited to give an alternative proof of direction (i)⇒(ii)

of Theorem 17. When studying the Turing degrees bounding critical triples, Downey, Greenberg

and Weber introduced the notion of c.e. totally ω-c.e. degrees.

Definition 22 ([DGW07]). (a) A function g is h-c.e. for a function h if there is a computable

approximation of g such that following holds.

∀x ≥ 0 (|{s : gs+1(x) ̸= gs(x)}| ≤ h(x)).

(b) A function g is ω-c.e. if there is a computable function h such that g is h-c.e.

(c) A c.e. Turing degree a is totally ω-c.e. if every function g ≤T a is ω-c.e.

Note that, in the above definition, w.l.o.g. we may assume that g0(x) = 0 for x ≥ 0 and that h is

strictly increasing. In the following we tacitly make these assumptions. The relation between a.n.c.

c.e. degrees and c.e. not totally ω-c.e. degrees can be deduced from the following characterization

of the array noncomputable c.e. degrees given by Downey, Jockusch and Stob.

Lemma 23 ([DJS90], [DJS96]). The following are equivalent for a c.e. degree a.

(i) a is a.n.c.

(ii) For every computable function h, there is a function g ≤T a that is not h-c.e.

Note that this implies that every c.e. degree which is not totally ω-c.e is a.n.c. This fact leads

to the conjecture that there is a (uniform or universal) characterization of the c.e. not totally ω-c.e.

degrees in terms of the similarity properties discussed above. This yields the following definition.

Definition 24. An almost-c.e. set has the universal similarity property (u.s.p.) if it is F-a.c.e.-

a.n.c. for every v.s.a. F .

We will see in the next section that almost-c.e. sets with the universal similarity property can

be found exactly in the c.e. not totally ω-c.e. Turing degrees. We will then exploit this fact to prove

several theorems on c.e. not totally ω-c.e. degrees using the universal similarity property. For some

constructions, it is more convenient to only consider complete very strong arrays of intervals. The

following proposition, for which we say that a v.s.a. F̂ = {F̂n}n≥0 dominates a v.s.a. F = {Fn}n≥0

if, for any number n, there is a number m such that Fm ⊆ F̂n, shows that for the case of array

noncomputability for the almost-c.e. sets, this does not make a difference.

Proposition 25 ([ASLM]). (a) For any v.s.a. F = {Fn}n≥0 there is a complete very strong array

of intervals I = {In}n≥0 which dominates F .

(b) Let F̂ = {F̂n}n≥0 and F = {Fn}n≥0 be very strong arrays such that F̂ dominates F . Then

any F̂-a.c.e.-a.n.c. almost-c.e. set (F̂-a.n.c. c.e. set) is F-a.c.e.-a.n.c. (F-a.n.c.).
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2.3 On Sets with the Universal Similarity Property

In this section, we investigate the characteristics of almost-c.e. sets with the universal similarity

property. We show that such sets can be found precisely in the c.e. not totally ω-c.e. Turing degrees

and use this fact to (re-)prove several results on those degrees.

We start with establishing the existence of almost-c.e. sets with the universal similarity property.

For the construction of such sets, it is useful to note that, by Proposition 25, it suffices to consider

complete very strong arrays of intervals.

Proposition 26. Let A be an a.c.e. set such that, for any complete v.s.a.i. I, A is I-a.c.e.-a.n.c.
Then A has the universal similarity property.

In the following we construct an almost-c.e. set with the universal similarity property. This

construction will be refined in the next subsection where we show that almost-c.e. sets with the

universal similarity property can be found in any c.e. not totally ω-c.e. degree.

Theorem 27. There is an almost-c.e. set with the universal similarity property.

For the proof we need a computable enumeration of the (locally) almost-c.e. sets. Let {Ve,s}e,s≥0

be a computable enumeration of computable almost-enumerations {Ve,s}s≥0 (e ≥ 0) such that

for every c.v.s.a.i. I and for every I-a.c.e. set B, there is an index e ≥ 0 such that, for the

a.c.e. set Ve = lims→∞ Ve,s, Ve = B holds and the almost-enumeration {Ve,s}s≥0 is I-compatible.

(Note that such an enumeration exists. By standard techniques we can define a computable

enumeration {Ve,s}e,s≥0 of computable almost-enumerations {Ve,s}s≥0 (e ≥ 0) such that, for any

computable almost-enumeration {Bs}s≥0, there is an index e such that the almost-enumeration

{Ve,s}s≥0 is a delayed version of {Bs}s≥0, i.e., such that there is a strictly increasing computable

sequence {sn}n≥0 of stages such that s0 = 0 and such that Ve,s = Bsn for any s and n such that

sn ≤ s < sn+1. So it suffices to note that if a computable almost-enumeration is I-compatible

then so is any delayed version of it.)

Proof of Theorem 27. Note that, for any c.v.s.a.i. I and for any I-a.c.e. set B, there are numbers

e0 and e1 such that Ie0 = I, Ve1 = B and the computable almost-enumeration {Ve1,s}s≥0 of B

is compatible with I. So, by Proposition 26, in order to construct an almost-c.e. set A with the

universal similarity property, it suffices to meet the following requirements for all e ≥ 0 where

e = ⟨e0, e1⟩.

Re : If Ie0 is a c.v.s.a.i. and Ve1 is Ie0-almost-c.e. via {Ve1,s}s≥0

then there is a number n such that A ∩ Ie0n = Ve1 ∩ Ie0n .

An a.c.e. set A meeting these requirements can be constructed by a standard finite injury argument

using the following basic strategy for meeting a single requirement Re (where the computable

almost-enumeration {As}s≥0 is defined such that As ⊆ ω � s).

At the stage s + 1 at which the attack on Re is started, appoint xe = s + 1 as a follower

(note that xe is not in As). Then wait for a stage s′ > s such that, for some n < s′, Ie0n,s′ ↓
and xe < min Ie0n . (Note that such a stage s′ must exist if the hypothesis of Re holds.) At

the least such stage s′ + 1 (if any) and for the least corresponding n, put xe into As+1 and let
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As+1∩Ie0n = Ve1,s′+1∩Ie0n . (By xe < min Ie0n , this is compatible with making {As}s≥0 a computable

almost-enumeration.) Moreover, initialize all lower priority requirements (thereby ensuring that

these requirements do not interfere with the definition of A on Ie0n ). Finally, at any stage s′′ > s′

such that Ve1,s′′+1 ∩ Ie0n ̸= Ve1,s′′ ∩ Ie0n correct A on Ie0n by letting As′′+1 ∩ Ie0n = Ve1,s′′+1 ∩ Ie0n ,

provided that, up to this stage, the almost-enumeration {Ve1,s}s≥0 of Ve1 is consistent with the

assumption that Ve1 is Ie0 -a.c.e. via {Ve1,s}s≥0. (Note that, by the latter restriction, the definition

of As′′+1 is compatible with making {As}s≥0 a computable almost-enumeration.)

Obviously, this finitary strategy ensures that, assuming that the hypothesis of Re holds and

that Re is not injured after stage s, A ∩ Ie0n = Ve1 ∩ Ie0n for n as above whence requirement Re

is met. The actual construction of A, a standard finite injury argument coordinating the above

finitary strategies for meeting the individual requirements, is straightforward.

2.3.1 Sets with the Universal Similarity Property and not Totally ω-C.E.

Degrees

We now combine the basic construction of an almost-c.e. set with the universal similarity property

with the not-totally-ω-c.e. permitting technique (see Downey, Greenberg and Weber [DGW07] as

well as Barmpalias, Downey and Greenberg [BDG10]) in order to show that any c.e. not totally ω-

c.e. Turing degree contains an a.c.e. set with this property. Note that not-totally-ω-c.e. permitting

is a stronger variant of multiple permitting than the one given by the a.n.c. c.e. degrees.

Theorem 28. Let a be a c.e. Turing degree which is not totally ω-c.e. There is an almost-c.e. set

A ∈ a which has the universal similarity property.

Proof. Fix a c.e. set C ∈ a and let {Cs}s≥0 be a computable enumeration of C (where w.l.o.g.

Cs+1 \ Cs ̸= ∅ for all s). It suffices to give a computable almost-enumeration {As}s≥0 of an

almost-c.e. set A such that A has the universal similarity property and A =T C.

Just as in the proof of Theorem 27, in order to ensure that A has the universal similarity

property, it suffices to meet the requirements

Re : If Ie0 is a c.v.s.a.i. and Ve1 is Ie0-almost-c.e. via {Ve1,s}s≥0

then there is a number n such that A ∩ Ie0n = Ve1 ∩ Ie0n .

for all e ≥ 0 where, here and in the following, e = ⟨e0, e1⟩. The strategy to meet requirement Re is

the one given in the proof of Theorem 27 above. The strategy has to be adjusted, however, since

we have to ensure that A ≤T C and C ≤T A.

In order to guarantee A ≤T C, the changes of A required by the strategy for meeting Re have

to be permitted by C. Since, for a single follower, this permission might not be given, now a finite

sequence of followers x and corresponding intervals Ien – in the following denoted by xe,k and Je,k,

respectively – is used, where a new follower is appointed if, for the existing followers xe,k and

the associated intervals Je,k, the attacks are blocked, i.e., xe,k is not allowed to enter A or A is

not allowed to change on the associated interval Je,k – since the required permission by C is not

given. In order to formalize the permitting-constraint and in order to argue that – despite of this

constraint – the strategy for meeting Re remains finitary and succeeds, we have to exploit that
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a = degT(C) is not totally ω-c.e. By the latter fix a total function g ≤T C which is not ω-c.e. Let

Γ be a Turing functional such that g = ΓC and fix the computable approximation of g such that

gs(x) = ΓCs
s (x) if the right hand side is defined and gs(x) = 0 otherwise (for all x, s ≥ 0).

Then xe,k is allowed to enter A at stage s+1 or A is allowed to change on the associated interval

Je,k at stage s + 1 only if gs+1(k) ̸= gs(k) where xe,k is the (k + 1)st follower of Re (in order of

magnitude) at the end of stage s. As we will argue below, this constraint suffices to ensure A ≤T C

while, on the other hand, the fact that (by choice of g) the number of stages s with gs+1(k) ̸= gs(k)

is not computably bounded in k guarantees that one of the attacks on Re will succeed.

In order to guarantee C ≤T A we use a movable marker γ. The markers γ(e) are put down in

order and if γ(e) is put down at stage s+1 then γ(e) is put down on s+1. Once put down, γ(e) may

be lifted later. Eventually, however, γ(e) reaches a final position, i.e., is put down and not lifted

later. Lifting a marker is subject to the following constraints. First (for technical convenience), if

γ(e) is lifted at stage s+1 then all markers γ(e′) with e′ > e (defined at stage s) are simultaneously

lifted in order to guarantee that the numbers for which the markers are defined form an initial

segment of ω. Second (and crucially), γ(e) may be lifted at stage s + 1 only if A is changing on

γ(e) or a smaller number. The latter ensures that A controls the moves of γ (assuming that A is

almost-c.e. via {As}s≥0). In particular, A can tell whether the position of a marker attained at

some stage is permanent or not whence A can compute the final position of any marker and the

stage at which it is attained first. So, in order to compute C from A it suffices to ensure that if e

enters C at stage s+ 1 and the marker γ(e) is defined at stage s then γ(e) is lifted at stage s+ 1

(whence C(e) = Cs′(e) for the stage s′ at which γ(e) is put down on its final position). Finally,

we ensure that if γ(e) is defined at stage s then γ(e) is not in As whence we may lift γ(e) at stage

s+ 1 by enumerating γ(e) into A at stage s+ 1.

More formally, by letting γ(e, s) denote the position of γ(e) at stage s, we define a partial

computable function γ : ω2 → ω with computable domain (where γ(e, s) is specified at stage s of

the construction) having the following properties (for e, e′, s ≥ 0).

(γ1) γ(e, 0) ↑.

(γ2) If γ(e, s + 1) ̸= γ(e, s) then either γ(e, s) ↑ and γ(e, s + 1) = s + 1 or γ(e, s) ↓, γ(e, s + 1) ↑
and As+1 � γ(e, s) + 1 ̸= As � γ(e, s) + 1.

(γ3) If γ(e, s) ↓ and e′ < e then γ(e′, s) ↓ and γ(e′, s) < γ(e, s).

(γ4) If γ(e, s) ↓ then γ(e, s) ̸∈ As.

(γ5) γ
∗(e) = lims→∞ γ(e, s) ∈ ω exists.

(γ6) If e ∈ Cs+1 \ Cs then γ(e, s+ 1) ↑.

Claim 1. Assume that {As}s≥0 is a computable almost-enumeration of A and that γ has the above

properties. Then C ≤T A.

Proof. Given e, C(e) is computed from A (uniformly in e) as follows. Using A as an oracle find

the least stage s such that γ(e, s) ↓ and As � γ(e, s) + 1 = A � γ(e, s) + 1. By (γ5), such a stage

exists and, by (γ2) and (γ6), Cs(e) = C(e).
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In order to avoid conflicts between the strategy for meeting the requirements Re and the coding

of C into A using the movable marker γ, we put down a marker at stage s+ 1 only if no follower

is appointed at stage s + 1 and vice versa. So no follower is a marker position and vice versa.

Moreover, by giving marker γ(e) higher priority than requirement Re′ for e
′ ≥ e, by initialization

we can ensure that no marker sits in an interval currently associated with a lower priority follower.

On the other hand, an interval Je′,k associated with a higher priority follower xe′,k (e′ < e) cannot

be completely cleared from all lower priority markers γ(e). At the stage where Je′,k becomes

associated with xe′,k no number enters A whence (by (γ2)) we must not lift any marker. Once Re′

starts to let A mimic Ve′1 on Je′,k, however, the enumeration of xe′,k into A allows to lift the lower

priority markers γ(e) in Je′,k. Hence – as soon as it becomes relevant – the interval Je′,k will be

cleared of all coding markers.

So all in all (up to finite injuries in terms of initializing a requirement respectively lifting a

marker) the coding of C into A does not interfere with the strategy for meeting the requirements

Re and vice versa.

Having explained the basic features of the proof and having introduced some of the required

notions, we now turn the formal construction. An index e is eligible at stage s+1 if the enumeration

of Ie0 and the almost-enumeration of Ve1 up to stage s+ 1 do not contradict the assumption that

Ve1 is Ie0-a.c.e., i.e., if there are no n, t ≤ s such that Ie0n,s+1 ↓, Ve1,t+1 ∩ Ie0n ̸= Ve1,t ∩ Ie0n and

x ̸∈ Ve1,t+1 for the least x ∈ Ie0n such that Ve1,t+1(x) ̸= Ve1,t(x). Note that e is eligible at all stages

s + 1 ≥ 1 if the hypothesis of Re holds. Moreover, if e is not eligible at stage s + 1 then e is not

eligible at all stages t > s. We now turn to the construction of A where we let As denote the finite

part of A constructed by the end of stage s.

Construction.

Stage 0. Stage 0 is vacuous. I.e., A0 = ∅, γ(x, 0) ↑ for all x and no requirement has a follower

at the end of stage s.

Stage s+1. A requirement Re requires attention at stage s+1 if e < s, e is eligible at stage

s+ 1 and one of the following holds.

(i) No follower is assigned to Re at the end of stage s.

(ii) (i) does not hold, xe,0 < · · · < xe,n (n ≥ 0) are the followers assigned to Re at the end

of stage s and there is a number k < n such that, for the interval Je,k associated with

xe,k, As ∩ Je,k ̸= Ve,s+1 ∩ Je,k and gs(k) ̸= gs+1(k).

(iii) (i) and (ii) do not hold, xe,0 < · · · < xe,n (n ≥ 0) are the followers assigned to Re

at the end of stage s, for all k < n, As ∩ Je,k ̸= Ve,s+1 ∩ Je,k holds where Je,k is the

interval associated with xe,k, and there is a number m ≤ s such that Ie0m,s+1 ↓ and

xe,n < min Ie0m .

Let cs be the least element of Cs+1 \ Cs. Fix e < s minimal such that at least one of the

following holds

(I) e = cs.

(II) γ(e, s) is undefined.
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(III) Re requires attention.

and perform the following corresponding action.

1. If (I) holds then put γ(e, s) into A (if defined). Furthermore, for all e′ ≥ e, let γ(e′, s+

1) ↑ and initialize requirement Re′ , i.e., cancel all followers (and the intervals associated

with them) assigned to requirement Re′ at the end of stage s.

2. If (I) does not hold, but (II) holds, let γ(e, s+ 1) = s+ 1. Furthermore, for all e′ ≥ e,

initialize requirement Re′ .

3. If (I) and (II) do not hold, but (III) holds, perform the following action according to

the clause via which Re requires attention.

(i) Appoint xe,0 = s+ 1 as a follower to Re.

(ii) For all k that make Clause (ii) in the definition of requiring attention true, let

As+1 ∩ Je,k = Ve1,s+1 ∩ Je,k and, in case xe,k /∈ As, put xe,k into A. Furthermore,

for the least number y such that As+1(y) ̸= As(y) by this action and for any e′ > e

such that y ≤ γ(e′, s) ↓, let γ(e′, s+ 1) ↑.
(iii) For the least m that makes Clause (iii) in the definition of requiring attention

true, associate the interval Je,n = Ie0m with the follower xe,n of Re. Furthermore,

appoint xe,n+1 = s+ 1 as a further follower to Re.

In any of the subcases (i) – (iii) say that Re receives attention or becomes active. Fur-

thermore, for all e′ > e, initialize Re′ . Finally, unless γ(cs, s) ↑ or case (ii) applies and

γ(cs, s+1) is made undefined by the action there, put γ(cs, s) into A and, for all e′′ ≥ cs,

let γ(e′′, s+ 1) ↑.

(If not explicitly stated otherwise, any parameter depending on the stage is unchanged at

stage s+ 1.)

This completes the construction. Note that the construction ensures that the followers of Re are

appointed in order of magnitude and that the greatest follower is the unique follower which has

not yet an interval associated with it. In the remainder of the proof we show that the construction

is correct.

Verification.

Note that the construction is effective. In order to show that A has the required properties, we

prove a series of claims. Before we turn to these claims, however, we first make some observations

on the construction to be used in the proofs of the claims. If not stated otherwise these observations

follow from the construction and the fact that max Ien < s if Ien,s ↓ (recall that Ien,s = Dϕe,s(n) and

ϕe,s(n) < s by convention) by straightforward inductions on s.

If a follower x is appointed at stage s+1 then x = s+1 and no marker is put down at stage s+1

and if a marker γ(e) is put down at stage s+1 then γ(e, s+1) = s+1 and no follower is appointed

at stage s + 1. Moreover, at any stage s + 1 at most one follower is appointed and at most one

marker is put down. So a number which becomes a follower in the course of the construction does

not become a marker position and vice versa; and followers for different requirements and marker

positions for different arguments differ. Moreover, by effectivity of the construction, we can tell
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whether a number will ever become a follower or a marker position. Another consequence of the

above is that any follower x existing at stage s and any marker γ(e, s) defined at stage s is ≤ s.

Similarly, for any interval J associated with some follower x at stage s, max J < s. Since a follower

is not put into A at the stage where it is appointed and since a marker is not put into A at the

stage where it is put down, it follows that As ⊆ ω � s.

If requirement Re has at least one follower at the end of stage s then we let xe,0[s] < xe,1[s] <

· · · < xe,n[s] (n ≥ 0) be the followers of Re at the end of stage s in order of magnitude and, for

k < n, we let Je,k[s] be the interval associated with xe,k[s]. (In the following we omit [s] if the

stage s is clear from context.) Note that, for s ≤ s′ and k ≤ n, xe,k[s] = xe,k[s
′] unless Re is

initialized at a stage t with s < t ≤ s′ (since followers are appointed in increasing order). Now

given s, for k ≤ n, xe,k is appointed at stage xe,k ≤ s and xe,k ̸∈ Axe,k
. Moreover, xe,n is the only

follower of Re at the end of stage s which is not yet associated with an interval. For k < n, Je,k

becomes associated with xe,k at stage xe,k+1 and

xe,k < min Je,k ≤ max Je,k < xe,k+1 (2.1)

holds. Moreover, by initialization, for any e′ ̸= e and any Re′ -follower x existing at stage s, x < xe,0

if e′ < e and xe,n < x if e < e′. It follows that, for any follower x existing at stage s and any

interval J which is associated with any follower at stage s, it holds that x ̸∈ J . By disjointness of

the sets of followers and marker positions, this implies that a follower x of Re can be enumerated

into A at stage s + 1 only if Re requires attention via Clause (ii) at stage s + 1 and x = xe,k for

some k < n that makes Clause (ii) in the definition of requiring attention true. It follows that if

s+1 is the first stage after appointment of xe,k at which this happens then xe,k ∈ As+1 \As (note
that xe,k[t] = xe,k for all t with xe,k ≤ t ≤ s).

Finally observe that, by effectivity of the construction, the partial marker function γ is com-

putable and has computable domain. Moreover, conditions (γ1) – (γ4) and (γ6) hold. (Condition

(γ5) will be established in Claim 3 below.) Correctness of (γ1), (γ3) and (γ6) is immediate by

construction and so is the first part of (γ2), while the second part of (γ2) is immediate by construc-

tion assuming (γ4). So it suffices to show (γ4). For a proof of (γ4) fix γ(e, s) such that γ(e, s) ↓
and γ(e, s) is enumerated into A at stage s + 1. We have to show that γ(e, s + 1) ↑. If γ(e, s)

is enumerated into A for the sake of coding then this is immediate. Since γ(e, s) cannot be a

follower, this only leaves the case that a requirement Re′ receives attention via Clause (ii) at stage

s+ 1, there is a number k that makes Clause (ii) in the definition of requiring attention true and

γ(e, s) ∈ Je′,k. Now, if e′ < e then, by construction, γ(e, s+1) ↑ as required. The case that e ≤ e′,

however, cannot occur. By construction, γ(e, s) becomes defined at stage γ(e, s) and at this stage

Re′ is initialized. So xe′,k is appointed after this stage whence γ(e, s) < xe′,k < min Je′,k contrary

to assumption.

Claim 2. A is a.c.e. via {As}s≥0.

Proof. By effectivity of the construction, it suffices to show that, for any number which is extracted

from A at some stage a lesser number is enumerated into A at the same stage. Note that a number

y can be extracted from A at stage s+1 only if a requirement Re receives attention via Clause (ii)

and y is in the interval Je,k for some number k that makes Clause (ii) in the definition of requiring
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attention true. So, given such s, e and k such that

As+1 ∩ Je,k ̸= As ∩ Je,k (2.2)

holds, it suffices to show that there is a number x < min Je,k such that x ∈ As+1 \As or that, for

x = µz ∈ Je,k(As(z) ̸= As+1(z)), x ∈ As+1.

Now, if s+ 1 is the least stage after the appointment of the follower xe,k at which Re receives

attention via Clause (ii) and k makes Clause (ii) in the definition of requiring attention true then, as

observed above, xe,k ̸∈ As whence xe,k is put into As+1 by construction. (Note that xe,k[s
′] = xe,k

for xe,k ≤ s′ ≤ s.) Hence, by xe,k < min Je,k, x = xe,k will do.

So w.l.o.g. we may assume that there is at least one stage t such that xe,k < t + 1 < s + 1

and such that Re receives attention via Clause (ii) at stage t + 1 and k makes Clause (ii) in the

definition of requiring attention true at this stage. Let t′ be the least such t and let t′′ be the

greatest such t. (Note that, by choice of t′, Je,k becomes associated with xe,k at a stage ≤ t′

whence maxJe,k ≤ t′.) Then, at stage t′ + 1, the interval Je,k is cleared of all markers. Namely,

by minimality of t′, xe,k is enumerated into A at stage t′ + 1 and all markers γ(e′, t′) with e′ > e

which are defined at stage t′ and ≥ xe,k are lifted. On the other hand, for no e′′ ≤ e, γ(e′′) is

put down at any stage s′ with xe,k < s′ ≤ s since otherwise the follower xe,k would be canceled at

stage s′. Hence any marker γ(e′, s′) defined at stage s′ ≥ t′ is either less than xe,k or greater than

t′. So, by xe,k < min Je,k ≤ max Je,k ≤ t′,

∀e′ ∀s′ ≥ t′(γ(e′, s′) ↓ ⇒ γ(e′, s′) ̸∈ Je,k). (2.3)

holds. It follows that

At′′+1 ∩ Je,k = As ∩ Je,k

holds. Namely, no coding marker put into A after stage t′′ is in Je,k (by (2.3) and t′ ≤ t′′); no

requirement of higher priority than Re acts at any stage s′ with t′′ + 1 ≤ s′ ≤ s (since Re is not

initialized at such a stage); any lower priority requirement changes A only on numbers > max Je,k

after stage t′′ (since the requirement is initialized at stage t′′ + 1 > max Je,k); and finally, by

maximality of t′′ and by (2.2), any action of Re at a stage s′ with t′′ + 1 < s′ ≤ s will not change

A on Je,k. Since, by choice of t′′ and s and by construction, A and Ve1 agree on Je,k at stage t′′+1

and s+ 1, it follows that

As ∩ Je,k = Ve1,t′′+1 ∩ Je,k & As+1 ∩ Je,k = Ve1,s+1 ∩ Je,k.

So, in order to show that the least change of A on Je,k at stage s + 1 is positive, it suffices to

show, that x0 ∈ Ve1,s+1 where x0 is the least number x ∈ Je,k such that Ve1,s+1(x) ̸= Ve1,t′′+1(x).

But, since Re requires attention at stage s + 1, e is eligible at stage s + 1. Since Je,k = Ie0m

for some m where the right hand side is defined by stage t′ < s, it follows that that the finite

sequence {Ve1,s′ ∩Je,k}s′≤s+1 must be the initial segment of a computable almost-enumeration. So

x0 ∈ Ve1,s+1 must hold, which completes the proof of Claim 2.

Claim 3. For any e ≥ 0, γ(e) = lims→∞ γ(e, s) ∈ ω exists and requirement Re requires attention

only finitely often.
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Proof. The proof is by induction on e. Fix e and, by inductive hypothesis, assume the claim to be

correct for e′ < e. Let s0 be the greatest stage s such that s = 0 or Cs+1 � e + 1 ̸= Cs � e + 1 or

γ(e′, s+1) ̸= γ(e′, s) for some e′ < e or Re′ requires attention at stage s+1 for some e′ < e. Note

that such a stage s0 exists by inductive hypothesis.

First we show that γ∗(e) = lims→∞ γ(e, s) ∈ ω exists. By choice of s0, at any stage s+ 1 such

that s > s0, condition (I) fails for e′ ≤ e and conditions (II) and (III) fail for e′ < e. It follows

that γ(e) is not lifted after stage s0 + 1. Moreover, if γ(e, s0 + 1) ↑ then γ(e) is put down at stage

s0 + 2. So, in any case, γ(e, s) = γ(e, s0 + 2) ↓ for all s ≥ s0 + 2 whence γ∗(e) = γ(e, s0 + 2).

It remains to show that Re requires attention only finitely often. For a contradiction assume

that this is not the case. We show that there is a computable approximation {g̃n}n≥0 of g for

which the number of mind changes is computably bounded whence g is ω-c.e. contrary to choice

of g.

Let s1 = s0 + 1 if γ(e, s0 + 1) ↓ and let s1 = s0 + 2 otherwise. Then, by choice of s0, either Re

is initialized at stage s1 or s1 = 1. So, in either case, Re does not have any followers at the end of

stage s1. Moreover, Re receives attention whenever it requires attention after stage s1 and Re is

not initialized after stage s1. By the latter, any Re-follower existing at a stage > s1 is permanent

(hence, if xe,k[s] is defined for some s > s1 then xe,k[s
′] = xe,k[s] for all s

′ ≥ s).

Note that, by choice of s1, a follower of Re is appointed at stage s1 + 1 since Re requires

attention via (i) at this stage. In fact there are infinitely many Re-followers appointed after stage

s1. Namely, assume that there are only finitely many followers appointed and fix s2 > s1 minimal

such that no follower is appointed after stage s2. Then, for any s ≥ s2, the followers defined at

stage s are just the followers xe,0 < · · · < xe,n (n ≥ 0) defined at stage s2. So Re does not require

attention via (i) or (iii) after stage s2. Moreover, Re requires attention via (ii) at a stage s+1 > s2

only if gs(k) ̸= gs+1(k) for some k ≤ n. But, since {gs}s≥0 is a computable approximation of g,

the latter can happen only finitely often. So Re requires attention only finitely often contrary to

assumption.

Now let

xe,0 < xe,1 < xe,2 < . . .

be the permanent Re-followers. Then, for any n ≥ 0, xe,n is appointed at stage xe,n and, for any

s such that xe,n ≤ s < xe,n+1, xe,0, . . . , xe,n are the Re-followers defined at stage s. Moreover,

by construction, an interval Je,n becomes associated with xe,n at the stage xe,n+1 where xe,n+1 is

appointed and

∀ k < n (Axe,n+1−1 ∩ Je,k ̸= Ve1,xe,n+1−1 ∩ Je,k) (2.4)

holds. The latter implies that, for any k, n with k < n

If gxe,n+2−1(k) ̸= gxe,n+1−1(k) then there is a stage s with xe,n+1 − 1 ≤ s < xe,n+2 − 1

and such that As+1 ∩ Je,k ̸= As ∩ Je,k or Ve1,s+1 ∩ Je,k ̸= Ve1,s ∩ Je,k holds.
(2.5)

holds. For a proof of (2.5), fix k < n such that gxe,n+2−1(k) ̸= gxe,n+1−1(k) holds. By (2.4) it suffices

to show that there is a stage t such that xe,n+1−1 ≤ t ≤ xe,n+2−1 and At∩Je,k = Ve1,t∩Je,k holds.
By gxe,n+2−1(k) ̸= gxe,n+1−1(k) fix s such that xe,n+1 − 1 ≤ s < xe,n+2 − 1 and gs+1(k) ̸= gs(k). If
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As ∩ Je,k = Ve1,s ∩ Je,k then t = s will do. Otherwise, Re requires and receives attention via (ii)

at stage s + 1 and As+1 ∩ Je,k = Ve1,s+1 ∩ Je,k. (Note that, since Re requires attention infinitely

often, there are infinitely many stages at which e is eligible. But this implies that e is eligible at

all stages ≥ 1.) So t = s+ 1 will do.

Since {Ve1,s}s≥0 is a computable almost-enumeration and since, by Claim 2, {As}s≥0 is a

computable almost-enumeration, too, there are at most 21+max Je,k stages such that Ve1 changes

below 1 +max Je,k and similarly for A. Hence (2.5) implies that

|{n > k : gxe,n+2−1(k) ̸= gxe,n+1−1(k)}| ≤ 2 · 21+max Je,k .

So, if we define the computable approximation {g̃n}n≥0 of g by letting

g̃n(k) = gxe,n+1−1(k),

then the number of mind changes of g̃n on k is bounded by 2 · 21+max Je,k + k + 1. So g is ω-c.e.

contrary to choice of g.

Claim 4. For e ≥ 0, requirement Re is met.

Proof. Fix e and, for a contradiction, assume that Re is not met. Then the hypothesis of Re is

true – hence, in particular, Ie0 is a c.v.s.a.i. – and, for all n, A ∩ Ie0n ̸= Ve1 ∩ Ie0n . Moreover, e is

eligible at all stages ≥ 1. By Claim 3, fix a stage s0 > e such that no requirement Re′ with e
′ ≤ e

requires attention after stage s0, such that γ(e′, s) = γ∗(e′) for all e′ ≤ e and all s ≥ s0 and such

that Cs0 � e+ 1 = C � e+ 1.

Since Re does not require attention at stage s0 + 1, there is a follower assigned to Re at the

end of stage s0. So we may fix n ≥ 0 such that xe,0, xe,1, . . . , xe,n and Je,0, Je,1, . . . , Je,n−1 are the

finitely many followers and associated intervals assigned to Re at the end of stage s0. By choice of

s0, these assignments are permanent. Moreover, since Je,k ∈ Ie0 it follows that A∩Je,k ̸= Ve1∩Je,k
(for all k < n). So, for any sufficiently large stage s1 > s0, As1 ∩ Je,k ̸= Ve1,s1 ∩ Je,k for all k < n.

Since Ie0 is a c.v.s.a.i. we may pick such a stage s1 such that there is a number m such that Ie0m,s1 ↓
and xe,n < min Ie0m . Then Clause (ii) or Clause (iii) in the definition of requiring attention is true

at stage s1 + 1. So (since e < s1 and e is eligible at stage s1 + 1) Re requires attention at stage

s1 + 1, which is a contradiction.

Claim 5. A ≤T C.

Proof. Given x let sx be the least stage s such that Cs � x+1 = C � x+1 and gt � x+1 = g � x+1

for all t ≥ s. Then sx can be computed from C (uniformly in x). So it suffices to show that

As(x) = As+1(x) for all s ≥ sx whence A(x) = Asx(x).

Fix s such that As(x) ̸= As+1(x). Then, by construction, one of the following two cases must

apply.

Case 1. x = γ(cs, s) where cs = min(Cs+1 \ Cs) and γ(cs, s) is enumerated into A at stage

s+ 1.

Then, by (γ2) and by construction, cs ≤ γ(cs, s) whence Cs+1 � x+1 ̸= Cs � x+1. So s < sx.
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Case 2. There are numbers e and k such that requirement Re receives attention via (ii) at

stage s+ 1, gs+1(k) ̸= gs(k) and x = xe,k or x ∈ Je,k where xe,k is the (k + 1)st follower (in

order of magnitude) of Re at the end of stage s and Je,k is the interval associated with xe,k.

Since xe,k < min Je,k it follows that k ≤ xe,k ≤ x whence gs+1 � x+1 ̸= gs � x+1. So s < sx

is this case, too.

Claim 6. C ≤T A.

Proof. As observed above already, the marker function γ is computable, has computable domain

and satisfies the conditions (γ1) – (γ4) and (γ6). Moreover, (γ5) holds by Claim 3. So C ≤T A by

Claims 1 and 2.

Claims 2, 4, 5 and 6 show that A has the required properties. This completes the proof of

Theorem 28.

It can be shown that the converse of Theorem 28 holds, too.

Theorem 29 ([ASLM]). Let A be an almost-c.e. set with the universal similarity property. Then

degT(A) is not totally ω-c.e.

To conclude, we get the following characterization of the c.e. not totally ω-c.e. degrees in terms

of the universal similarity property.

Theorem 30. For a c.e. Turing degree a the following are equivalent.

(i) There is an almost-c.e. set A with the universal similarity property in a.

(ii) a is not totally ω-c.e.

Proof. This is immediate by Theorems 28 and 29.

In the following subsections, we give examples of applications of Theorem 30 proving properties

of the c.e. not totally ω-c.e. degrees.

2.3.2 Sets with the Universal Similarity Property and CB-Randomness

Brodhead, Downey and Ng [BDN12] have shown that any c.e. not totally ω-c.e. Turing degree

contains a (not necessarily almost-c.e.) CB-random set and that any such degree bounds a CB-

random almost-c.e. set. We unify these results by showing that any almost-c.e. set with the

universal similarity property is CB-random.

Theorem 31. Any almost-c.e. set with the universal similarity property is CB-random.

Corollary 32. Let a be a c.e. Turing degree which is not totally ω-c.e. There is an a.c.e. set

A ∈ a such that A is CB-random.

Proof. This is immediate by Theorems 30 and 31.

Before we prove Theorem 31 we review the relevant notions.

Definition 33. (a) For any function f : ω → ω, an ML-test {Un}n≥0 is f -bounded (or an f -test

for short) if, for n ≥ 0, |Un| ≤ f(n).
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(b) A Martin-Löf test {Un}n≥0 is computably-bounded (or a CB-test for short) if {Un}n≥0 is

f -bounded for some computable function f .

(c) A real α (set A) is f -Martin-Löf random (or f -ML-random for short) if α (A) passes all

f -tests.

(d) A real α (set A) is computably-bounded random (or CB-random for short) if α (A) passes

all CB-tests (i.e., if α (A) is f -ML-random for all computable functions f).

Now, since a set A is CB-random if and only if A is f -ML-random for all computable functions

f , for a proof of Theorem 31, it suffices to establish the following lemma. The somewhat technical

proof of the lemma can be found in the forthcoming paper [ASLM] by Ambos-Spies, Losert and

Monath.

Lemma 34 ([ASLM]). Let f be a computable function. There is a c.v.s.a.i. F = {Fn}n≥0 such

that any F-a.c.e.-a.n.c. almost-c.e. set A is f -ML-random.

2.3.3 Sets with the Universal Similarity Property and Maximal Pairs

As a further example, we now turn to investigate maximal pairs in the almost-c.e. ibT- and cl-

degrees. They have been and are still widely studied. Yu and Ding [YD04] have shown that there

exists a maximal pair in the almost-c.e. ibT-degrees. This result has been extended in various

directions. E.g., Fan [Fan09] has shown that there is a maximal pair in the almost-c.e. ibT-degrees

such that one half is c.e. In fact, by a result of Fan and Yu [FY11], every noncomputable almost-

c.e. set is half of a maximal pair in the almost-c.e. ibT-degrees. However, as shown by Downey

and Hirschfeldt [DH10], we cannot make both halves c.e.

In [ASLM], Fan’s theorem that there is an ibT-maximal pair (A,B) in the almost-c.e. sets

where B is c.e. is strengthened in two directions. Namely, it is shown that the c.e. set B can be

chosen to be arbitrarily sparse, i.e., to be a subset of any given infinite computable set D and that

it suffices to let A be any F-a.c.e.-a.n.c. almost-c.e. set (where the choice of F depends on D).

Lemma 35 (First Maximal Pair Lemma). Let D be an infinite computable set. There are a

c.v.s.a.i. F = {Fn}n≥0 and a c.e. set B ⊆ D such that, for any F-a.c.e.-a.n.c. almost-c.e. set A,

(A,B) is an ibT-maximal pair in the almost-c.e. sets.

The quite technical proof of this lemma is based on the Yu-Ding method for constructing

maximal pairs and its refinement by Barmpalias, Downey and Greenberg and can be found in the

forthcoming paper [ASLM] by Ambos-Spies, Losert and Monath. The lemma immediately implies

the following.

Lemma 36 (Second Maximal Pair Lemma). Let A be an almost-c.e. set with the universal simi-

larity property and let D be any infinite computable set. There is a c.e. set B ⊆ D such that (A,B)

is an ibT-maximal pair in the almost-c.e. sets.

As mentioned in [ASLM], Lemma 35 implies the following Theorem which, by Theorem 21,

implies direction (i)⇒(ii) of Theorem 17.
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Theorem 37. There is a v.s.a. F such that no F-a.c.e.-a.n.c. almost-c.e. set is cl-reducible to

any ML-random almost-c.e. set.

In the remainder of this subsection, we prove that a c.e. T-degree contains an a.c.e. set which

is not ibT-reducible to any wtt-hard a.c.e. set if and only if it is not totally ω-c.e. We begin with

applying the Second Maximal Pair Lemma to prove the following.

Theorem 38. Let A be an almost-c.e. set with the universal similarity property and let C be a

wtt-hard almost-c.e. set. Then A ̸≤ibT C.

The theorem is immediate by the Second Maximal Pair Lemma and the following equivalence.

Lemma 39 ([ASLM]). Let A be an almost-c.e. set. The following are equivalent.

(i) A is not ibT-reducible to any wtt-hard almost-c.e. set.

(ii) For any infinite computable set D there is a computably enumerable subset B of D such that

(A,B) is an ibT-maximal pair in the almost-c.e. sets.

By Theorem 30, Theorem 38 implies the following.

Theorem 40. Let a be a c.e. Turing degree which is not totally ω-c.e. Then, there is an almost-c.e.

set A ∈ a that is not ibT-reducible to any wtt-hard almost-c.e. set.

We now proceed to prove the converse of Theorem 40.

Theorem 41. Let a be a c.e. Turing degree which is totally ω-c.e. and let A be any almost-c.e.

set in a. There is a wtt-hard almost-c.e. set B such that A ≤ibT B.

For the proof of Theorem 41, we need the following technical lemma.

Lemma 42 ([ASLM]). Let A be a noncomputable almost-c.e. set such that degT(A) is totally

ω-c.e. Then, the following hold.

(a) There is a strictly increasing computable function h such that the following holds.

For any computable function f there are a computable almost-enumeration {As}s≥0 of A and

an infinite computable set D such that

∀ x ∈ D (|{s : As+1 � f(x) ̸= As � f(x)}| < h(x))

holds.

(b) There are a computable almost-enumeration {As}s≥0 of A and a c.v.s.a.i. I = {In}n≥0 such

that

∀n ≥ 0 (|{s : As+1 ∩
⋃
n′≤n

In′ ̸= As ∩
⋃
n′≤n

In′}| < |In| − 1) (2.6)

Now we are ready to prove Theorem 41.

Proof of Theorem 41. If a = 0 then the claim is obvious. So w.l.o.g. assume that a > 0 and let A

be any almost-c.e. set in a. By Lemma 42 (b) fix a computable almost-enumeration {As}s≥0 of A

and a c.v.s.a.i. I = {In}n≥0 such that (2.6) holds. Moreover, fix an and bn such that In = [an, bn].
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It suffices to show that there are an almost-c.e. set B and a computable almost-enumeration

{Bs}s≥0 of B such that

A ≤ibT B (2.7)

and such that

∀ n, s ≥ 0 (Bs(bn) = 0) (2.8)

holds. Then, for C = B ∪ {bn : n ∈ K} where K is the halting set, C is almost-c.e., A ≤ibT C and

K ≤wtt C.

The desired computable almost-enumeration {Bs}s≥0 is defined as follows. Let B0(x) = 0

for all x. For the definition of Bs+1 distinguish the following two cases. If As+1 = As then let

Bs+1 = Bs. Otherwise, let xs+1 be the least x such that As+1(x) ̸= As(x) and fix the unique

number ns+1 such that xs+1 ∈ Ins+1 . (Note that As+1(xs+1) = 1 and As(xs+1) = 0 since {As}s≥0

is an almost-enumeration.) If xs+1 ̸= bns+1 then let ys+1 be the greatest number y ≤ xs+1 in Ins+1

such that Bs(y) = 0 and if xs+1 = bns+1 then let ys+1 be the greatest number y < xs+1 in In,s+1

such that Bs(y) = 0. In either case let

Bs+1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bs(x) if x < ys+1

1 if x = ys+1

0 if x > ys+1.

Assuming that the number ys+1 exists for all s such that xs+1 is defined, it is obvious that

{Bs}s≥0 is a computable almost-enumeration satisfying (2.8). Moreover, for the set B almost-

enumerated by {Bs}s≥0, (2.7) holds since {Bs}s≥0 permits {As}s≥0 (namely, for any z and s such

that As+1 � z + 1 ̸= As � z + 1, it holds that Bs+1 � z + 1 ̸= Bs � z + 1).

So it only remains to show that ys+1 exists whenever xs+1 exists. For a contradiction, let s0 be

the first stage such that xs0+1 exists and ys0+1 does not exist and let n = ns0+1. As ys0+1 does not

exist, [an, xs0+1) ⊆ Bs0 . We claim that there are a number k ≥ 0 and stages sk < sk−1 < . . . < s0

such that the following hold.

xs0+1 < xs1+1 < . . . < xsk+1 = bn (2.9)

and for all i < k

xsi+1 ∈ Bsi , (2.10)

(xsi+1, xsi+1+1) ⊆ Bsi+1 . (2.11)

As there is at most one x such that B(x) changes from 0 to 1 at any given stage, this implies

that there are at least |[an, xs0+1)| + |
⋃
i<k(xsi+1, xsi+1+1)| + |{xsi+1 : i < k}| = |In| − 1 many

stages where B changes in In. By construction, this only happens if A changes in In, hence A

changes at least |In|−1 many times in In, which contradicts the choice of I and of the computable

almost-enumeration of A.

It remains to show that (2.9) holds for some k and sk < sk−1 < . . . < s0 and that (2.10) and

(2.11) hold for all i < k. The proof is by induction. For that matter, we prove that, if a stage
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si ≤ s0 such that xsi+1 ∈ Bsi exists, then there is a stage si+1 < si such that the following hold

xsi+1+1 > xsi+1 = ysi+1+1, (2.12)

xsi+1+1 = bn or xsi+1+1 ∈ Bsi+1
(2.13)

and such that (2.11) holds. Fix si ≤ s0 such that xsi+1 ∈ Bsi . Then, by construction, there must

be a stage si+1 < si such that xsi+1 = ysi+1+1 (hence xsi+1 ∈ Bsi+1+1 \ Bsi+1
) and such that

xsi+1 ∈ Bs+1 for all s with si+1 ≤ s < si. By construction, xsi+1+1 ≥ xsi+1, so in order to prove

(2.12) assume for a contradiction that xsi+1+1 = xsi+1. Then, xsi+1 ∈ Asi+1+1 \Asi , i.e., xsi+1 is

taken out of A at some stage s+ 1 (i.e., xsi+1 ∈ As \ As+1) with si+1 < s < si. By construction,

this implies that xs+1 < xsi+1 exists, whence, by s < si ≤ s0, ys+1 ≤ xs+1 < xsi+1 exist, so, by

construction, xsi+1 /∈ Bs+1 contradicting the choice of si+1. It follows that xsi+1+1 > xsi+1, hence

(2.12) holds. It follows by definition of ysi+1+1 that (2.11) and (2.13) hold.

Now, since ys0+1 does not exist, either xs0+1 = bn (then, (2.9) holds with k = 0 and (2.10)

and (2.11) are vacuous) or xs0+1 ∈ Bs0 . In the latter case, from the above together with the fact

that there are only finitely many stages s < s0, it follows by induction that for some k > 0, there

are stages sk < sk−1 < . . . < s0 such that (2.9) holds and such that (2.10) and (2.11) hold for all

i < k. This completes the proof.

To conclude, we have the following theorem.

Theorem 43. For a c.e. degree a, the following are equivalent.

(i) There is an almost-c.e. set in a that is not ibT-reducible to any wtt-hard almost-c.e. set.

(ii) a is not totally ω-c.e.

Proof. Immediate by Theorems 40 and 41.

2.3.4 Sets with the Universal Similarity Property and cl-Reducibility to

Complex Sets

In this subsection, we apply Theorem 43 to characterize the Turing degrees containing almost-c.e.

sets which cannot be reduced to any complex almost-c.e. set. Namely, we prove the following

theorem which has been conjectured by Noam Greenberg and parallels Theorem 17.

Theorem 44. Let a be a c.e. Turing degree. The following are equivalent.

(i) There is an almost-c.e. set in a which is not cl-reducible to any complex almost-c.e. set.

(ii) a is not totally ω-c.e.

Here, complex sets are defined in terms of plain Kolmogorov complexity and computable orders

where a computable order is a computable, nondecreasing, unbounded function.

Definition 45 (Kanovich, see e.g. [DH10]). Let h be a computable order. A set A is h-complex if

C(A � n) ≥ h(n) for all n. A set A is complex if A is h-complex for some computable order.
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Note that Downey and Hirschfeldt proved that there is a set that is not cl-reducible to any

complex set (Theorem 9.13.2 in [DH10]). Moreover, Fan and Yu [FY11] showed that there is an

almost-c.e. set which is not cl-reducible to any complex almost-c.e. set. In order to prove Theorem

44, we need a further equivalence. Kanovich (see Theorem 8.16.7 in [DH10]) has shown that a c.e.

set A is complex if and only if A is wtt-complete. Since any almost-c.e. set is wtt-equivalent to

a c.e. set and since Kjos-Hanssen, Merkle and Stephan [KHMS11] have observed that the class of

complex sets is closed upwards under wtt-reducibility, the complex almost-c.e. sets coincide with

the wtt-hard almost-c.e. sets.

Lemma 46. An almost-c.e. set A is complex if and only if A is wtt-hard (for the class of the c.e.

sets).

We observe further that a set is cl-reducible to a wtt-hard almost-c.e. set if and only if it is

ibT-reducible to such a set.

Proposition 47 ([ASLM]). A set A is cl-reducible to some wtt-hard almost-c.e. set if and only if

A is ibT-reducible to such a set.

So, by the coincidence of the complex almost-c.e. sets and the wtt-hard almost-c.e. sets, direc-

tion (i)⇒(ii) of Theorem 44 follows from Theorem 41 while direction (ii)⇒(i) follows from Theorem

40 and Proposition 47.

Proof of Theorem 44. (i)⇒(ii). The proof is by contraposition. Assume that a is totally ω-c.e.

and let A be any almost-c.e. set in a. It suffices to show that there is a complex almost-c.e. set

C such that A ≤cl C. By Theorem 41 there is a wtt-hard almost-c.e. set C such that A ≤ibT C

hence A ≤cl C. So the claim follows by Lemma 46.

(ii)⇒(i). Assume that a is not totally ω-c.e. By Theorem 40, there is a set A ∈ a which is not

ibT-reducible to any wtt-hard almost-c.e. set. We show that A is not cl-reducible to any complex

almost-c.e. set. For a contradiction assume that A is cl-reducible to the complex almost-c.e. set C.

Then, by Lemma 46, C is wtt-hard and, by Proposition 47, A is ibT-reducible to some wtt-hard

almost-c.e. set Ĉ. But this contradicts the choice of A.

2.4 Notions of Universal Array Noncomputability

In the last section, we have seen that the c.e. not totally ω-c.e. degrees contain almost-c.e. sets

that possess a property that can be viewed as a universal version of the key property of the a.n.c.

c.e. sets; namely, the universal similarity property. This observation strengthens the impression

based on Lemma 23 that being not totally ω-c.e. is a universal or uniform version of being a.n.c.

Note that it has been shown by Downey, Jockusch and Stob [DJS90] that no c.e. set is F-a.n.c.

for all very strong arrays F , so there is no equivalent of the universal similarity property for

c.e. sets. In this section, however, we define typical properties of c.e. sets of not totally ω-c.e.

Turing degree, namely, we introduce various notions of universal array noncomputability. We

explore the properties of and the relationships between c.e. sets with the different universal array

noncomputability properties, their wtt- as well as T-degrees. In particular, we see that those sets

capture a further notion of multiple permitting, namely uniform multiple permitting and that their
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Turing degrees are precisely the c.e. not totally ω-c.e. Turing degrees, implying that the latter are

uniformly multiply permitting. Later we exploit this fact to look at more properties of the c.e.

not totally ω-c.e. degrees. Many of the definitions and results in this section will appear in the

forthcoming paper [ASL] by Ambos-Spies and Losert.

2.4.1 Basic Definitions and Facts

We start with the basic definitions.

Definition 48. For any set A, we let A⟨e⟩ = {x : ⟨e, x⟩ ∈ A} be the eth row of A.

Recall the definition of the enumeration {Fe}e≥0 = {Fϕe}e≥0 of all very strong arrays (and

initial segments) for a given universal function ϕ from the discussion following Definition 12.

Definition 49. (a) Given a universal function ϕ, we call a c.e. set A ϕ-universally array noncom-

putable (ϕ-universally a.n.c. or ϕ-u.a.n.c.) if A⟨e⟩ is Fe-a.n.c. whenever Fe is a very strong

array.

(b) A c.e. set is uniformly universally array noncomputable (uniformly u.a.n.c. or u.u.a.n.c.) if

it is ϕ-u.a.n.c. for some universal function ϕ.

(c) We call a c.e. set A universally a.n.c. (u.a.n.c.) if for every very strong array F , there is an

index e such that A⟨e⟩ is F-a.n.c.

We call a c.e. (Turing- or wtt-) degree ϕ-u.a.n.c. (u.u.a.n.c, u.a.n.c.) whenever it contains a

ϕ-u.a.n.c. (u.u.a.n.c., u.a.n.c.) c.e. set.

Note that for every universal function ϕ, there exists a ϕ-universally a.n.c. c.e. set. We establish

this fact in the following lemma.

Lemma 50. Let ϕ be a universal function. Then, there is a c.e. set A which is ϕ-universally

a.n.c.

Proof. Let A be defined by

⟨e, x⟩ ∈ A ⇔ ∃n(F en ↓ & x ∈Wn ∩ F en) (⇔ ∃n, s(F en,s ↓ & x ∈Wn,s ∩ F en))

for all e and x. Then, obviously, A is c.e. and if Fe is a v.s.a. then A⟨e⟩ ∩ F en =Wn ∩ F en for all n,

so A⟨e⟩ is Fe-a.n.c. Hence, by definition, A is ϕ-u.a.n.c.

The following relations among the notions are immediate by definition.

Proposition 51. Let ϕ be a universal function. For any c.e. set A, the following holds.

A is ϕ-u.a.n.c.

⇓

A is u.u.a.n.c.

⇓

A is u.a.n.c.
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In the following, we show that the implications in Proposition 51 are strict.

Lemma 52. Let ϕ be a universal function. There is a c.e. set A which is uniformly u.a.n.c. but

not ϕ-u.a.n.c.

Proof. Fix an index e0 such that Fϕe0 is a very strong array and an index e1 such that Fϕe1 is

not a very strong array. Note that e0 and e1 exist by choice of ϕ. Let ψ be defined as follows.

For e ̸= e0, e1, let ψ(e, x) = ϕ(e, x) for all x and let ψ(e0, x) = ϕ(e1, x) and ψ(e1, x) = ϕ(e0, x)

for all x. It is easy to verify that ψ is a universal function, whence, by Lemma 50, there exists a

ψ-u.a.n.c. c.e. set Â. Now, define A by letting A⟨e0⟩ = ∅ and A⟨e⟩ = Â⟨e⟩ for all e ̸= e0. Then, A

is c.e. and, by choice of Â and as Fψe0 = Fϕe1 is not a v.s.a., A is ψ-u.a.n.c. and hence u.u.a.n.c.

However, by choice of e0, Fϕe0 is a v.s.a. As A⟨e0⟩ = ∅, A⟨e0⟩ is not Fe0-a.n.c., hence A is not

ϕ-u.a.n.c. This completes the proof of the lemma.

Lemma 53. There is a c.e. set A that is u.a.n.c. but not uniformly u.a.n.c.

Proof. We computably enumerate such a set A.

Let ϕ together with a computable approximation {ϕs}s≥0 be a 2-universal partial computable

function and let ψ together with a computable approximation {ψs}s≥0 be some fixed 1-universal

partial computable function. For fixed e, let ϕe denote the eth branch of ϕ. Note that for any

e, ϕe is a two-ary partial computable function. Furthermore, for every e, as discussed following

Definition 12, let Ie = Iψe be the complete very strong array of intervals (or initial segment)

defined by ψe and for every e and k, let Fe,k = Fϕe
k be the v.s.a. (or initial segment) defined by

ϕek. It suffices to construct a c.e. set A such that the following requirements are met.

R̂2e : If Ie is a c.v.s.a.i. then A⟨k⟩ is Ie-a.n.c. for some k.

R̂2e+1 : If ϕe is universal for the (unary) partial computable functions,

then there is some k ≥ 0 such that Fe,k is a v.s.a. and A⟨k⟩ is not Fe,k-a.n.c.

Here, the requirements R̂2e guarantee that A is u.a.n.c. (notice that, by Proposition 25, it is enough

to meet R̂2e for all complete very strong arrays of intervals) whereas the requirements R̂2e+1 make

sure that A is not uniformly u.a.n.c.

Our strategy is as follows. For a splitting {Jn}n≥0 of ω into intervals, we replace our require-

ments by the following stronger requirements.

R2e : If Ie is a c.v.s.a.i. then, for some k ∈ Je, A
⟨k⟩ is Ie-a.n.c.

R2e+1 : For any e′ < e, if there is k′ ∈ Je such that Fe′,k′ is a v.s.a.

then, for some k ∈ Je, Fe′,k is a v.s.a. and A⟨k⟩ is not Fe′,k-a.n.c.

Note that R2e immediately implies R̂2e. Moreover, for any e′ such that ϕe
′
is universal, there

are infinitely many k such that Fe′,k is a v.s.a. In particular, for any splitting {Jn}n≥0 of ω into

intervals, it follows that there are e > e′ and k′ ∈ Je such that Fe′,k′ is a v.s.a. So, for any e′,

there is e > e′ such that R2e+1 implies R̂2e′+1.
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Our strategy is as follows. To meet a single requirement R2e, we aim to guarantee that A⟨k⟩ is

Ie-a.n.c. for some k ∈ Je. For that matter, for fixed k and n, we pick an unused component Ief(k,n)
of Ie and make sure that A⟨k⟩ ∩ Ief(k,n) =Wn ∩ Ief(k,n). We ensure this by defining f in stages and,

whenever f(k, n, s) is defined at some stage s and A
⟨k⟩
s ∩ Ief(k,n,s) ̸= Wn,s+1 ∩ Ief(k,n,s) holds, we

arrange that A
⟨k⟩
s+1 ∩ Ief(k,n,s) =Wn,s+1 ∩ Ief(k,n,s) holds.

To meet a single requirement R2e+1, for each e
′ < e and k ∈ Je such that Fe′,k is a v.s.a. – if

any – we try to make sure that A⟨k⟩ is computable. As we cannot decide whether Fe′,k is a v.s.a.

or not, we choose to act at so-called Fe′,k-expansionary stages – i.e., stages where new components

of Fe′,k are defined – for the sake of meeting requirement R2e+1. Note that, whenever Fe′,k is a

v.s.a., there are infinitely many Fe′,k-expansionary stages.

To avoid conflicts between the different types of requirements, we only act on the odd stages

to meet the requirements of the form R2e and only on the even stages to meet the requirements of

the form R2e+1. Moreover, we choose to try to make A⟨k⟩ Ie-a.n.c. for every k ∈ Je for the sake

of R2e. We might need to destroy action taken for that matter in order to meet a requirement

R2e+1 which possibly aims to make A⟨k⟩ computable. At a given stage s′ + 1, we then choose to

enumerate all numbers from Ief(k,n,s′) (if defined) into A⟨k⟩ for n > ne(e
′, k, s′) where ne(e

′, k, s)

is appropriately chosen depending on e and e′ < e and bounded in s in case that k is minimal in

Je such that Fe′,k is indeed a v.s.a. We can then argue that, for every e′ < e, for the least k ∈ Je

such that Fe′,k is a v.s.a. (if any), this strategy guarantees that A⟨k⟩ is either cofinite or finite,

depending on whether Ie is a c.v.s.a.i. or not. In any case, A⟨k⟩ will then be computable, hence

not Fe′,k-a.n.c. By choosing the splitting {Jn}n≥0 in a way that |Jn| = n+ 1, we make sure that

there is a number k ∈ Je that is not the least k′ ∈ Je such that Fe′,k′ is a v.s.a. for any e′ < e.

For the least such k, we argue that the strategy for meeting R2e succeeds.

Before giving the actual construction, we define the following notions. Let {Jn}n≥0 be a

splitting of ω into intervals such that |Jn| = n+1 for all n, i.e., let x0 = 0 and for every n ≥ 0, let

xn+1 = xn + n+ 1 and let Jn = [xn, xn+1). As the fact whether some Fe,k is a v.s.a. or not is not

computable, we have to use approximations. We define the following length of agreement function.

For all e, k and s, we let

l(e, k, s) = µn(F e,kn,s ↑).

A stage 2s is Fe,k-expansionary if s = 0 or l(e, k, 2s) > l(e, k, 2s′) holds for all s′ < s. Moreover,

if e is fixed, then for e′ < e and k ∈ Je, let

ne(e
′, k, 2s+ 1) = max

k′∈Je,k′<k
l(e′, k′, 2s+ 1).

Now we are ready to give the formal construction of A where we let As denote the finite part of A

constructed at the end of stage s.

Construction.

Stage 0 is vacuous, i.e., A0 = ∅ and f(k, n, 0) ↑ for all k and n.

Stage 2s+ 1. For all e < s and all k ∈ Je, perform the following actions.

1. For all n such that f(k, n, 2s) ↓ and such that

Wn,2s+1 ∩ Ief(k,n,2s) ̸̸= A
⟨k⟩
2s ∩ Ief(k,n,2s) (2.14)
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holds, let A
⟨k⟩
2s+1 ∩ Ief(k,n,2s) =Wn,2s+1 ∩ Ief(k,n,2s). For all such n, say that R2e becomes

active (via Clause 1 and k and n).

2. For the least n such that f(k, n, 2s) ↑, if there is a number m such that

(i) Iem,2s+1 ↓,

(ii) Iem ∩A⟨k⟩
2s = ∅ and

(iii) if n > 0, then m > f(k, n− 1, 2s)

hold, let f(k, n, 2s+ 1) = m for the least such m, hence Ief(k,n,2s+1) = Iem, and say that

R2e becomes active (via Clause 2 and k and n).

Unless mentioned otherwise, let A
⟨k⟩
2s+1 = A

⟨k⟩
2s and f(k, n, 2s + 1) = f(k, n, 2s) for all k and

n.

Stage 2s+2. For any e < s and for each k ∈ Je, perform the following action. For any e′ < e

such that 2s+ 2 is Fe′,k-expansionary and

ne(e
′, k, 2s+ 1) < l(e′, k, 2s+ 1) (2.15)

holds, for all n > ne(e
′, k, 2s+ 1) such that f(k, n, 2s+ 1) ↓, let f(k, n, 2s+ 2) ↑ and put all

x ∈ Ief(k,n,2s+1) into A
⟨k⟩. For all such e, k, e′ and n, we say that R2e+1 becomes active (via

k, e′ and n).

Unless mentioned otherwise, let A
⟨k⟩
2s+2 = A

⟨k⟩
2s+1 and f(k, n, 2s+ 2) = f(k, n, 2s+ 1) for all k

and n.

This completes the construction.

Verification.

In the following we prove a series of claims showing that A has the required properties, i.e., that

A is c.e. and that all requirements are met. Before we turn to these claims, we begin with the

following observations for fixed e, k ∈ Je, e
′ < e, n, m and s. These are, unless mentioned

otherwise, immediate by construction.

If f(k, n, s) ̸= f(k, n, s+1) holds , then either f(k, n, s) ↑ and f(k, n, s+1) ↓ hold and R2e acts

via Clause 2 and k and n at stage s+ 1 or f(k, n, s) ↓ and f(k, n, s+ 1) ↑ hold and R2e+1 acts via

k, e′ and n for some e′ < e. Moreover, if f(k, n, s) ↓, then f(k, n′, s) ↓ and f(k, n′, s) < f(k, n, s)

for all n′ < n. To see this, it suffices to note that if f(k, n, s+ 1) ↓ and f(k, n, s) ↑ hold, then n is

minimal with f(k, n, s) ↑ and, in case n > 0, f(k, n, s+1) > f(k, n−1, s) = f(k, n−1, s+1) holds

and if f(k, n, s+ 1) ↑ and f(k, n, s) ↓ hold, then, by construction, f(k, n′, s+ 1) ↑ for all n′ > n.

Note that A⟨k⟩ ⊆
⋃
m≥0&Iem↓ I

e
m. Moreover, A

⟨k⟩
s+1 ∩ Iem ̸= A

⟨k⟩
s ∩ Iem implies that f(k, n′, s) = m

for some n′. Furthermore, if f(k, n, s) = m and f(k, n, s + 1) ↑, then f(k, n′, s′ + 1) ̸= m for all

n′ and for all s′ ≥ s. Namely, for a contradiction fix the least s′ ≥ s with f(k, n′, s′ + 1) = m for

some n′ and fix the least corresponding n′. By minimality of s′ and by the above, we know that

f(k, n′, s′) ↑, hence R2e acts via Clause 2 and k and n′ at stage s′ + 1, hence, by construction,

A
⟨k⟩
s′ ∩ Iem = ∅. On the other hand, by choice of s, R2e+1 becomes active via k, e′ and n for some

e′ < e at stage s+1, yielding A
⟨k⟩
s+1 ∩ Iem = Iem by construction. By minimality of s′, there is no n′′
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such that f(k, n′′, s′′ + 1) = m for any s′′ with s ≤ s′′ < s′, so A
⟨k⟩
s′ ∩ Iem = A

⟨k⟩
s+1 ∩ Iem = Iem ̸= ∅, a

contradiction.

Claim 1. A is c.e. via {As}s≥0.

Proof. Fix k ≥ 0 and, for a contradiction, fix x and s′ ≥ 0 such that A
⟨k⟩
s′+1(x) < A

⟨k⟩
s′ (x). Then,

by construction, there are e and m such that k ∈ Je and x ∈ Iem and such that either R2e or

R2e+1 becomes active at stage s′+1. As requirements of the form R2e+1 only put numbers into A,

s′ = 2s for some s, R2e becomes active via Clause 1 and k and some n such that f(k, n, 2s) = m

at stage 2s + 1 and A
⟨k⟩
2s+1 ∩ Iem = Wn,2s+1 ∩ Iem. So by assumption, x ∈ A

⟨k⟩
2s \Wn,2s+1. Fix the

stage sx + 1 ≤ 2s such that x is enumerated into A⟨k⟩ at stage sx + 1. By construction, this can

only happen in the following two cases.

Case 1. For some n′ with f(k, n′, sx) = m, R2e becomes active via Clause 1 and k and n′ at

stage sx + 1.

We claim that n′ = n. It then follows by construction that A
⟨k⟩
sx+1 ∩ Iem = Wn,sx+1 ∩ Iem.

Hence x ∈ Wn,sx+1. But, as {Wn,s}s≥0 is a computable enumeration, by sx + 1 ≤ 2s, this

contradicts the fact that x /∈Wn,2s+1.

It remains to show that n′ = n. Assume for a contradiction that n′ ̸= n. Then, by the above

observations and since f(k, n, 2s) = m, it follows that f(k, n′, 2s) ̸= m, hence there is a stage

s′′ with sx ≤ s′′ < 2s such that f(k, n′, s′′) = m and f(k, n′, s′′ + 1) ↑. But, again by the

above observations, this contradicts the fact that f(k, n, 2s) = m.

Case 2. For some e′ < e and n′ with f(k, n′, sx) = m, R2e+1 becomes active via k, e′ and n′

at stage sx + 1

Then, by construction, f(k, n′, sx + 1) ↑, hence, by the above observations, f(k, n′′, s) ̸= m

for all n′′ and for all s > sx, contradicting f(k, n, 2s) = m by 2s > sx.

This completes the proof of Claim 1.

For proving that all requirements are met, we need the following definitions. For fixed e, e′ with

e′ < e, let

kee′ =

⎧⎨⎩µk ∈ Je(Fe′,k is a v.s.a.) if such a k exists

−1 otherwise.

Furthermore, for all e, let

ke = µk ∈ Je(k /∈ {kee′ : e′ < e}).

Note that, as |Je| = e+ 1, ke exists for all e. For fixed e and for all e′ < e and k ∈ Je, let

ne(e
′, k) = lim

s→∞
ne(e

′, k, 2s+ 1).

Note that ne(e
′, k) ∈ ω ∪ {∞}. Before we turn to proving that the requirements are met, we show

an auxiliary claim.

Claim 2. If Ie is a c.v.s.a.i., then for all e and n, lims→∞ f(ke, n, s) exists.
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Proof. Fix e and n. The proof is by induction on n, so assume the claim holds for each n′ < n.

For n > 0, fix the least sn−1 with f(ke, n− 1, 2sn−1 +1) = lims→∞ f(ke, n− 1, s) and let s−1 = 0.

Moreover, fix the least s0 > e such that, for all e′ < e such that Fe′,ke is not a v.s.a., there is no

Fe′,ke -expansionary stage 2s with s ≥ s0 and such that for all e′ < e such that Fe′,ke is a v.s.a.,

ne(e
′, ke, 2s+ 1) ≥ n holds for all s ≥ s0.

Note that s0 exists as, if Fe′,ke is not a v.s.a., there are only finitely many Fe′,ke -expansionary

stages and, if Fe′,ke is a v.s.a., then kee′ < ke by definition of kee′ and of ke, hence, by definition of

ne(e
′, ke, 2s+1), as l(e′, kee′ , 2s+1) is unbounded in s, so is ne(e

′, ke, 2s+1) (moreover, the latter

in nondecreasing in s).

Now, let s1 = max{sn−1, s0} and, if f(k, n, 2s1 + 1) ↓, let s = s1. Otherwise, let s > s1 be

minimal such that R2e becomes active at stage 2s+ 1 via k and n. Note that such a stage exists

by choice of sn−1 and as Ie is a c.v.s.a.i. We claim that f(k, n, 2s+1) ↓ and that f(k, n, s′ +1) =

f(k, n, s′) for all s′ ≥ 2s + 1, hence lims→∞ f(k, n, s) exists. The former is immediate by choice

of s. It remains to show the latter. For a contradiction fix the least s′ ≥ 2s + 1 such that

f(k, n, s′+1) ̸= f(k, n, s′). By minimality of s′, f(k, n, s′) ↑. This implies that R2e+1 acts via k, e′

and n for some e′ < e at stage s′+1, hence s′ = 2s′′+1 for some s′′, 2s′′+2 is Fe′,ke-expansionary

and ne(e
′, ke, 2s

′′ + 1) < n. But, by s′′ ≥ s0, this contradicts the choice of s0. This completes the

proof of Claim 2.

Claim 3. For all e, R2e is met.

Proof. Fix e and w.l.o.g., assume that Ie is a c.v.s.a.i. We claim that then, A⟨ke⟩ is Ie-a.n.c. To

prove this, we fix n and show that there is some m such that A⟨ke⟩ ∩ Iem =Wn ∩ Iem.

Namely, m = lims→∞ f(ke, n, s) will do. The existence of m is immediate by Claim 2. So it

remains to show that A⟨ke⟩ ∩ Iem = Wn ∩ Iem. Fix sn minimal such that f(ke, n, s) = m for all

s ≥ sn. Note that by construction, A
⟨ke⟩
sn ∩ Iem = ∅ and A⟨ke⟩ ∩ Iem only changes after stage sn if

either R2e+1 acts via ke, e
′ and n for some e′ < e at some stage 2s+2 > sn or if R2e acts via ke, n

and Clause 1. The former would by construction imply that f(ke, n, 2s+2) ↑ which, by 2s+2 > sn

contradicts the choice of sn. The latter happens at any stage 2s + 1 > sn such that (2.14) holds

for k = ke. Then, it is ensured that A
⟨ke⟩
2s+1 ∩ Iem = Wn,2s+1 ∩ Iem. Hence, as Wn ∩ Iem changes at

most finitely often after stage sn, A
⟨ke⟩ ∩ Iem =Wn ∩ Iem holds which completes the proof of Claim

3.

For proving that the requirements R2e+1 are met as well, we need one more auxiliary claim.

Claim 4. If Ie is a c.v.s.a.i., then for all k ∈ Je and all m ≥ 0, there is a stage 2s + 1 such that

there is n with f(k, n, 2s+ 1) = m.

Proof. For a contradiction, fix some k ∈ Je and the least m such that f(k, n, 2s+ 1) ̸= m for all s

and n.

As Ie is a c.v.s.a.i., we may fix s0 > e minimal with Iem,2s0+1 ↓. For each s, let ns be the least

n such that f(k, n, 2s) ↑ holds. We claim that for every s ≥ s0, for n = ns, Clauses (i) – (iii) in

Clause 2 of requirement R2e becoming active hold.

By construction and by assumption on m, it then follows that R2e becomes active via Clause 2

and k and ns at every stage 2s+1 with s ≥ s0 and f(k, ns, 2s+1) = m′ for some m′ < m. By the
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pigeon hole principle, this implies that there are m0 < m, s′ and s′′ with s0 ≤ s′ < s′′ such that

R2e becomes active via Clause 2 and k and ns′ at stage 2s′ + 1 and f(k, ns′ , 2s
′ + 1) = m0 and

such that R2e becomes active via Clause 2 and k and ns′′ at stage 2s
′′ +1 and f(k, ns′′ , 2s

′′ +1) =

m0. It follows that f(k, ns′ , 2s
′′) ̸= m0, hence there is a stage s with s′ ≤ s < s′′ such that

f(k, ns′ , 2s + 1) = m0 and f(k, ns′ , 2s + 2) ↑. But this contradicts the observations preceding

Claim 1.

It remains to show that, for each s ≥ s0, (i) – (iii) hold for n = ns. (i) holds by choice of s0

and of the approximation of Ie. (ii) follows from the assumption on m and from the observations

preceding Claim 1. The proof of (iii) for s ≥ s0 and n = ns is by induction on s ≥ s0. Assume that

for some s ≥ s0, for all s
′ with s0 ≤ s′ < s, (iii) holds for s = s′ and n = ns′ and, for a contradiction,

assume that (iii) does not hold for n = ns, i.e., that ns > 0 and f(k, ns − 1, 2s) = m′ ≥ m hold.

By assumption on m, it follows that m′ > m. Moreover, there is s′ < s such that ns′ = ns − 1

and R2e becomes active via Clause 2 and k and ns′ at stage 2s′ + 1 and f(k, nn′ , 2s′ + 1) = m′

holds. It follows that s′ > e and that m′ is minimal such that (i) – (iii) hold for s = s′, n = ns′

and m = m′. So, Iem′,2s′ ↓, hence s′ ≥ s0. As s′ < s, it follows by inductive hypothesis that (i) –

(iii) hold for s = s′ and n = ns′ which, by m < m′, contradicts the minimality of m′.

This completes the proof of Claim 4.

Claim 5. For all e, R2e+1 is met.

Proof. Fix e, e′ < e and k′ ∈ Je such that Fe′,k′ is a v.s.a. We claim that then, Fe′,ke
e′ is a v.s.a.

and A⟨ke
e′ ⟩ is computable and hence not Fe′,ke

e′ -a.n.c. The first part is immediate by definition of

kee′ . For a proof of the second part, note that if Ie is not a c.v.s.a.i., then, by construction, A⟨k⟩

is finite for all k ∈ Je, hence, in particular, A⟨ke
e′ ⟩ is finite and hence computable. So w.l.o.g., we

assume that Ie is a c.v.s.a.i. We claim that then, A⟨ke
e′ ⟩ is cofinite. Note that, by definition of kee′ ,

the following hold.

max
k′∈Je,k′<kee′

lim
s→∞

(l(e′, k′, s)) <∞ (2.16)

lim
s→∞

(l(e′, kee′ , s)) = ∞ (2.17)

Now, letM = {m : ∃n(m = lims→∞ f(kee′ , n, s)}. We prove that for eachm /∈M , A⟨ke
e′ ⟩∩Iem = Iem

holds. Namely, for fixed m /∈ M , by Claim 4, fix the least sm such that f(kee′ , n, 2sm + 1) = m

for some n together with the corresponding n. By choice of m, it follows that there is s′m minimal

with 2s′m + 2 > 2sm + 1 such that R2e+1 acts via kee′ , n and e′′ for some e′′ < e at stage 2s′m + 2,

which – as, by minimality of s′m, f(kee′ , n, 2s
′
m + 1) = m holds – yields A

⟨ke
e′ ⟩

2s′m+2 ∩ Iem = Iem, hence,

by Claim 1, A⟨ke
e′ ⟩ ∩ Iem = Iem.

To prove that A⟨ke
e′ ⟩ is cofinite, as Ie is a c.v.s.a.i., it now suffices to show that M is finite.

For that matter, it is enough to show that N = {n : lims→∞ f(kee′ , n, s) exists} is finite. Namely,

for each n > ne(e
′, kee′), we claim that n /∈ N . Moreover, by (2.16), ne(e

′, kee′) < ∞. For a proof,

assume for a contradiction that there is n > ne(e
′, kee′) such that lims→∞ f(kee′ , n, s) = m0 exists

and fix the least s′ > e such that f(kee′ , n, s) = m0 for all s ≥ s′. By (2.16) and (2.17), there is an

Fe′,ke
e′ -expansionary stage 2s′′+2 > s′ such that (2.15) holds for k = kee′ and s = s′′ and such that

ne(e
′, kee′ , 2s

′′+1) = ne(e
′, kee′). Fix the least such s′′. Then, by choice of s′, f(kee′ , n, 2s

′′+1) ↓= m0,
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hence, by n > ne(e
′, kee′) and by choice of s′′, R2e+1 becomes active at stage 2s′′ +2 via kee′ , e

′ and

n yielding f(kee′ , n, 2s
′′ + 2) ↑, contradicting 2s′′ + 2 > s′. It follows that N and hence M is finite,

so A⟨ke
e′ ⟩ is cofinite which completes the proof of Claim 5.

Claims 1, 3 and 4 show that A has the required properties. This completes the proof of Lemma

53.

Moreover, none of the universality notions of c.e. sets is wtt-invariant. Indeed, in every c.e.

wtt-degree, there is a c.e. set which is not universally a.n.c. Namely, for a given c.e. set Â, let

A = {⟨e, 0⟩ : e ∈ Â}. Then A is c.e., A =wtt Â and A⟨e⟩ is computable for every e, hence A is not

universally a.n.c.

The following bounding notion of c.e. sets, however, which is implied by the universality notions

is wtt-invariant and, as we will show below, the universality notions and this bounding notion

coincide up to wtt-equivalence.

Definition 54. A c.e. set A (a c.e. degree a) has the uniform bounding property (u.b.p.) via f if

f is a strictly increasing computable function and, for any v.s.a. F , there is an F-a.n.c. c.e. set B

such that B is f -bounded Turing reducible to A (a); and A (a) has the uniform bounding property

(u.b.p.) if A has the u.b.p. via some f .

Note that Downey, Jockusch and Stob [DJS90] have shown that, for any array noncomputable

set c.e. A and for any v.s.a. F , there is an F-a.n.c. c.e. set AF which is wtt-equivalent to A. But

a computable bound f = fF such that AF is f -bounded Turing reducible to A in general depends

on the v.s.a. F . In contrast, for a set A with the uniform bounding property such a bound f exists

which does not depend on the very strong array F .

Proposition 55. Let A be a universally a.n.c. c.e. set. Then A has the uniform bounding property

via f(x) = ⟨x, x⟩.

Note that Proposition 55 follows from that fact that, for every set A and for each e, A⟨e⟩ ≤f−T A

for f(x) = ⟨x, x⟩.

2.4.2 U.a.n.c. Sets and Multiple Permitting

In this subsection, we look at the variant of multiple permitting guaranteed by c.e. sets with the

uniform bounding property. In [DJS90], the a.n.c. c.e. degrees have been introduced in order to

capture a certain type of multiple permitting. In [ASa], Ambos-Spies has formalized this notion

as follows.

Definition 56 ([ASa]). Let F = {Fn}n≥0 be a v.s.a., let f be a computable function, let A be a

c.e. set and let {As}s≥0 be a computable enumeration of A. Then A is F-permitting via f and

{As}s≥0 if, for any partial computable function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f(x) + 1 ̸= Aψ(x) � f(x) + 1)

holds.

A is F-permitting via f if there is a computable enumeration {As}s≥0 of A such that A is

F-permitting via f and {As}s≥0; A is F-permitting if A is F-permitting via some computable f ;

and A is multiply permitting if A is F-permitting for some v.s.a. F .

36



Definition 57 ([ASa]). A c.e. r-degree a is multiply permitting (F-permitting, F-permitting via

f) if there is a c.e. set A in a such that A is multiply permitting (F-permitting, F-permitting via

f).

In [ASa], Ambos-Spies has shown that, for a v.s.a. F and a computable function f , a c.e. set

A which is F-permitting via f and some computable enumeration {As}s≥0 is F-permitting via f

and all computable enumerations {Âs}s≥0 of A. So when dealing with the multiple permitting

notions we may drop the reference to the underlying computable enumeration.

Moreover, as shown by Ambos-Spies in [ASa], too, multiple permitting captures the permitting

properties of the a.n.c. c.e. sets and multiply permitting c.e. sets are just the c.e. sets which are

wtt-equivalent to some a.n.c. c.e. set.

Lemma 58 (Permitting Lemma for A.N.C. C.E. Sets [ASa]). Let F = {Fn}n≥0 be a v.s.a., let

A be an F-a.n.c. c.e. set, let {As}s≥0 be a computable enumeration of A and let ψ be a partial

computable function. Then

∃∞n ∀ x ∈ Fn (ψ(x) ↓ ⇒ x ∈ A \Aψ(x))

holds. Hence, in particular, A is F-permitting via f(x) = x.

Theorem 59 ([ASa]). Let a be a c.e. wtt-degree, let F be a very strong array and let f be a strictly

increasing computable function. The following are equivalent.

(i) a is array noncomputable.

(ii) a is multiply permitting.

(iii) There is an F-a.n.c. c.e. set A ∈ a.

(iv) There is a c.e. set A ∈ a such that A is F-permitting via f .

(v) Any c.e. set A ∈ a is F-permitting hence multiply permitting.

By Theorem 59, any multiply permitting set c.e. A is F-permitting for all very strong arrays F .

The bound fF such that A is F-permitting via fF depends on the v.s.a. F . So the following gives

a stronger multiple permitting property defined in the spirit of the uniform bounding property.

Definition 60. A c.e. set A is uniformly multiply permitting via f if f is a strictly increasing

computable function and, for any v.s.a. F , A is F-permitting via f ; and A is uniformly multiply

permitting if A is uniformly multiply permitting via some f .

As one can easily check, the uniform multiple permitting property is wtt-invariant and the wtt-

degrees of the uniformly multiply permitting c.e. sets are closed upwards in the c.e. wtt-degrees.

Lemma 61. Let f and g be strictly increasing computable functions and let A and B be c.e. sets

such that A is uniformly multiply permitting via f and A ≤g−T B. Then B is uniformly multiply

permitting via g(f).

Lemma 62. Let A be c.e. and have the uniform bounding property via f . Then A is uniformly

multiply permitting via f .
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Proof. Given a v.s.a. F , it suffices to show that A is F-permitting via f . By choice of A there is

an F-a.n.c. c.e. set Â such that Â ≤f−T A. By Lemma 58, Â is F-permitting via f̂(x) = x. So,

by Lemma 61, A is F-permitting via f(f̂) = f .

In the following subsections, we exploit this fact to examine the wtt- and T-degrees of universally

a.n.c. c.e. sets.

2.4.3 On the wtt-Degrees of U.a.n.c. Sets

In this subsection, we show that, up to wtt-equivalence, the various universal array noncomputabil-

ity notions coincide with each other, with the uniform bounding property and with the uniform

multiple permitting property.

Theorem 63. Let a be a c.e. wtt-degree and let ϕ be a universal function. Then, the following

are equivalent.

(i) a is ϕ-universally a.n.c.

(ii) a is uniformly universally a.n.c.

(iii) a is universally a.n.c.

(iv) a has the uniform bounding property.

(v) Any c.e. set A ∈ a has the uniform bounding property.

(vi) There is a c.e. set A ∈ a which is uniformly multiply permitting.

(vii) All c.e. sets A ∈ a are uniformly multiply permitting.

Proof. The equivalence (iv)⇔(v) is immediate by definition of the uniform bounding property and

the equivalence (vi)⇔(vii) is immediate by Lemma 61. Moreover, the implications (i)⇒(ii) and

(ii)⇒(iii) hold by Proposition 51 and the implications (iii)⇒(iv) and (iv)⇒(vi) hold by Proposition

55 and Lemma 62, respectively. So it suffices to show the implication (vi)⇒(i). This is done by

proving the following two lemmas.

Lemma 64. Let C be a c.e. set, let ϕ be a universal function and let Â ≤wtt C (Â ≤T C) be

a ϕ-universally a.n.c. c.e. set. Then, there is a ϕ-universally a.n.c. c.e. set A with A =wtt C

(A =T C).

Proof. We give the proof for the case of wtt-reducibility. For T-reducibility, the proof is the same,

we just replace wtt by T everywhere in the proof.

Fix e ≥ 0 such that Fe is not a very strong array and let

A(x) =

⎧⎨⎩C(y) if x = ⟨e, y⟩ for some y ≥ 0

Â(x) otherwise.

Since Â and C are c.e., it is easy to see that A is c.e., too. As we only change Â⟨e⟩ and Fe is not

a very strong array, A is ϕ-universally a.n.c. Since A = Â \ {⟨e, x⟩ : x ≥ 0} ∪̇ {⟨e, x⟩ : x ∈ C},
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where the first component of the disjoint union is ibT-reducible to Â (which is wtt-reducible to

C) and the second component is ibT-reducible to C, it is easy to see that A is wtt-reducible to C.

Furthermore, C ≤wtt A as for all x, x ∈ C if and only if ⟨e, x⟩ ∈ A.

Lemma 65. Let A be a c.e. set such that A is uniformly multiply permitting and let ϕ be any

universal function. There is a ϕ-u.a.n.c. c.e. set Â such that Â ≤wtt A.

Proof. Fix a strictly increasing computable function f and a computable enumeration {As}s≥0 of

A such that A is uniformly multiply permitting via f and {As}s≥0. It suffices to enumerate a c.e.

set Â ≤wtt A such that, for any e ≥ 0 such that Fe is a v.s.a. and for any m ≥ 0,

∃∞ n (Â⟨e⟩ ∩ F e⟨m,n⟩ =Wm ∩ F e⟨m,n⟩) (2.18)

holds.

A computable enumeration {Âs}s≥0 of a set Â with the required properties is obtained by

letting Â0 = ∅ and by putting a number ⟨e, x⟩ (which is not yet in Âs) into Âs+1 if and only if

there are numbers m,n such that e,m, n, x < s and

• F e⟨m,n⟩,s ↓,

• x ∈ (Wm,s ∩ F e⟨m,n⟩) \ Â
⟨e⟩
s and

• x is f -permitted by A at stage s+ 1, i.e., As+1 � f(x) + 1 ̸= As � f(x) + 1

hold.

Obviously, Â is c.e. and Â ≤wtt A. So, given e such that Fe is a v.s.a. and a c.e. set Wm

it suffices to show that (2.18) holds. For this sake define the partial computable function ψ on⋃
n≥0 F

e
⟨m,n⟩ by letting

ψ(x) = µs > e,m, n, x [x ∈Wm,s]

for x ∈ F e⟨m,n⟩. Since, by assumption, A is {F e⟨m,n⟩}n≥0-permitting via f , there are infinitely many

numbers n such that

∀ x ∈ F e⟨m,n⟩ (ψ(x) ↓ ⇒ A � f(x) + 1 ̸= Aψ(x) � f(x) + 1)

holds. But, by definition of Â and ψ, this implies that Â⟨e⟩ ∩ F e⟨m,n⟩ = Wm ∩ F e⟨m,n⟩ for any such

n.

We conclude this subsection by observing that the partial ordering UANCwtt of the c.e. wtt-

degrees which are not universally a.n.c. forms an ideal in the c.e. wtt-degrees (i.e., it is closed

downwards and under join in the c.e. wtt-degrees). Downward closure of UANCwtt follows by

Lemma 64. In order to obtain the closure under join, by distributivity of the c.e. wtt-degrees

(shown by Lachlan; see e.g. Stob [Sto83]) and by Theorem 63, it suffices to show that, for any

splitting of a c.e. set A with the uniform multiple permitting property into two disjoint c.e. sets

A0 and A1, one of these sets is uniformly multiply permitting, too. For a proof we refer to the

forthcoming paper [ASL] by Ambos-Spies and Losert.
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2.4.4 U.a.n.c. Sets and Sets with the Universal Similarity Property

In the preceding subsection we have given various characterizations of the c.e. wtt-degrees which

contain universally a.n.c. c.e. sets. We now look at the relation between universally a.n.c. c.e. sets

and almost-c.e. sets with the universal similarity property. We show that any almost-c.e. set with

the u.s.p. is wtt-equivalent to a u.a.n.c. c.e. set (Theorem 66). The converse holds only in the

following weaker form: for any u.a.n.c. c.e. wtt-degree a there is an almost-c.e. set A with the

u.s.p. such that A ≤wtt a (Theorem 67). Namely while, by Lemma 64, the u.a.n.c. c.e. wtt-degrees

are closed upwards in the c.e. wtt-degrees, it follows from Theorem 38 that no wtt-hard almost-c.e.

set has the u.s.p.

Theorem 66. Let a be a c.e. wtt-degree that contains an almost-c.e. set with the universal simi-

larity property and let ϕ be a universal function. There is a ϕ-universally a.n.c. c.e. set A ∈ a.

Proof. Fix an almost-c.e. set Â ∈ a with the u.s.p. and let {Âs}s≥0 be a computable almost-

enumeration of Â. By Lemma 64, it suffices to construct a c.e. set A ≤wtt Â which is ϕ-universally

a.n.c. in stages meeting the following requirements for every e ≥ 0 (where, here and in the following,

e = ⟨e0, e1⟩).

R̂e : If Fe0 is a very strong array then there is n such that We1 ∩ F
e0
⟨e1,n⟩ = A⟨e0⟩ ∩ F e0⟨e1,n⟩.

It is easy to verify that the requirements guarantee that A is ϕ-u.a.n.c. Our strategy to meet R̂e

is to wait for a stage te such that F e0⟨e1,n⟩,te is defined for some n (note that, if Fe0 is a v.s.a., such

a stage exists) and to let A⟨e0⟩ copy We1 on F e0⟨e1,n⟩ from stage te on.

To make sure that A ≤wtt Â, we combine this strategy with permitting. I.e., whenever we

need to enumerate a number x into A, we wait for permitting by Â, i.e. for a stage s with Âs+1 �

x+ 1 ̸= Âs � x+ 1. As this permission may not be given on the fixed finite set F e0⟨e1,n⟩, we assign

infinitely many sets Be,k ∈ Fe0 , k ≥ 0, (where each Be,k is of the form F e0⟨e1,n⟩ for some n and, for

k < k′, n < n′ holds) to every requirement Re. Permission to enumerate a number x from Be,k

into A⟨e0⟩ at some stage s+1 is given whenever Âs+1 � x+1 ̸= Âs � x+1. For every requirement,

exploiting the fact that Â has the universal similarity property and is thus F-similar to every c.e.

set for every v.s.a. F , we enumerate an auxiliary c.e. set Ve to force Â to change below x+ 1. We

show that, by this strategy, for some k, we receive permitting by Â whenever we wait for it.

In fact, we replace the requirements R̂e by the following requirements R⟨e,k⟩ for all e, k ≥ 0.

R⟨e,k⟩ : If Fe0 is a very strong array then We1 ∩Be,k = A⟨e0⟩ ∩Be,k or Â ∩Be,k ̸= Ve ∩Be,k.

Assume that A and Ve (e ≥ 0) are c.e. sets such that R⟨e,k⟩ is met for all e, k ≥ 0. We show that

then R̂e is met for all e ≥ 0. Fix e and w.l.o.g. assume that the hypothesis of R̂e holds, i.e., that

Fe0 is a very strong array. Then, for all k ≥ 0,

We1 ∩Be,k = A⟨e0⟩ ∩Be,k or Â ∩Be,k ̸= Ve ∩Be,k (2.19)

holds. Furthermore, B = {Be,k}k≥0 is a very strong array. As Â has the universal similarity

property, Â is B-a.c.e-a.n.c., so, since Ve is c.e. and hence B-a.c.e., it follows that there is some

k ≥ 0 such that Â ∩ Be,k = Ve ∩ Be,k. By (2.19), for this k, We1 ∩ Be,k = A⟨e0⟩ ∩ Be,k holds. As

Be,k = F e0⟨e1,n⟩ for some n ≥ 0, it follows that We1 ∩ F
e0
⟨e1,n⟩ = A⟨e0⟩ ∩ F e0⟨e1,n⟩, hence R̂e is met.
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It remains to construct c.e. sets A and Ve (e ≥ 0) such that R⟨e,k⟩ is met for all e, k ≥ 0. For

that matter, for each e and k, we simultaneously aim to let A⟨e0⟩ copy We1 on Be,k and to make

Ve different from Â on Be,k. We can then argue that, depending on how often Â changes on Be,k,

we either receive permitting from Â on Be,k often enough to copy We1 on Be,k or Be,k has enough

elements to make Ve different from Â on Be,k. We now turn to the construction of A and Ve.

Construction.

At every stage t, if there is ⟨e, k⟩ ≤ t such that there is a number m ≥ 0 such that all of the

following hold,

• F e0⟨e1,m⟩,t ↓,

• for any ⟨e′, k′⟩ < ⟨e, k⟩, if te′,k′ < t exists, then maxBe′,k′ < minF e0⟨e1,m⟩ and

• if k > 0, then te,k−1 < t exists,

then fix the least such ⟨e, k⟩ and the least corresponding m, let te,k = t and let Be,k = F e0⟨e1,m⟩.

If te,k exists for some k ≥ 0, we say that Be,k is assigned to requirement Re,k at stage te,k and

we say that Be,k is defined (Be,k ↓) at a given stage s if te,k ≤ s exists. Note that whenever Be,k is

defined at a stage s, Be,k′ is defined at stage s′ for all k′ ≤ k and for all s′ ≥ s. Note further that,

by definition of the sets Be,k, for ⟨e, k⟩ ≠ ⟨e′, k′⟩, Be,k ∩Be′,k′ = ∅ holds. Finally, note that, if Fe0

is a v.s.a., then te,k exists for all k and {Be,k}k≥0 is a v.s.a. We now turn to the definition of A

and Ve (e ≥ 0) in stages where we let As and Ve,s denote the finite parts of A and Ve, respectively,

enumerated by the end of stage s.

Stage 0 is vacuous, i.e., we let A0 = ∅ and Ve,0 = ∅ for all e.

Stage s+ 1. At stage s+ 1, fix all e ≤ s and all k such that Be,k is defined at stage s, such

that

A⟨e0⟩
s ∩Be,k ̸=We1,s+1 ∩Be,k (2.20)

and such that, for x = min(We1,s+1 ∩Be,k) \A⟨e0⟩
s , at least one of the following holds.

(i) Âs+1 � x+ 1 ̸= Âs � x+ 1.

(ii) Âs+1 ∩Be,k = Ve,s ∩Be,k.

For all such e and k, perform the following action depending on which of the clauses above

holds (if both clauses hold, perform both actions).

(i) Enumerate all numbers ⟨e0, y⟩ such that y ∈ (We1,s+1 ∩Be,k) \A⟨e0⟩
s into A.

(ii) Enumerate x into Ve.

We say that R⟨e,k⟩ becomes active at stage s+ 1 for all such e and k.

This completes the construction.

Verification.

Note that the construction is effective and that the actions taken for the sake of different require-

ments do not interfere with each other as they are performed on disjoint sets. Moreover, A and
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all Ve are c.e. by construction. We prove the following claims to show that A has the required

properties.

Claim 1. For e, k ≥ 0, requirement R⟨e,k⟩ is met.

Proof. Fix e, k ≥ 0. We first make a crucial observation, namely that for all stages s0, s1, s2 with

0 ≤ s0 ≤ s1 ≤ s2, the following holds.

x = min(We1,s0+1 ∩Be,k) \A⟨e0⟩
s0

x = min(We1,s2+1 ∩Be,k) \A⟨e0⟩
s2

}
⇒ x = min(We1,s1+1 ∩Be,k) \A⟨e0⟩

s1 (2.21)

For a proof of (2.21) fix s0, s1, s2 with 0 ≤ s0 ≤ s1 ≤ s2 such that the hypotheses of (2.21)

hold. Then it is easy to see that, since A and We1 are c.e. and by choice of s0, s1 and s2, x ∈
(We1,s1+1∩Be,k)\A⟨e0⟩

s1 holds, hence, for y = min(We1,s1+1∩Be,k)\A⟨e0⟩
s1 , y ≤ x holds. Assume for

a contradiction that y < x. Then, as y ∈We1,s1+1, y ∈We1,s2+1 holds, hence y ∈ A
⟨e0⟩
s2 must hold

(because x = min(We1,s2+1∩Be,k)\A⟨e0⟩
s2 and y < x). So there is a stage sy with s1 ≤ sy < s2 such

that y is enumerated into A⟨e0⟩ at stage sy+1. By construction, this only happens if R⟨e,k⟩ becomes

active via Clause (i) at stage sy+1. But then, all numbers in (We1,sy+1∩Be,k)\A⟨e0⟩
sy are enumerated

into A⟨e0⟩ at stage sy+1. From the hypotheses of (2.21), it follows that x ∈ (We1,sy+1∩Be,k)\A⟨e0⟩
sy ,

hence x is enumerated into A⟨e0⟩ at stage sy + 1, which, by sy < s2 contradicts the fact that

x = min(We1,s2+1 ∩Be,k) \A⟨e0⟩
s2 . So (2.21) must hold.

We now argue that whenever R⟨e,k⟩ becomes active via Clause (ii) at some stage s+ 1, one of

the following holds.

Âs+1 ∩Be,k ̸= Âs ∩Be,k. (2.22)

Ve,s+1 ∩Be,k ̸= Ve,s ∩Be,k. (2.23)

Fix s such that R⟨e,k⟩ becomes active via Clause (ii) at stage s + 1. Then, by construction, the

following holds.

Âs+1 ∩Be,k = Ve,s ∩Be,k. (2.24)

Furthermore, x ∈ Ve,s+1 for x = min(We1,s+1 ∩Be,k) \A⟨e0⟩
s . If x /∈ Ve,s, then, by x ∈ Be,k, (2.23)

holds. So assume that x ∈ Ve,s. Then, there is a stage t < s such that x is enumerated into Ve at

stage t+1. As x ∈ Be,k, this only happens if R⟨e,k⟩ becomes active via Clause (ii) at stage t+1 and

x = min(We1,t+1 ∩Be,k) \A⟨e0⟩
t . This implies that Ât+1 ∩Be,k = Ve,t ∩Be,k holds. Moreover, as x

is enumerated into Ve at stage t+ 1, it follows that Ât+1(x) = 0 ̸= 1 = Ve,t+1(x), hence, by (2.24)

and by x ∈ Ve,s, there must be a stage u where t+1 ≤ u ≤ s such that Âu+1(x) = 1 ̸= 0 = Âu(x).

We claim that x ∈ A
⟨e0⟩
u+1, hence, as x /∈ A

⟨e0⟩
s by choice of x, u = s and (2.22) holds. By (2.21) for

s0 = t, s1 = u and s2 = s, we know that x = min(We1,u+1 ∩ Be,k) \ A⟨e0⟩
u , hence (2.20) holds for

s = u and, by t < u, e < u and Be,k is defined at stage u. By choice of u, this implies that R⟨e,k⟩

becomes active via Clause (i) at stage u+ 1, hence x is enumerated into A⟨e0⟩ at stage u+ 1.

Now assume for a contradiction that R⟨e,k⟩ is not met. By this assumption, the hypothesis of

R⟨e,k⟩ is true, so Fe0 is a very strong array. This implies that te,k exists and Be,k is defined at all

stages s ≥ te,k. Furthermore, We1 ∩Be,k ̸= A⟨e0⟩ ∩Be,k and Â∩Be,k = Ve ∩Be,k hold. Fix a stage
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s0 ≥ te,k such that

We1,s ∩Be,k =We1 ∩Be,k,

A⟨e0⟩
s ∩Be,k = A⟨e0⟩ ∩Be,k,

Âs ∩Be,k = Â ∩Be,k, (2.25)

Ve,s ∩Be,k = Ve ∩Be,k (2.26)

hold for all s ≥ s0. But then, by assumption, (2.20) holds for s = s0 and Âs0+1∩Be,k = Ve,s0∩Be,k,
hence R⟨e,k⟩ becomes active via Clause (ii) at stage s0 + 1. But then, either (2.22) or (2.23) holds

for s = s0, contradicting either (2.25) or (2.26). It follows that R⟨e,k⟩ is met.

Claim 2. A ≤wtt Â.

Proof. For given x ≥ 0, fix e0, y ≥ 0 such that x = ⟨e0, y⟩ and find a stage sx such that Âs �

y + 1 = Â � y + 1 for all s ≥ sx. We claim that A = Asx . For a contradiction assume that there is

a stage s ≥ sx such that As+1(x) ̸= As(x). By construction, this only happens if y ∈ Be,k for some

e, k ≥ 0 (where e = ⟨e0, e1⟩ for some e1 ≥ 0) and Re,k becomes active at stage s+1 via Clause (i).

But this implies that y ∈ (We1,s+1∩Be,k)\A⟨e0⟩
s and that Âs+1 � min(We1,s+1∩Be,k)\A⟨e0⟩

s +1 ̸=
Âs � min(We1,s+1 ∩Be,k) \A⟨e0⟩

s + 1, hence Âs � y + 1 ̸= Â � y + 1, a contradiction.

This completes the proof of Theorem 66.

Theorem 67. Let a be a c.e. wtt-degree which is u.a.n.c. Then, there is an almost-c.e. set A ≤wtt a

with the universal similarity property.

Proof. By Theorem 63, fix a c.e. set Â ∈ a and a strictly increasing computable function f such

that Â is uniformly multiply permitting via f and let {Âs}s≥0 be a computable enumeration of Â

such that Âs ⊆ ω � s. We give a computable almost-enumeration {As}s≥0 of a set A such that A

has the universal similarity property and A ≤wtt Â. The latter is ensured by permitting, i.e., by

guaranteeing that

∀ x, s (As+1(x) ̸= As(x) ⇒ Âs+1 � f(⟨x, 2x+1⟩) + 1 ̸= Âs � f(⟨x, 2x+1⟩) + 1). (2.27)

holds. (The term 2x+1 in this bound reflects the fact that a computable almost enumeration may

change on the initial segment ω � x+ 1 up to 2x+1 many times.)

Similarly to the proof of Theorem 28, we combine the basic strategy from the proof of Theorem

27 with permitting according to (2.27). As explained there, in order to ensure that A has the

universal similarity property, it suffices to meet the following requirements for all e ≥ 0 where

(here and in the following) e = ⟨e0, e1⟩.

Re : If Ie0 is a c.v.s.a.i. and Ve1 is Ie0-almost c.e. via {Ve1,s}s≥0

then there is a number n such that A ∩ Ie0n = Ve1 ∩ Ie0n .

Recall that the computable enumeration {Ve,s}e,s≥0 of computable almost-enumerations {Ve,s}s≥0

(e ≥ 0) has been defined following Theorem 27. The strategy to meet the requirements Re while

guaranteeing (2.27) is essentially the same as in the proof of Theorem 28. Note that here, we do

not need coding, so the construction is somewhat simpler. Unless mentioned otherwise, all notions
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(e.g., eligibility) are defined as in the proof of Theorem 28. We now turn to the formal construction

where, as usual, we let As denote the finite part of A constructed by the end of stage s.

Construction.

Stage 0 is vacuous. I.e., A0 = ∅ and no requirement has a follower at the end of stage 0 (i.e.,

all requirements are initialized at stage 0).

Stage s + 1. A requirement Re requires attention at stage s + 1 if e < s, Re is eligible at

stage s+ 1 and one of the following holds.

(i) No follower is assigned to Re at the end of stage s.

(ii) (i) does not hold, xe,0 < · · · < xe,n (n ≥ 0) are the followers assigned to Re at the end

of stage s and there is a number k < n such that either

(a) As(xe,k) = 0 and Âs+1 � f(⟨xe,k, 2xe,k+1⟩) + 1 ̸= Âs � f(⟨xe,k, 2xe,k+1⟩) + 1

or

(b) As(xe,k) = 1, As ∩ Je,k ̸= Ve1,s+1 ∩ Je,k for the interval Je,k associated with xe,k,

and Âs+1 � f(⟨x, 2x+1⟩) + 1 ̸= Âs � f(⟨x, 2x+1⟩) + 1 for the least x ∈ Je,k such that

As(x) ̸= Ve1,s(x),

holds.

(iii) (i) and (ii) do not hold, xe,0 < · · · < xe,n (n ≥ 0) are the followers assigned to Re at the

end of stage s, for all k < n, As(xe,k) = 0 or As ∩ Je,k ̸= Ve1,s ∩ Je,k holds where Je,k is

the interval associated with xe,k, and there is a number m ≤ s such that Ie0m,s+1 ↓ and

xe,n < min Ie0m (note that max Ie0m < s+ 1).

Fix e < s minimal such that Re requires attention and perform the following action corre-

sponding to the clause via which Re requires attention.

(i) Appoint xe,0 = s+ 1 as a follower to Re.

(ii) For all k that make Clause (ii) in the definition of requiring attention true, perform the

following action depending on which subclause holds.

(a) Put xe,k into As+1 and let As+1 ∩ Je,k = Ve1,s+1 ∩ Je,k.

(b) Let As+1 ∩ Je,k = Ve1,s+1 ∩ Je,k.

(iii) For the least m that makes Clause (iii) in the definition of requiring attention true,

associate the interval Je,n = Ie0m with the follower xe,n of Re. Furthermore, appoint

xe,n+1 = s+ 1 as a further follower to Re.

In any of the subcases (i) – (iii) say that Re receives attention or becomes active. Further-

more, for all e′ > e, initialize Re′ , i.e., cancel all corresponding assignments of followers and

intervals.

(If not explicitly stated otherwise, any parameter depending on the stage is unchanged at

stage s+ 1.)
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This completes the construction. Note that the construction ensures that the followers of Re are

appointed in order of magnitude and that the greatest follower is the only follower which has not

yet an interval associated with it.

Verification.

Note that the construction is effective and that the observations made at the beginning of the

verification in the proof of Theorem 28 hold here, too (if applicable). In order to show that A has

the required properties, we prove a series of claims, similarly as in the proof of Theorem 28.

Claim 1. A is a.c.e. via {As}s≥0.

Proof. The proof is the same as the proof of Claim 2 in the proof of Theorem 28.

Claim 2. A ≤wtt Â.

Proof. By Claim 1, it suffices to show that (2.27) holds. But this is immediate by Clause (ii) in

the definition of requiring attention since any possible change of A at stage s+1 is determined by

the action of a requirement becoming active according to this clause at stage s+ 1.

Claim 3. For any e ≥ 0, requirement Re requires attention only finitely often.

Proof. The proof is by induction on e. Fix e and, by inductive hypothesis, assume the claim to

be correct for e′ < e. Let s0 be the greatest stage s such that s = 0 or Re′ requires attention

at stage s for some e′ < e. Note that such a stage s0 exists by inductive hypothesis. Moreover,

Re is initialized at stage s0 and, after stage s0, Re becomes active whenever it requires attention

and any follower or interval assigned to Re after stage s0 is permanent since Re is not initialized

anymore. So if xe,k = xe,k[s] for some s > s0 then xe,k = xe,k[s
′] for all s′ ≥ s and similarly for

Je,k.

Now, for a contradiction, assume that requirement Re requires attention infinitely often. Note

that Re requires attention via (i) at most once after stage s0. Moreover, for fixed k, Re requires

attention via (ii) and k at most finitely often since, by (2.1) and by definition of requiring attention,

this only happens at a stage s + 1 such that Âs+1 � f(⟨x, 2x+1⟩) + 1 ̸= Âs � f(⟨x, 2x+1⟩) + 1 for

x = max Je,k. So Re requires attention via (iii) infinitely often.

It follows that there are infinitely many followers and corresponding intervals assigned to Re.

So we can effectively list the (permanent) followers xe,0 < xe,1 < xe,2 < . . . existing after stage

s0 and the corresponding intervals Je,0, Je,1, Je,2, . . . where xe,n is appointed at stage xe,n > s0

and Je,k is assigned at stage xe,n+1. Note that, by permanence of the followers and intervals,

xe,k ∈ As+1 if and only if there is a stage t such that xe,k+1 ≤ t ≤ s and Re acts via (ii)(a) and k

at stage t+ 1 and, for s ≥ xe,k+1,

As+1 ∩ Je,k ̸= As ∩ Je,k if and only if Re acts via (ii)(a) or (ii)(b) and k at stage s+ 1. (2.28)

Now, by noncomputability of Â, there are infinitely many k such that Â changes below xe,k (hence

below f(⟨xe,k, 2xe,k+1⟩) + 1) after stage xe,k+1. So, for infinitely many k, Re requires attention

(hence becomes active) via Clause (ii)(a) and xe,k. So we may fix strictly increasing computable
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sequences of indices {kn}n≥0 and stages {tn}n≥0 such that tn ≥ xe,kn+1 and Re acts via (ii)(a)

and xe,kn at stage tn + 1 whence

∀ n ∀ s ≥ tn (As(xe,kn) = 1). (2.29)

Since Re requires attention via Clause (iii) infinitely often, it follows that

∀ n (A ∩ Je,kn ̸= Ve1 ∩ Je,kn).

So, for any n we may let xn be the least x in Je,kn such that A(x) ̸= Ve1(x). In order to get the

desired contradiction, we show that, for any n, there is a stage t′′n such that

Ve1,t′′n+1(xn) ̸= Ve1,t′′n(xn) & Â � f(⟨xn, 2xn+1⟩) + 1 = Ât′′n � f(⟨xn, 2xn+1⟩) + 1. (2.30)

Then we use the fact that Â is uniformly multiply permitting via f in order to show that (2.30)

has to fail for some n.

We first turn to the proof of (2.30). By construction, there is a strictly increasing computable

sequence m0 < m1 < m2 < . . . such that Je,kn = Ie0mn
. Hence Ie0 is a c.v.s.a.i. and the subarray

J = {Je,kn}n≥0 = {Ie0mn
}n≥0 of Ie0 is a v.s.a. Since Re requires attention infinitely often – hence

e is eligible infinitely often – this implies that the computable almost-enumeration {Ve1,s}s≥0 of

Ve1 is compatible with Ie0 hence compatible with J . So, for any n,

∀ x ∈ Je,kn ∀ s (x ∈ Ve1,s \ Ve1,s+1 ⇒ ∃ y < x (y ∈ Je,kn & y ∈ Ve1,s+1 \ Ve1,s)) (2.31)

holds.

Now, for any n, let t′n be the greatest stage t′ such that Re requires attention via Clause (ii)

and xe,kn at stage t′ + 1; and let t′′n be the least stage t′′ such that Ve1,s(xn) = Ve1(xn) for all

s > t′′.

Note that, by choice of tn, t
′
n exists and tn ≤ t′n. Moreover, by Re being active at stage t′n + 1

via Clause (ii) and xe,kn , the approximations of A and Ve1 agree on Je,kn at stage t′n + 1 and, by

maximality of t′n and by (2.28), the approximation of A on Je,kn does not change after stage t′n+1.

Hence

∀ s > t′n (A ∩ Je,kn = As ∩ Je,kn = At′n+1 ∩ Je,kn = Ve1,t′n+1 ∩ Je,kn). (2.32)

Moreover, since, for y < xn such that y ∈ Je,kn , A(y) = Ve1(y) it follows by (2.32) and (2.31) that

the approximation of Ve1(y) does not change after stage t′n + 1 whence (by (2.32))

∀ s > t′n ∀ y < xn (y ∈ Je,kn ⇒ Ve1(y) = Ve1,s(y) = As(y) = A(y)). (2.33)

Finally, since, by choice of t′′n, Ve1,s(xn) = Ve1(xn) ̸= A(xn) for all s > t′′n, it follows by (2.32) that

t′n < t′′n and Ve1,s(xn) ̸= As(xn) for all s > t′′n whence, by (2.33),

∀ s > t′′n (xn = µx ∈ Je,kn [As(x) ̸= Ve1,s(x)]). (2.34)

Furthermore, by t′′n > 0 and by minimality of t′′n,

Ve1,t′′n+1(xn) ̸= Ve1,t′′n(xn). (2.35)
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Now, by t′n < t′′n, Re does not require attention via Clause (ii) and xe,kn at any stage s ≥ t′′n + 1.

Since As(xe,kn) = 1 for such s by (2.29) and by tn ≤ t′′n, it follows by (2.34) and by definition of

requiring attention that

Â � f(⟨xn, 2xn+1⟩) + 1 = Ât′′n � f(⟨xn, 2xn+1⟩) + 1. (2.36)

Obviously, (2.35) and (2.36) imply (2.30).

Having established (2.30), in the remainder of the proof we use the fact that Â is uniformly

multiply permitting via f to refute (2.30) for some n.

Since J is a v.s.a., F = {Fn}n≥0 where

Fn = {⟨x, y⟩ : x ∈ Je,kn & y ≤ 2x+1}

is a very strong array, too. Define the partial computable function ψ on
⋃
n≥0 Fn as follows. For

x ∈ Je,kn and y ≤ 2x+1, let ψ(⟨x, y⟩) be the least stage s such that Ve1,t+1(x) ̸= Ve1,t(x) for y

many stages t < s (if such an s exists). Then, as Â is uniformly multiply permitting via f , there

are infinitely many numbers n such that

∀ ⟨x, y⟩ ∈ Fn (ψ(⟨x, y⟩) ↓ ⇒ Â � f(⟨x, y⟩) + 1 ̸= Âψ(⟨x,y⟩) � f(⟨x, y⟩) + 1). (2.37)

Fix such an n. Let p(xn) be the number of stages t such that Ve1,t+1(xn) ̸= Ve1,t(xn). Since

{Ve1,s}s≥0 is a computable almost enumeration, p(xn) ≤ 2xn+1. So ψ(⟨xn, p(xn)⟩) is defined.

Moreover, by definition of ψ and by the first part of (2.30), ψ(⟨xn, p(xn)⟩) > t′′n. It follows, by the

second part of (2.30), that Â � f(⟨xn, 2xn+1⟩) + 1 = Âψ(⟨xn,p(xn)⟩) � f(⟨xn, 2xn+1⟩) + 1. But this

contradicts (2.37).

This completes the proof of Claim 3.

Claim 4. For e ≥ 0, requirement Re is met.

Proof. This follows from Claim 3 exactly as Claim 4 in the proof of Theorem 28 follows from Claim

3 there.

Claims 1, 2 and 4 imply that A has the required properties. This completes the proof of the

theorem.

2.4.5 On the T-Degrees of U.a.n.c. Sets

We now turn to the Turing degrees of universally a.n.c. c.e. sets. First note that the construction

from the proof of Theorem 67 can be combined with coding in the same way as in the proof of

Theorem 28. This fact, together with Theorem 63, yields the following corollary.

Corollary 68. Let a be a c.e. Turing degree and let ϕ be a universal function. Then, the following

are equivalent.

(i) a is ϕ-universally a.n.c.

(ii) a is uniformly universally a.n.c.
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(iii) a is universally a.n.c.

(iv) a has the uniform bounding property.

(v) a is uniformly multiply permitting.

(vi) There is an almost-c.e. set A ∈ a which has the universal similarity property.

Together with Theorem 30, this directly implies the following Theorem.

Theorem 69. For a c.e. Turing degree a and a universal function ϕ, the following are equivalent.

(i) a is not totally ω-c.e.

(ii) a is ϕ-universally a.n.c.

In the following, we prove Theorem 69 directly. We begin with the direction (i)⇒(ii).

Theorem 70. Let a be a c.e. Turing degree that is not totally ω-c.e. and let ϕ be a universal

function. Then, there is a c.e. set A ∈ a which is ϕ-universally a.n.c.

Proof. By Lemma 64, it suffices to construct a c.e. set A ≤T a with the required property in stages

meeting the following requirements for every e ≥ 0 where, here and in the following, e = ⟨e0, e1⟩.

Re : If Fe0 is a very strong array then there is n such that We1 ∩F
e0
⟨e1,n⟩ = A⟨e0⟩ ∩F e0⟨e1,n⟩. (2.38)

As in the proof of Theorem 66, the requirements guarantee that A is ϕ-universally a.n.c. The

strategy to meet Re is the same as the strategy to meet R̂e in the proof of Theorem 66 explained

there. To make sure that A ≤T a, again, we combine this strategy with permitting. I.e., whenever

we want to enumerate a number x into A, we wait for permitting by some function g ≤T a. As,

for some e, this permission may not be given on a fixed finite set F e0⟨e1,n⟩, we again assign infinitely

many sets Be,k ∈ Fe0 , k ≥ 0, to every requirement Re, just as in the proof of Theorem 66.

Here, permission to enumerate numbers from Be,k into A at some stage s + 1 is given whenever

gs+1(k) ̸= gs(k). We use the fact that we may choose g to be not ω-c.e., i.e., the mind changes

of any computable approximation of g cannot be computably bounded. Exploiting this fact, by

a typical not-totally-ω-c.e. permitting argument similar to the one from the proof of Theorem 28,

we show that for some k, we receive permitting by g whenever we wait for it.

Fix a c.e. set C ∈ a and a function g ≤T C together with a Turing functional Γ such that g

is not ω-c.e. and such that ΓC = g. Let {gs}s≥0 be the computable approximation of g where

gs = ΓCs
s for some fixed computable enumeration of C. We now turn to the formal construction

of A where we let As be the finite part of A enumerated by the end of stage s.

Construction.

For e, k ≥ 0, we define the stages te,k and the sets Be,k just as in the proof of Theorem 66, we say

that Be,k is assigned to requirement Re at stage te,k if the latter exists and we say that Be,k is

defined at a stage s if te,k ≤ s exists. Note that the observations on the stages te,k and the sets

Be,k from the proof of Theorem 66 hold here, as well. We now turn to the definition of A in stages.

Stage 0. At stage 0, let A0 = ∅.
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Stage s+ 1. At stage s+ 1, for all e ≤ s and all k such that Be,k is defined at stage s, such

that

Be,k ∩A⟨e0⟩
s ̸= Be,k ∩We1,s+1

and such that gs+1(k) ̸= gs(k), enumerate all numbers ⟨e0, x⟩ such that x ∈ (Be,k∩We1,s+1)\
A

⟨e0⟩
s into A. We say that Re becomes active via k at stage s+ 1 for all such e and k.

This completes the construction.

Verification.

Note that the construction is effective and that the actions taken for the sake of different require-

ments do not interfere with each other. Note that, by construction, A is c.e. Moreover, for e, k

such that Be,k is defined at some point, numbers of the form ⟨e0, x⟩ with x ∈ Be,k only enter A at

some stage s+ 1 if x ∈We1,s+1. It follows that for all s, the following holds.

A⟨e0⟩
s ∩Be,k ⊆We1,s ∩Be,k ⊆We1,s+1 ∩Be,k. (2.39)

We prove the following claims to show that A has the required properties.

Claim 1. For e ≥ 0, requirement Re is met.

Proof. Fix e ≥ 0 and for a contradiction assume that Re is not met. We show that there is a

computable approximation {g̃n}n≥0 of g for which the number of mind changes is computably

bounded whence g is ω-c.e. contrary to choice of g.

By assumption, the hypothesis of Re is true, so Fe0 is a very strong array. This implies that

for all k ≥ 0, te,k exists and Be,k is defined at all stages s ≥ te,k. Note that, by construction,

maxBe,k < minBe,k+1 for all k ≥ 0. As Be,k ∈ {F e0⟨e0,n⟩}n≥0 for all k, by assumption A ∩ Be,k ̸=
We1∩Be,k holds for all k. This implies that there is an infinite computable set of stages {s0, s1, . . .}
with s0 > e and such that sn ≥ te,n for all n and such that

∀ k < n (Asn ∩Be,k ̸=We1,sn+1 ∩Be,k) (2.40)

holds. The latter implies that, for any k, n with k < n,

if gsn+1
(k) ̸= gsn(k) then there is a stage s such that sn < s ≤ sn+1 and

such that We1,s+1 ∩Be,k ̸=We1,s ∩Be,k holds.
(2.41)

holds. For a proof of (2.41), fix k < n such that gsn+1
(k) ̸= gsn(k) holds. Fix t minimal with

sn ≤ t < sn+1 such that gt+1(k) ̸= gt(k). Assume for a contradiction that We1,s+1 ∩ Be,k =

We1,s ∩ Be,k for all s with sn < s ≤ sn+1. Then, in particular, We1,t+1 ∩ Be,k = We1,sn+1 ∩ Be,k.
Furthermore, by construction and by minimality of t, A

⟨e0⟩
t ∩ Be,k = A

⟨e0⟩
sn ∩ Be,k, so, by (2.40),

A
⟨e0⟩
t ∩Be,k ̸=We1,t+1∩Be,k. This implies thatRe becomes active via k at stage t+1, so by (2.39) for

s = t, A
⟨e0⟩
t+1 ∩Be,k =We1,t+1∩Be,k holds. Since, by assumption,We1,sn+1+1∩Be,k =We1,t+1∩Be,k

and, by construction, A
⟨e0⟩
sn+1 ∩Be,k = A

⟨e0⟩
t+1 ∩Be,k, it follows that We1,sn+1+1 ∩Be,k = A

⟨e0⟩
sn+1 ∩Be,k

holds which contradicts (2.40) for n+ 1 in place of n.

Since {We1,s}s≥0 is a computable enumeration there are at most |Be,k| many stages such that

We1 changes in Be,k. Hence (2.41) implies that

|{n > k : gsn+1
(k) ̸= gsn(k)}| ≤ |Be,k|.
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So, if we define the computable approximation {g̃n}n≥0 of g by letting

g̃n(k) = gsn(k),

then the number of mind changes of g̃n on k is bounded by |Be,k|+ k + 1. So g is ω-c.e. contrary

to choice of g.

Claim 2. A ≤T C.

Proof. For a given x ≥ 0, by g = ΓC , fix a stage sx such that gt � x + 1 = g � x + 1 holds for all

t ≥ sx. It suffices to show that As+1(x) = As(x) for all s ≥ sx whence A(x) = Asx(x).

Fix s such that As+1(x) ̸= As(x). Fix e0, y ≥ 0 such that x = ⟨e0, y⟩. Then, by construction,

there are numbers e1 and k such that, for e = ⟨e0, e1⟩, Be,k is defined at stage s, y ∈ Be,k and

such that gs+1(k) ̸= gs(k). Since, by construction, Be,k′ is defined at stage s for all k′ < k and

maxBe,k′ < minBe,k ≤ y for all such k′, it follows that k ≤ y ≤ x whence gs+1 � x+1 ̸= gs � x+1.

So s < sx.

This completes the proof of Theorem 70.

We now turn to the proof of the direction (ii)⇒(i) in Theorem 69. Note that in [ASL], there

is an alternative proof of this direction using a result on (non-) wtt-reducibility to hypersimple

sets by Barmpalias, Downey and Greenberg [BDG10]. Here, however, we give a direct proof using

not-totally-ω-c.e. permitting.

Theorem 71. Let A be a c.e. set such that degT(A) is totally ω-c.e. Then, A is not universally

a.n.c.

Before giving the proof of Theorem 71, we state a technical lemma needed.

Lemma 72. Let A be a noncomputable c.e. set such that degT(A) is totally ω-c.e. Then, there are

a computable enumeration {As}s≥0 of A with A0 = ∅ and a complete very strong array of intervals

I = {In}n≥0 such that the following holds.

∀n∀e < n|{s : A⟨e⟩
s+1 ∩

⋃
n′≤n

In′ ̸= A⟨e⟩
s ∩

⋃
n′≤n

In′}| < |In| − 1. (2.42)

We first show how Theorem 71 follows from Lemma 72.

Proof of Theorem 71 assuming Lemma 72. If A is computable, then the claim is straightforward.

So assume that A is noncomputable. By Lemma 72, fix a computable enumeration {As}s≥0 of A

with A0 = ∅ and a complete very strong array of intervals I = {In}n≥0 such that (2.42) holds.

For given e ≥ 0, we show that A⟨e⟩ is not I-a.n.c. By Definition 49, it is enough construct a c.e.

set Ve such that the following holds.

∀n > e(A⟨e⟩ ∩ In ̸= Ve ∩ In). (2.43)

We give the construction of Ve in stages. We aim to make Ve different from A⟨e⟩ on each In for

each n > e. By Lemma 72, we can argue that our strategy is successful.

50



At stage 0, let

Ve,0(x) =

⎧⎨⎩1 if x = max In for some n ≥ 0

0 otherwise.

At stage s + 1, fix all n > e such that there is at least one number x with x ∈ In such that

A
⟨e⟩
s+1(x) ̸= A

⟨e⟩
s (x). For all such n, if A

⟨e⟩
s+1 ∩ In = Ve,s ∩ In, enumerate the greatest number y with

y ∈ In \ Ve,s (if any) into Ve.

Note that Ve = lims→∞ Ve,s is c.e. We now show that (2.43) holds. Fix n > e. We show that

for all s ≥ 0,

A⟨e⟩
s ∩ In ̸= Ve,s ∩ In (2.44)

holds. The proof is by induction on s. For s = 0, A
⟨e⟩
0 ∩ In = ∅ ̸= Ve,0 ∩ In. Now assume that

(2.44) holds for some s ≥ 0. If there is no x ∈ In such that A
⟨e⟩
s+1(x) ̸= A

⟨e⟩
s (x), by construction,

Ve,s+1 ∩ In = Ve,s ∩ In ̸= A
⟨e⟩
s ∩ In = A

⟨e⟩
s+1 ∩ In, hence (2.44) holds for s + 1 in place of s. So

assume that there is such a number x ∈ In. In case A
⟨e⟩
s+1 ∩ In ̸= Ve,s ∩ In, by construction,

Ve,s+1 ∩ In = Ve,s ∩ In, hence (2.44) holds for s + 1 in place of s in this case, too. So assume

furthermore that A
⟨e⟩
s+1 ∩ In = Ve,s ∩ In. We claim that in this case there is a number y with

y ∈ In \Ve,s. Then, by construction, the greatest such y is enumerated into Ve at stage s+1, hence

Ve,s+1 ∩ In ̸= Ve,s ∩ In = A
⟨e⟩
s+1 ∩ In, so (2.44) holds for s+ 1 in place of s.

It remains to show that y exists, i.e., that |Ve,s ∩ In| < |In|. Note that for all z ∈ Ve,s ∩ In,
z = max In or there is a stage t ≥ 0 such that z is enumerated into Ve at stage t + 1. By

construction, the latter only happens if there is a number w ∈ In such that A
⟨e⟩
t+1(w) ̸= A

⟨e⟩
t (w).

By (2.42), there are at most |In| − 2 such stages t, hence there are at most |In| − 1 numbers in

Ve,s ∩ In. It follows that |Ve,s ∩ In| < |In|.

We now turn to the proof of Lemma 72.

Proof of Lemma 72. Fix h as in Lemma 42 (a), let f be the function f(x) = ⟨2h(x), 2h(x)⟩ and fix

the corresponding computable enumeration {As}s≥0 of A with A0 = ∅ and the infinite computable

set D such that

∀ x ∈ D (|{s : As+1 � f(x) ̸= As � f(x)}| < h(x)) (2.45)

holds. (Lemma 42 is stated for an almost-c.e. set A. It is easy to see that the computable almost-

enumeration {As}s≥0 of A given in the proof of this lemma in [ASLM] is actually a computable

enumeration with A0 = ∅ if we start with a c.e. set A together with a computable enumeration

{Âs}s≥0 of A with Â0 = ∅.)
Then the desired c.v.s.a.i. I = {In}n≥0 is defined by letting In = [xn, xn+1) where the numbers

xn are inductively defined by x0 = 0 and

xn+1 = 2h(yn) where yn = µy(y ∈ D & y > xn).

Note that, by choice of h, yn and xn+1, xn+1 > 2xn. So I is a c.v.s.a.i. Finally, for a proof of
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(2.42), it suffices to note that, for e < n,

|{s : A⟨e⟩
s+1 ∩

⋃
n′≤n

In′ ̸= A⟨e⟩
s ∩

⋃
n′≤n

In′}|

≤ |{s : As+1 � ⟨e, xn+1⟩ ≠ As � ⟨e, xn+1⟩}|

≤ |{s : As+1 � ⟨n, xn+1⟩ ≠ As � ⟨n, xn+1⟩}|

= |{s : As+1 � ⟨n, 2h(yn)⟩ ≠ As � ⟨n, 2h(yn)⟩}|

≤ |{s : As+1 � ⟨2h(yn), 2h(yn)⟩ ≠ As � ⟨2h(yn), 2h(yn)⟩}|

= |{s : As+1 � f(yn) ̸= As � f(yn)}|

< h(yn)

where the last inequality holds by (2.45), while, for fixed n > e,

|In| = 2h(yn)− xn > 2h(yn)− yn ≥ h(yn)

holds.

2.4.6 Embedding the S7, an Application of Uniform Multiple Permitting

In this subsection, we give a further example of applying Corollary 68. Namely, we show that a

c.e. Turing degree bounds an embedding of the nondistributive finite lattice S7, which contains a

critical triple, if and only if it is not totally ω-c.e. In [DGW07], Downey, Greenberg and Weber

show the following.

Theorem 73 ([DGW07]). A c.e. Turing degree a bounds a critical triple if and only if a is not

totally ω-c.e.

Here, the definition of a critical triple is given by Downey and Weinstein and we say that a c.e.

Turing degree a bounds a critical triple if there is a critical triple a0, a1 and b in the c.e. Turing

degree such that a0,a1,b ≤ a holds.

Definition 74 ([Dow90], [Wei88]). Three elements a0, a1 and b of an upper semilattice (U ,≤U )

form a critical triple if the following hold.

• a0, a1 and b are pairwise ≤U -incomparable.

• a0 ∨ b = a1 ∨ b.

• For every c ∈ U , if c ≤U a0, a1, then c ≤U b.

Recall that the c.e. Turing degrees form an upper semilattice but not a lower semilattice. As

many wellknown finite lattices contain a critical triple, this brings us to the question of embeddings

of finite lattices into the c.e. Turing degrees. These have been intensively studied. It has been shown

by Thomason [Tho71] and, independently, by Lerman (see Ambos-Spies and Lerman [ASL86]) that

every finite distributive lattice can be embedded into the c.e. Turing degrees. Moreover, one has

looked at the well-know nondistributive finite lattices M5 and N5 (where the former is modular

and latter is not). Lachlan [Lac72] has given embeddings of these lattices into the c.e. Turing

degrees. Moreover, it has been shown that the N5 can be embedded into the c.e. Turing degree
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below every noncomputable c.e. degree (see Ambos-Spies and Fejer [ASF88]). In contrast to this,

Downey and Greenberg (see [DG06]) have shown that the M5 can be embedded into the c.e.

Turing degrees below a c.e. degree a if and only if a is not totally < ωω-c.e. (where being totally

(<) α-c.e. for an ordinal α is a generalization of being totally ω-c.e. introduced by Downey and

Greenberg; see [DG06]). Here we use Corollary 68 to show that the nondistributive finite lattice

S7 can be embedded into the c.e. Turing degrees exactly below the c.e. not totally ω-c.e. Turing

degrees. This is the first example of a finite lattice with this property.

Definition 75. The S7 is the finite partial ordering ({a, a0, a1, b, b0, b1, c},≤S7
) where for x, y ∈

{a, a0, a1, b, b0, b1, c}, x ≤S7
y holds if and only if x = y or x = c or y = a or x ∈ {b0, b1} and

y = b or, for i ≤ 1, x = bi and y = ai.

The S7 can be illustrated as below. Note that the lattice is nondistributive and contains a

critical triple, namely a0, a1 and b.

a

a0 a1

b0

b

b1

c

For better readability, we begin with the basic construction to embed the above lattice into the

c.e. Turing degrees.

Theorem 76. There is a zero-preserving lattice embedding p : S7 → (RT,≤).

To prove Theorem 76, we argue that it suffices to prove the following theorem.

Theorem 77. There are pairwise disjoint c.e. sets A0, A1, B0, B1 such that, for i ≤ 1,

(i) degT(AiBi) ∧ degT(B0B1) = degT(Bi),

(ii) degT(A0B0) ∧ degT(A1B1) = 0,

(iii) Ai ≤T A1−iB0B1,

(iv) Ai ̸≤T B0B1,

(v) Bi ̸≤T A1−iB1−i.

(Here and in the following we write XY in place of X ∪ Y . Note that, by disjointness of the sets

X and Y we construct, degT(XY ) = degT(X ⊕ Y ).)
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Proof of Theorem 76 assuming Theorem 77. Let A0, A1, B0 and B1 be as in Theorem 77. Then,

a zero-preserving lattice embedding p : S7 → (RT,≤) is given by letting p(a) = degT(A0B0B1),

p(ai) = degT(AiBi), p(b) = degT(B0B1), p(bi) = degT(Bi) for i ≤ 1 and p(c) = 0. It re-

mains to show that p is indeed a zero-preserving lattice embedding. In the following, let x, y, z ∈
{a, a0, a1, b, b0, b1, c}.

We first show that x ≤S7 y if and only if p(x) ≤ p(y). By pairwise disjointness of the sets Ai

and Bi, it is immediate that x ≤S7 y implies that p(x) ≤ p(y) for all x, y ∈ {a, a0, a1, b, b0, b1, c}.
We have to show that the converse holds, too. By the former, by definition of the S7 and of p and

by transitivity of Turing reducibility, for i ≤ 1, it suffices to show that the following hold.

(a) A0B0B1 ̸≤T AiBi, B0B1,

(b) AiBi ̸≤T Bi, B1−i,

(c) B0B1 ̸≤T Bi,

(d) Bi is not computable.

For a proof, it is enough to note that (a) follows from (v) and (iv) by transitivity, (b) and (c)

similarly follow from (iv) and (v), respectively and (d) directly follows from (v).

We now prove that x ∧ y = z implies p(x) ∧ p(y) = p(z). By definition of the S7, it suffices to

show that p(ai) ∧ p(b) = p(bi) for i ≤ 1 and that p(b0) ∧ p(b1) = p(a0) ∧ p(a1) = p(c). But this is

immediate by definition of p and by (i) and (ii), respectively.

Finally we need to show that x ∨ y = z implies p(x) ∨ p(y) = p(z). Again by definition of the

S7, it is enough to show that p(a0) ∨ p(b) = p(a1) ∨ p(b) = p(a0) ∨ p(a1) = p(a). By disjointness

of the sets and by definition of p, p(a0) ∨ p(b) = p(a) is immediate. By (iii), it follows that

p(a1) ∨ p(b) = p(a) and p(a0) ∨ p(a1) = p(a) hold, too.

Altogether, it follows that p is a lattice embedding. As c is the least element of the S7 and

p(c) = 0 is the least element of (RT,≤), p is zero-preserving, hence the proof of Theorem 76

assuming Theorem 77 is complete.

We now give the proof of Theorem 77.

Proof of Theorem 77. In the following, let e, s ≥ 0 and i ≤ 1. We computably enumerate pairwise

disjoint sets A0, A1, B0 and B1 with the required properties. For that matter, it suffices to meet

the following requirements.

Meet requirements.

M3e+i : If ΦAiBi
e is total and ΦAiBi

e = ΦB0B1
e then ΦAiBi

e ≤T Bi.

M3e+2 : If ΦA0B0
e is total and ΦA0B0

e = ΦA1B1
e then ΦA0B0

e is computable.

Join requirements.

Ji : Ai ≤T A1−iB0B1.
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Nonordering requirements.

N4e+i : Ai ̸= ΦB0B1
e .

N4e+2+i : Bi ̸= Φ
A1−iB1−i
e .

Note that by “Posner’s trick” (see Soare [Soa87], Remark IX.1.4), the meet requirements suf-

fice to guarantee the required meets in (i) above, while the (global) join requirements and the

nonordering requirements ensure (ii) and (iii), respectively.

We start by describing the strategies for meeting the different types of requirements where we

introduce some of the notation required for the formal construction.

For the meet requirements we use a variant of Lachlan’s branching degree construction (for the

branching degree requirements Mn where n = 3e + i; see [Lac66]) respectively the minimal pair

technique (for the minimal pair requirementsMn where n = 3e+2). We call a meet requirementMn

infinitary if its hypothesis is true and we call Mn finitary otherwise. We define (α-)expansionary

stages as usual. For an infinitary meet requirement Mn we make sure that at a stage s + 1 only

big numbers enter the oracles of the computations in the hypothesis of Mn unless the stage s

is expansionary. Furthermore, if Mn is a branching degree requirement, i.e., n = 3e + i, then,

whenever at some stage s + 1 where s is expansionary, both oracles of the computations in the

hypothesis of Mn (i.e., AiBi and B0B1) are changed, we make a sufficiently small change in the

set Bi representing the meet, too. For a minimal pair requirement Mn, n = 3e+2, at a stage s+1

where s is expansionary numbers may enter at most one of the oracles of the computations in the

hypothesis, i.e., either A0B0 or A1B1, but not both.

Formally, we define the lengths of agreement as follows.

l(3e+ i, s) = max{x : ∀y < x(ΦAi,sBi,s
e,s (y) ↓= ΦB0,sB1,s

e,s (y))},

l(3e+ 2, s) = max{x : ∀y < x(ΦA0,sB0,s
e,s (y) ↓= ΦA1,sB1,s

e,s (y))}.

Note that l(n, s) is computable. Moreover, for the oracle sets X and Y in the hypothesis of any

meet requirement Mn (n = 3e+ j, j ∈ {0, 1, 2}), the following holds.

ΦXe total and ΦXe = ΦYe ⇒ lim
s→∞

l(n, s) ↓= ∞. (2.46)

Since we cannot decide whether a meet requirement Mn is infinitary or finitary, we use the full

binary tree T = {0, 1}<ω to model our guesses on whether Me is infinitary or not.

A node α of length k codes a guess about the hypotheses of the first k meet requirements

M0, . . . ,Mk−1 where, for n < k, α(n) = 0 codes the guess that Mn is infinitary and α(n) = 1

codes the guess that Mn is finitary. At any stage s of the construction we have an approximation

δs, i.e., a guess on which of the first s meet requirements are infinitary. For the definition of δs,

we inductively define α-stages for each node α as follows. Each stage s ≥ 0 is a λ-stage. If s is an

α-stage, then we call s α-expansionary if l(|α|, s) > l(|α|, t) for all α-stages t < s and we call s an

α0-stage if s is α-expansionary and an α1-stage if s is an α-stage but not α-expansionary. Then

δs ∈ T is the unique string α of length s such that s is an α-stage. Moreover, we say that α is

accessible at stage s+ 1 if s is an α-stage.
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The true path f : ω → {0, 1} of the construction is defined by

f(n) =

⎧⎨⎩0 if there are infinitely many (f � n)-expansionary stages

1 otherwise.

Note that f is the leftmost path through T visited infinitely often, i.e., satisfying δs @ f for

infinitely many s. Moreover, (2.46) implies that f(n) = 0 for infinitary Mn. To each node α of

length n, we assign a strategy Nα for meeting requirement Nn which is based on the guess α. We

show that the strategy Nf�n on the true path succeeds in meeting Nn.

For the join requirements, we guarantee that every number x which may enter any set X ∈
{A0, A1, B0, B1} under construction is targeted for this set at a stage s ≤ x where each number

may be targeted for at most one set. (This also guarantees that every number is enumerated

into at most one of the sets under construction.) Now, for the sake of Ji, whenever a number x

becomes targeted for Ai at a stage s, at stage s + 1 an unused number x′ > s is appointed as a

trace of x and targeted for A1−i, B0 or B1. Then, if x is enumerated into Ai, simultaneously its

(current) trace is enumerated into its target set. The trace x′ of x may be replaced by another

trace x′′ at some stage s′ + 1 > s+ 1. This action, called retargeting, requires that the trace x′ is

enumerated into its target at stage s′ + 1 and the new unused trace x′′ is appointed at the same

stage s′ + 1 where the target of x′′ may be freely chosen from A1−i, B0 or B1 (but the target has

to be determined by stage min{x′′, s′ + 1}). Provided that, for fixed x, retargeting happens only

finitely often, this guarantees that Ai ≤T A1−iB0B1. In our construction, for any x there will be

at most one retargeting. Namely if x is targeted for Ai and its first trace x′ is targeted for A1−i

then x′ may be replaced later by a trace x′′ targeted for Bi. (The correctness of the reduction

Ai ≤T A1−iB0B1 in this special case is shown in Claim 5 below.)

To meet a single nonordering requirement Nn of the form X ̸= ΦYe for some X, Y and e, we

use the well-known Friedberg-Muchnik strategy. We appoint a follower x to Nn and wait for a

stage s such that ΦYs
e,s(x) ↓= 0. If there is no such stage s then we never put x into X and the

requirement is met. If such a stage s exists, we make sure that we preserve the computation ΦYs
e,s(x)

by preserving Y up to the use of the computation (actually we preserve Y up to s which, by our

convention on uses, bounds the use of the computation) and put x into X.

We have to ensure that the strategies for meeting the different requirements can be combined

with each other. In order to achieve this we use some ideas introduced by Lachlan in [Lac72] in the

embeddings of the two nondistributive five-element lattices N5 and M5 and by Downey, Greenberg

and Weber in the construction of a degenerate critical triple of Turing degrees (Theorem 2.1 in

[DGW07]) where we follow the latter quite closely. Consider a strategy Nα for some nonordering

requirement Nn. This strategy might wish to enumerate some number x into some set X under

construction. If n = 4e + 2 + i then X = Bi, hence putting x into X is uncritical for the join

requirements. On the other hand, if n = 4e + i then X = Ai. So for the sake of Ji, we have to

define a trace x1 > x of x which has to be targeted for one of the sets A1−i, B0 or B1. This trace

x1 has to enter its target when x enters Ai unless we put x1 into its target previously and replace

it by a new trace y0 (with a possibly new target among A1−i, B0 or B1). In general, we have to

assign the trace x1 before there is a stage s such that the computation Φ
B0,sB1,s
e,s (x) converges. So

we cannot target x1 for B0 or B1, because the use of the computation Φ
B0,sB1,s
e,s (x) may exceed x1
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whence the enumeration of x1 may destroy this computation. So when x is appointed we define a

trace x1 targeted for A1−i. But, for the sake of J1−i, x1 needs a trace x2 targeted for either Ai,

B0 or B1. Again, we cannot target x2 for B0 or B1 because otherwise enumerating x2 into B0

or B1 might destroy the computation Φ
B0,sB1,s
e,s (x) showing up later. Therefore, we target x2 for

Ai. Now, this process has to be iterated: we need a trace x3 for x2 targeted for A1−i and so on.

If Φ
B0,sB1,s
e,s (x) never becomes defined, this process goes on forever. This is uncritical, however,

since neither x nor any of the corresponding traces has to be enumerated into its target. On the

other hand, as soon as we see a converging computation Φ
B0,sB1,s
e,s (x) at some stage s, we may now

define a trace ym > xm of xm (where x0 = x and xm, m ≥ 0, is the largest trace of x defined

up to stage s and xm is targeted for Ajm , jm ∈ {0, 1}) such that ym is bigger than the use of

the computation Φ
B0,sB1,s
e,s (x) and target it for for Bjm . Then enumerating ym into Bjm later will

not destroy this computation. In fact, in the actual construction, we simultaneously define traces

ym < ym−1 < . . . < y0 where each yl is a (potential) trace of the corresponding number xl and

yl is targeted for the set Bjl where xl is targeted for Ajl . Once the trace ym is defined, we may

simultaneously enumerate ym into Bjm and xm into Ajm and at the same time replace the trace

xm of xm−1 by (activating) the Bjm−1
-trace ym−1. So, inductively, we may enumerate the pairs

(xl, yl) into Ajl and Bjl for l = m,m − 1, . . . 0. So eventually, the follower x is enumerated into

Ai thereby meeting requirement N4e+i. Obviously, this procedure is compatible with the strategy

for the global join requirements. Moreover, if we limit the appointment of the Bi-traces and the

enumeration of the traces (xl, yl) into Ajl and Bjl to stages where α is accessible, we may argue

that these actions are compatible with the constraints imposed by the meet requirements.

Note that numbers enter any set under construction only for the sake of some nonordering

strategy. We call a trace targeted for Ai an Ai- or A-trace and a trace targeted for Bi a Bi- or

B-trace. Similarly a number targeted for Ai is an Ai- or A-number and a number targeted for

Bi is a Bi- or B-number. We call nonordering requirements Nn with n = 4e + i and their corre-

sponding strategies critical (as they need traces for their followers) and nonordering requirements

Nn with n = 4e + 2 + i and their strategies uncritical (as they do not). Moreover, we call a

follower or (potential) trace of any nonordering strategy active at stage s+ 1 if it is defined (i.e.,

assigned to the strategy) but not yet enumerated into its target by the end of stage s. If Nα is

critical and has an active follower x at stage s + 1 then we call the sequence x0, x1, . . . , xm or

x0, x1, . . . , xm, ym, ym−1, . . . , y0 associated with Nα at the end of stage s where x = x0, the num-

bers x1, . . . , xm are the active A-traces and the numbers ym, ym−1, . . . , y0 are the active (potential)

B-traces the entourage of the follower x.

Construction.

We say that x is a new large number at stage s + 1 if x > s + 1 and x is greater than any

number used in the construction so far. If we say that a (nonordering) strategy Nα is initialized

at stage s then any follower or trace associated with Nα is canceled at stage s and Nα is declared

not to be satisfied at stage s. For any set X under construction we let Xs be the finite part of X

enumerated by the end of stage s.

Stage 0. X0 = ∅ for any set X under construction and any strategy is initialized.

Stage s + 1. A strategy Nα with |α| = n requires attention at stage s + 1 if α ⊑ δs, Nα is
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not satisfied at the end of stage s and one of the following holds.

(i) No follower is assigned to Nα at the end of stage s.

(ii) Nα is critical, say n = 4e+i, Nα has a follower xα at the end of stage s, Φ
B0,sB1,s
e,s (xα) = 0

and xα is not realized at the end of stage s.

(iii) Nα is critical and has a realized follower xα at the end of stage s.

(iv) Nα is uncritical, say n = 4e + 2 + i, Nα has a follower xα at the end of stage s,

Φ
A1−i,sB1−i,s
e,s (xα) = 0 and xα is not realized at the end of stage s.

Fix the least α such that Nα requires attention at stage s + 1 and perform the following

action according to the clause above via which Nα requires attention.

(i) Assign the least new large number xα as a follower to Nα. If Nn is critical of the form

Ai ̸= ΦB0B1
e , declare the entourage of xα to be xα0 = xα and xα0 to be targeted for Ai.

If Nn is uncritical of the form Bi ̸= Φ
A1−iB1−i
e , declare xα to be targeted for Bi.

(ii) Declare xα to be realized. Append the least m + 1 new large numbers yαm < yαm−1 <

. . . < yα0 to the entourage xα = xα0 , x
α
1 , . . . , x

α
m of xα. For 0 ≤ l ≤ m, declare yαl to

be targeted for Bjl where jl is such that xαl is targeted for Ajl . Moreover, declare yαm

to be the Bjm-trace of xαm. (For l < m, yαl will become the Bjl -trace of xαl once the

current A1−jl -trace x
α
l+1 of xαl will be enumerated into A1−jl ; so we refer to yαl as the

potential Bjl -trace of xαl .)

(iii) Let xα = xα0 , x
α
1 . . . , x

α
m, y

α
m, y

α
m−1, . . . , y

α
0 be the entourage of xα at the end of stage s

and fix i ≤ 1 such that xαm and yαm are targeted for Ai and Bi, respectively. Enumerate

xαm into Ai and y
α
m into Bi and delete xαm and yαm from the entourage of xα. If m > 0

appoint yαm−1 as the B1−i-trace of xαm−1 replacing the old Ai-trace x
α
m of xαm−1 (note

that xαm−1 and yαm−1 have been previously targeted for A1−i and B1−i, respectively).

If m = 0, declare Nα to be satisfied.

(iv) Enumerate xα into its target Bi at stage s + 1, declare xα to be realized and declare

Nα to be satisfied.

In any of the cases, declare that Nα receives attention or becomes active at stage s+ 1 (via

follower xα). Initialize all strategies Nβ with α < β. Furthermore, for any strategy Nβ with

β < α such that the last element xβm of the current entourage is targeted for some Ai, add

a new large number xβm+1 to the entourage as a trace of xβm and target it for A1−i. Finally,

let Xs+1 = Xs for all sets X under construction unless mentioned otherwise above and let

status and parameters of strategies be unchanged unless mentioned otherwise above.

Verification.

We start with a few observations. Note that at any stage s + 1, exactly one strategy Nα is

active. Furthermore, if Nα is uncritical and enumerates some number at stage s+1, it enumerates

exactly one number into exactly one Bi. We then call s + 1 a Bi-stage. If Nα is critical and

performs some enumeration at stage s+1, it enumerates exactly two numbers, one into Ai and one

into Bi for exactly one i. We call such a stage s + 1 an (AiBi)-stage. It follows that every stage

at which some enumeration takes place is either a B0-, a B1-, an (A0B0)- or an (A1B1)-stage.
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We now prove a series of claims that show that the constructed sets have the required properties.

Claim 1. All constructed sets are c.e.

Proof. Immediate by construction.

Claim 2 (True Path Lemma). f = lim infs→∞ δs, i.e., for any α, α @ f if and only if α @ δs

for infinitely many s and there are only finitely many s such that δs <L α. Moreover, if Mn is

infinitary then f(n) = 0.

Proof. The first part is immediate by definition of δs and f . The second part follows from (2.46).

Claim 3. Every strategy Nα on the true path (i.e., α @ f) is initialized only finitely often and

requires attention only finitely often. Moreover, N|α| is met.

Proof. The proof is by induction on |α|. Given α @ f , by Claim 2, fix s0 minimal such that

α ≤ δs for all s ≥ s0 and, by inductive hypothesis, fix s1 ≥ s0 minimal such that no strategy

Nβ with β @ α requires attention after stage s1. Then Nα is never initialized after stage s1 and

receives attention whenever it requires attention after stage s1. By minimality of s1, a follower xα

is permanently assigned to Nα at stage s2 + 1 where s2 is the least α-stage ≥ s1. (Note that s2

exists because α is on the true path whence there are infinitely many α-stages.) Now, if there is no

α-stage s3 > s2 such that xα becomes realized at stage s3 +1, then Nα does not require attention

after stage s2 + 1 and xα witnesses that N|α| met. (For the latter note that, for |α| = 4e + i,

Φ
B0,sB1,s
e,s (xα) ̸= 0 for all α-stages s > s2 hence ΦB0B1

e (xα) ̸= 0 and xα is not enumerated into Ai.

Similarly, for |α| = 4e + 2 + i, Φ
A1−iB1−i
e (xα) ̸= 0 and xα ̸∈ Bi.) So w.l.o.g. let s3 be the least

α-stage > s2 such that xα becomes realized at stage s3+1, and distinguish the following two cases.

Case 1: N|α| is critical, say |α| = 4e+ i.

Let xα = xα0 , x
α
1 , . . . , x

α
m be the entourage of the follower xα at stage s3. By construction,

Φ
B0,s3

B1,s3
e,s3 (xα) = 0, xα is declared to be realized at stage s3+1, and B-traces yαl (0 ≤ l ≤ m)

are appointed at stage s3 + 1 (and there are no further traces associated with xα appointed

later). Moreover, for any α-stage s > s3 such that Nα is not satisfied at stage s, Nα becomes

active at stage s + 1 via Clause (iii) and two elements from xα’s entourage are enumerated

into their corresponding sets. Hence, the entourage becomes smaller. As there are infinitely

many α-stages, it follows that at some stage s4 + 1 > s3 + 1, xα itself is enumerated into its

target set Ai and hence Nα is declared to be satisfied. By choice of s1, Nα is never initialized

after stage s4+1, thus remains satisfied forever. So Nα does not require attention after stage

s4 + 1.

It remains to show that N|α| is met. Since xα is enumerated into Ai at stage s4+1 and since

Φ
B0,s3

B1,s3
e,s3 (xα) = 0, it suffices to show that no number < s3 enters B0 or B1 after stage s3.

Since no strategy Nβ with β < α acts after stage s1 and since all strategies Nβ with β > α

are initialized at stage s3 + 1 (hence enumerate only numbers > s3 + 1 into any set under

construction after stage s3), this follows from the fact that the only numbers enumerated

into B0 or B1 by Nα after stage s3 are the B-traces yαm, . . . , y
α
0 which are new large numbers

at stage s3 + 1 hence greater than s3.
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Case 2: N|α| is uncritical, say |α| = 4e+ 2 + i.

By construction, Φ
A1−i,s3

B1−i,s3
e,s3 (xα) = 0, Nα becomes active at stage s3+1, xα is enumerated

into Bi and Nα is declared to be satisfied. Again, Nα is never initialized after stage s3 + 1,

hence remains satisfied and does not require attention after stage s3 + 1. Moreover, as in

the first case, we may argue that xα witnesses that N|α| is met since no number ≤ s3 is

enumerated into A1−i or B1−i after stage s3. Namely, since no strategy Nβ with β < α

becomes active after stage s3 and all strategies Nβ with β > α are initialized at stage s3 + 1

it suffices to note that Nα does not become active after stage s3 + 1 and that it does not

enumerate any number into A1−i or B1−i at stage s3 + 1.

Claim 4. For every n ≥ 0, Mn is met.

Proof. Fix n ≥ 0 and w.l.o.g. assume that the hypothesis of Mn is true. Let α = f � n. By the

True Path Lemma, α0 @ f . So there are infinitely many α0-stages and, by Claims 2 and 3, we

may fix an α0-stage s0 > n such that no strategy Nβ with β ≤ α0 becomes active after stage s0.

Let S = {sl : l ≥ 0} where s0 < s1 < s2 < . . . are the α0-stages ≥ s0. Then S is computable and

l(n, s0) < l(n, s1) < l(n, s2) < . . . .

Observe that, for any l ≥ 0 and any stage t with sl+1 < t ≤ sl+1, only strategies Nβ with α0 <L β

may act. As those strategies are initialized at stage sl + 1, at such stages t only numbers > sl + 1

can enter any set under construction. So, in particular,

∀ i ≤ 1 ∀ l ≥ 0

(
Ai,sl+1 � sl + 1 = Ai,sl+1

� sl + 1 & Bi,sl+1 � sl + 1 = Bi,sl+1
� sl + 1

)
. (2.47)

Note that, by our convention on uses, this implies that any oracle computation existing at the end

of stage sl which is not injured at stage sl + 1 will not be injured by the end of stage sl+1.

Now distinguish the following cases depending on the type of the meet requirement. We start

with the more straightforward case of the minimal pair requirements.

Case 1: n = 3e+ 2.

Here the claim follows by the standard minimal pair argument. It suffices to show that, for

given x,

ΦA0B0
e (x) = Φ

A0,sk
B0,sk

e,sk (x) (2.48)

for the least k such that l(n, sk) > x. For a proof of (2.48), it suffices to show that, for all

l ≥ k,

∃ i ≤ 1 (Φ
Ai,sl+1

Bi,sl+1
e,sl+1 (x) = Φ

Ai,sl
Bi,sl

e,sl (x)) (2.49)

holds. Namely, since l(n, sl) > x for all l ≥ k, it follows by induction on l that, for both

i = 0 and i = 1, Φ
Ai,sl

Bi,sl
e,sl (x) = Φ

Ai,sk
Bi,sk

e,sk (x) for all l ≥ k. For a proof of (2.49), by (2.47)

it suffices to show that no number less than sl enters A0B0 at stage sl +1 or no number less

than sl enters A1B1 at stage sl + 1 whence Φ
A0,sl

B0,sl
e,sl (x) or Φ

A1,sl
B1,sl

e,sl (x) will be preserved

by the end of stage sl+1. But this is immediate by construction since any stage at which

any of the sets under construction is changed is either a B0- or (A0, B0)-stage or a B1- or

(A1, B1)-stage.
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Case 2: n = 3e+ i.

Here the claim follows by refining Lachlan’s branching degree argument. It suffices to show

that, for given x,

ΦAiBi
e (x) = Φ

Ai,sk
Bi,sk

e,sk (x) (2.50)

for the least k such that

(a) l(n, sk) > x and

(b) none of the numbers targeted for Bi which exist at the end of stage sk will enter Bi after

stage sk.

Note that such a number k exists (namely, it suffices to fix the least k′ such that l(n, sk′) > x,

fix the highest priority strategy Nβ with α0 ⊑ β which acts after stage sk′ , let sk′′ + 1 be

the last stage at which Nβ acts and let k = k′′ + 1; then no Nγ with γ ≤ β acts after stage

sk and, for any γ such that β < γ and Nγ has a follower at stage sk, this follower has been

appointed after stage sk′′ +1 whence α0 <L γ and Nγ is initialized at stage sk +1) and that

the least such k can be found computably in Bi.

Now, for a proof of (2.50), it suffices to define a strictly increasing function g(r) (r ≥ 0)

satisfying

Φ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x) = Φ

Ai,sk
Bi,sk

e,sk (x), (2.51)

Bi,sg(r) � ϕ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x) = Bi � ϕ

Ai,sg(r)
Bi,sg(r)

e,sg(r) (x), (2.52)

Bi,sg(r) � ϕ
B0,sg(r)

B1,sg(r)
e,sg(r) (x) = Bi � ϕ

B0,sg(r)
B1,sg(r)

e,sg(r) (x) (2.53)

for all r ≥ 0. (Obviously, (2.51) implies (2.50). The other conditions are used in the inductive

proof of (2.51). Also note that the function g does not have to be computable.)

The function g is inductively defined by letting g(0) = k and by letting g(r + 1) = g(r) + 1

unless the nonordering strategy Nβ which acts at stage sg(r) + 1 is critical and acts via

Clause (ii), i.e., if the follower xβ of Nβ becomes realized and the corresponding B-traces are

appointed at stage sg(r) + 1. In this case let g(r + 1) = q where q > g(r) is minimal such

that Nβ does not act via xβ at any stage ≥ sq +1 (i.e., Nβ acts via xβ at stage sg(r+1)−1 +1

for the last time).

Now the proof of (2.51), (2.52) and (2.53) is by (simultaneous) induction on r. For r = 0,

g(r) = k. So (2.51) is immediate. Moreover, by Clause (b) in the definition of sk, no number

less than sk enters Bi after stage sk. So, by our convention on uses, the computations

Φ
Ai,sk

Bi,sk
e,sk (x) and Φ

B0,sk
B1,sk

e,sk (x) are Bi-correct, hence (2.52) and (2.53) hold, too.

For the inductive step fix r such that (2.51), (2.52) and (2.53) hold. Since l(n, sg(r+1)) >

l(n, sg(r)) ≥ l(n, sk) > x it suffices to establish

Φ
Ai,sg(r+1)

Bi,sg(r+1)
e,sg(r+1)

(x) = Φ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x) or Φ

B0,sg(r+1)
B1,sg(r+1)

e,sg(r+1)
(x) = Φ

B0,sg(r)
B1,sg(r)

e,sg(r) (x)

(2.54)
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and (2.52) and (2.53) for r+1 in place of r. In the following we refer to the latter as (2.52)r+1

and (2.53)r+1.

Fix the nonordering strategy Nβ which becomes active at stage sg(r) + 1 and let xβ be the

follower of Nβ at the end of stage sg(r)+1. Note that α0 @ β (by choice of s0 since sg(r) is an

α0-stage). Moreover, by definition of g, Nβ acts via xβ at stage sg(r+1)−1 +1 (note that, for

g(r+1) = g(r) + 1, sg(r+1)−1 +1 = sg(r) +1) whence Nβ is not initialized at any stage s+1

with sg(r) +1 ≤ s+1 ≤ sg(r+1)−1 +1. So, since sg(r+1) is the least α0-stage ≥ sg(r+1)−1 +1,

no strategy Nγ with γ < β acts at any stage s+ 1 with sg(r) + 1 ≤ s+ 1 ≤ sg(r+1). (2.55)

Next we show that

Ai,sg(r+1)
� ϕ

Ai,sg(r)
Bi,sg(r)

e,sg(r) (x) = Ai,sg(r) � ϕ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x) (2.56)

or

B1−i,sg(r+1)
� ϕ

B0,sg(r)
B1,sg(r)

e,sg(r) (x) = B1−i,sg(r) � ϕ
B0,sg(r)

B1,sg(r)
e,sg(r) (x) (2.57)

holds. For a contradiction assume that (2.56) and (2.57) fail. Then, by our convention on

uses, Ai,sg(r+1)
� sg(r) ̸= Ai,sg(r) � sg(r) and B1−i,sg(r+1)

� sg(r) ̸= B1−i,sg(r) � sg(r). Since no

strategy simultaneously enumerates numbers into Ai and into Bi−1, since only strategies Nδ

with α0 < δ may act after stage sg(r) ≥ s0 and since all strategies Nδ with α0 <L δ are

initialized at stage sg(r) + 1, it follows that there is an α0-stage strictly between sg(r) and

sg(r+1). By definition of g, this implies that Nβ is a critical nonordering strategy and that

Nβ receives attention via Clause (ii) at stage sg(r) + 1. It follows that all B-numbers which

are associated with Nβ or with a lower priority strategy after stage sg(r) are appointed after

this stage hence are greater than sg(r). By (2.55), this implies

∀ j ≤ 1 (Bj,sg(r+1)
� sg(r) = Bj,sg(r) � sg(r)).

Obviously, this implies (2.57) contrary to assumption.

Now, since (2.56) or (2.57) holds, it follows by (2.52) and (2.53) that (at least) one of the

computations Φ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x) or Φ

B0,sg(r)
B1,sg(r)

e,sg(r) (x) is preserved by the end of stage sg(r+1).

So (2.54) holds.

It remains to show that (2.52)r+1 and (2.53)r+1 hold. If (2.56) and (2.57) hold then this is

immediate by the inductive hypotheses (2.52) and (2.53). So, for the rest of the proof we

may assume that (2.56) or (2.57) fails and, for a contradiction, we assume that (2.52)r+1 or

(2.53)r+1 fails, too.

By failure of (2.56) or (2.57) there are a stage t0 and a number z0 such that sg(r) ≤ t0 <

sg(r+1) and either z0 enters Ai at stage t0 + 1 and z0 < ϕ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x) or z0 enters B1−i

at stage t0+1 and z0 < ϕ
B0,sg(r)

B1,sg(r)
e,sg(r) (x) (hence, in either case, z0 < sg(r)). Fix such t0 and

z0. Since all strategies Nγ with β < γ are initialized at stage sg(r) +1 hence enumerate only

numbers > sg(r) after this stage and since, by (2.55), no strategy Nγ with γ < β may act at

stage t0 + 1, it follows that z0 is enumerated into its target by Nβ at stage t0 + 1. Hence t0
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is a β-stage and we may fix the stage t′0 + 1 ≤ z0 at which z0 becomes associated with Nβ .

So, summarizing,

t′0 + 1 ≤ z0 < sg(r) < t0 + 1 ≤ sg(r+1)−1 + 1 ≤ sg(r+1) (2.58)

and (by (2.55))

∀ s (t′0 + 1 ≤ s+ 1 ≤ sg(r+1) ⇒ Nβ is not initialized at stage s+ 1). (2.59)

On the other hand, by failure of (2.52)r+1 or (2.53)r+1, there are a stage t1 ≥ sg(r+1) and

a number z1 such that z1 enters Bi at stage t1 + 1 and either z1 < ϕ
Ai,sg(r+1)

Bi,sg(r+1)
e,sg(r+1)

(x) or

z1 < ϕ
B0,sg(r+1)

B1,sg(r+1)
e,sg(r+1)

(x) (hence, in either case, z1 < sg(r+1)). Fix such t1 and z1, fix the

strategy Nβ′ which enumerates z1 into Bi at stage t1 +1 and fix the stage t′1 +1 at which z1

is appointed as follower or trace to Nβ′ .

Then t′1 is a β′-stage, t′1 + 1 < z1 < sg(r+1) < t1 + 1 and Nβ′ is not initialized at any

stage s + 1 such that t′1 + 1 ≤ s + 1 ≤ t1 + 1. In particular, Nβ′ is not initialized at stage

sg(r+1) + 1 whence α0 @ β′. So t′1 is an α0-stage, hence t′1 ≤ sg(r+1)−1. Since Nβ acts at

stage sg(r+1)−1 + 1 but Nβ′ is not initialized at this stage, it follows that β′ ≤ β.

Now, if β′ < β then Nβ is initialized at stage t′1 + 1. By t′1 + 1 < sg(r+1) and (2.59), this

implies that t′1 + 1 < t′0 + 1 hence z1 < z0. By choice of z0 this implies

z1 < max{ϕ
Ai,sg(r)

Bi,sg(r)
e,sg(r) (x), ϕ

B0,sg(r)
B1,sg(r)

e,sg(r) (x)}.

Since z1 enters Bi after stage sg(r+1) this contradicts (2.52) or (2.53).

This leaves the case that β = β′. Then z0 and z1 are associated with Nβ but targeted for

different sets. So Nβ is critical. Since Nβ acts at stage sg(r) + 1 and since (by (2.58) and

(2.59)) z0 is associated with Nβ at the end of stage sg(r), it follows that Nβ acts via Clause

(ii) or Clause (iii) at stage sg(r) + 1.

First assume that Nβ acts at stage sg(r) + 1 via Clause (ii). Then any of the B-traces

yβm, . . . , y
β
0 appointed at stage sg(r) + 1 which enters its target later does so by the end of

stage sg(r+1)−1+1 and no additional numbers become associated with Nβ by the end of stage

sg(r+1). So any number z enumerated into Bi by Nβ after stage sg(r+1) has to be appointed

after stage sg(r+1) hence has to be greater than sg(r+1). So, in particular, z1 > sg(r+1)

contrary to choice of z1.

Finally, assume that Nβ acts via Clause (iii) at stage sg(r) + 1. Then g(r + 1) = g(r) + 1.

Since t′1 is an α0-stage and t′1 + 1 < sg(r+1), the latter implies that t′1 ≤ sg(r). In fact, since

z1 becomes appointed as a Bi-trace of Nβ at stage t′1+1 and since no new trace is appointed

at stage sg(r) + 1, t′1 < sg(r) and Nβ becomes active via (ii) at stage t′1 + 1.

Now, in order to get the desired contradiction, we look at the size of t′1. If t
′
1 < sg(0) then z1

is associated with Nβ at the end of stage sg(0) and enters Bi after stage sg(0). Since g(0) = k

this contradicts the choice of k.
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So w.l.o.g. we may assume that t′1 ≥ sg(0). Fix the unique number r′ < r such that sg(r′) ≤
t′1 < sg(r′+1) and fix the strategy Nβ′′ which acts at stage sg(r′) + 1. Now, if t′1 = sg(r′) then

β′′ = β, Nβ becomes active via (ii) at stage sg(r′) + 1 and z1 is appointed as a Bi-trace at

stage sg(r′) + 1. So, by definition of g, z1 cannot enter Bi after stage sg(r′+1)−1 + 1. So, by

r′ < r, t1 + 1 ≤ sg(r′+1)−1 + 1 < sg(r+1) contrary to choice of t1.

This leaves the case that sg(r′) < t′1 < sg(r′+1). Since t′1 is an α0-stage, it follows that

sg(r′)+1 < sg(r′+1). So Nβ′′ becomes active via Clause (ii) at stage sg(r′) + 1. Since Nβ acts

at stage t′1 + 1, it follows by (2.55) (applied to β′′ and r′ in place of β and r) that β′′ ≤ β

and since a new trace for Nβ is appointed at stage t′1 + 1 where sg(r′) < t′1 ≤ sg(r′+1)−1 it

follows that β ̸= β′′. So β′′ < β. It follows that Nβ is initialized at stage sg(r′+1)−1 + 1 and

z1 is canceled. By the latter, t1 + 1 < sg(r′+1)−1 + 1 < sg(r+1). But, just as in the preceding

case, this contradicts the choice of t1.

So, in any case, the assumption that (2.52)r+1 or (2.53)r+1 fails leads to a contradiction.

This completes the proof of Claim 4.

Claim 5. For i ∈ {0, 1}, Ji is met.

Proof. For fixed i ∈ {0, 1} and x ≥ 0, we sketch how to (uniformly) compute Ai(x) using A1−iB0B1

as an oracle. First, by running the construction up to stage x, find out whether there is a stage

s < x such that x is appointed as a follower or a trace and targeted for Ai at stage s+ 1. If there

is no such stage s then x ̸∈ Ai. So w.l.o.g. fix such s. By construction, either x is canceled or

a trace x′ of x targeted for either A1−i or Bi is appointed at stage s + 2. If x is canceled then,

obviously, x ̸∈ Ai. If x′ is targeted for Bi, then x ∈ Ai if and only if x′ ∈ Bi. If x′ is targeted for

A1−i and x
′ /∈ A1−i, then x /∈ Ai. Finally, if x′ is targeted for A1−i and x

′ ∈ A1−i then, at the

stage where x′ enters A1−i, a new trace y of x targeted for Bi is appointed and x ∈ Ai if and only

if y ∈ Bi.

This completes the proof of Theorem 77.

We now show that the S7 can be embedded into the c.e. Turing degrees exactly below any c.e.

not totally ω-c.e. Turing degree. In contrast to Theorem 76, however, here the embedding may

not preserve the least element.

Theorem 78. A c.e. Turing degree a bounds a lattice embedding of the S7 into the c.e. Turing

degrees if and only if a is not totally ω-c.e.

The only if direction of Theorem 78 follows immediately from Theorem 73 as we have seen that

the S7 contains a critical triple. For a proof of the if direction, by Corollary 68 and Theorem 69, it

suffices to show that any c.e. set D which is uniformly multiply permitting bounds an embedding

of the S7 into the c.e. degrees.

Theorem 79. Let D be a c.e. set that is uniformly multiply permitting. There are pairwise disjoint

c.e. sets A0, A1, B0, B1 and C such that

A0, A1, B0, B1, C ≤T D (2.60)

and, for i ≤ 1,
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(i) degT(AiBiC) ∧ degT(B0B1C) = degT(BiC) and degT(A0B0C) ∧ degT(A1B1C) = degT(C),

(ii) Ai ≤T A1−iB0B1 and

(iii) Ai ̸≤T B0B1C and Bi ̸≤T A1−iB1−iC.

Again, we first prove Theorem 78 assuming Theorem 79.

Proof of Theorem 78 assuming Theorem 79. The only if direction immediately follows from the

Downey-Greenberg-Weber result that no c.e. totally ω-c.e. degree bounds a critical triple as the

S7 contains a critical triple (Theorem 73). By Corollary 68 and Theorem 69, the if direction can

be deduced from Theorem 79 in a very similar way as Theorem 76 follows from Theorem 77.

It now suffices to prove Theorem 79.

Proof of Theorem 79. We combine the construction from the proof of Theorem 77 with marker

permitting in order to enumerate c.e. sets A0, A1, B0, B1 and C with the required properties.

Unless mentioned otherwise, all notions introduced in the proof of Theorem 77 are defined here

correspondingly. Furthermore, as there we may argue that, in addition to (2.60), it is enough to

meet the following requirements (where here and in the following e ≥ 0 and i ≤ 1).

Meet requirements.

M3e+i : If ΦAiBiC
e is total and ΦAiBiC

e = ΦB0B1C
e then ΦAiBiC

e ≤T BiC.

M3e+2 : If ΦA0B0C
e is total and ΦA0B0C

e = ΦA1B1C
e then ΦA0B0

e ≤T C.

Join requirements.

Ji : Ai ≤T A1−iB0B1.

Nonordering requirements.

N4e+i : Ai ̸= ΦB0B1C
e .

N4e+2+i : Bi ̸= Φ
A1−iB1−iC
e .

In order to satisfy (2.60), given a computable enumeration {Ds}s≥0 of D, we define a computable

marker γ(x, s) such that γ is nondecreasing in the second argument, γ(x, s) < γ(x, s+ 1) only if a

number ≤ γ(x, s) is enumerated into D at stage s+1 and γ∗(x) = lims≥0 γ(x, s) < ω exists. (Note

that this implies that γ∗ is computable in D.) Then we guarantee X ≤T D for X = Ai, Bi, C by

enumerating a number x into X at stage s+1 only if a number ≤ maxx′≤x γ(x
′, s) enters D at the

same stage. (See the proof of Claim 6 for details.)

In order to meet the requirements we adjust the strategies introduced in the proof of Theorem

77. Recall that the only strategies which enumerate numbers into the sets under construction

are the nonordering strategies. If such a strategy Nα wants to enumerate a follower or a trace,

now this has to be γ-permitted by D. This may force Nα to enumerate numbers also at stages

where α is not accessible. This is not compatible with the minimal pair strategy which allows the

enumeration of “small” numbers only at successor stages of expansionary stages. This problem is

overcome by adding the set C to the meets which allows us to use the branching degree strategy
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in place of the minimal pair strategy. For this sake, any number x associated with a nonordering

strategy Nα will be assigned a C-trace z first, before it is allowed to be enumerated into its target

and if x is enumerated then the trace z is simultaneously enumerated into C. It will be crucial

that these C-traces are appointed at stages at which α is accessible (and that they are greater

than the stage at which they are appointed). Moreover, if for critical Nα an Aj-trace x
α
l+1 and the

corresponding Bj-trace y
α
l+1 and C-trace z

α
l+1 are enumerated into their targets at a stage s+1 then

the C-trace zαl for the traces xαl and yαl which might be enumerated next is appointed at a stage

> s+ 1 at which α is accessible. So both sides of a computation (related to a meet requirement)

we may be concerned with have recovered and zαl will be “big” hence not interfere with the current

computations. Note that, in contrast to the A- and B-traces which are assigned in order to meet

the join requirements, the C-traces are assigned in order to meet the meet requirements.

An additional effect of the permitting constraint is that we cannot argue that a single follower

will eventually be permitted. So if a follower x or, in case of a critical nonordering strategy, a

member of the entourage of x waits to be permitted, we have to assign a new follower. In case of

the noncritical nonordering requirements, by the standard permitting argument (using that D is

noncomputable) we may argue that eventually one of the followers is permitted, hence the strategy

remains finitary.

For a critical nonordering strategy Nα (say |α| = 4e + i), the situation is more delicate. Here

we need that not only one of the followers but also all of its traces are permitted. To achieve this

we have to use that D is uniformly multiply permitting. So fix a strictly increasing computable

function f such that D is uniformly multiply permitting via f (and {Ds}s≥0) and for any number

x let γ(x, 0) = f(x) + 1 be the initial position of the marker γ(x).

Then, in order to exploit the uniform multiple permitting property of D, given a follower xα,p,

at the first stage s+1 (if any) such that the entourage of xα,p is complete at stage s+1 – i.e., such

that xα,p becomes realized at stage s+1 and the A-part of the entourage, xα,p = xα,p0 , xα,p1 , . . . , xα,pmp

is extended at stage s+ 1 by adding the B-traces yα,pmp
, . . . , yα,p0 (as in the basic construction) and

the C-trace zα,pmp
(for the sake of the meet strategies) – we assign an interval F = Fαp to xα,p where

xα,p = minF and |F | ≥ mp + 2. The latter allows us to define a (uniformly) partial computable

function ψ on F , such that (assuming the strategy is on the true path) the attack via xα,p can

be completed since D γ-permits the enumeration of all of the members in the entourage of xα,p –

provided that, for any x ∈ F , D changes below f(x) + 1 after stage ψ(x) (if the latter is defined).

This leads to the following strategy: at any α-stage s such that, for all existing Nα-followers

xα,p
′
(p′ ≤ p), the corresponding attacks on N|α| are stuck waiting for a required permission by

D (namely either the permission to raise the γ-marker position of xα,p
′
above f(maxFαp′) or to

enumerate some numbers in the entourage into their targets), we appoint a new greater follower

xα,p+1 at stage s+ 1. Then we can argue that if Nα acts infinitely often without being initialized

then an infinite ascending sequence xα,0, xα,1, xα,2, . . . of permanent Nα-followers (i.e., followers

that are never canceled) will be defined such that the associated intervals Fα0 , F
α
1 , F

α
2 , . . . form a

very strong array of intervals and the partial computable function ψ defined on these intervals as

indicated above, contradicts the fact that D is {Fαn }n≥0-permitting via f . So, we may argue that,

for some follower xα,p, we can complete the attack and enumerate xα,p into its target Ai.

The latter, however, is not quite sufficient in order to argue that Nα is satisfied. Namely, it
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might happen that, for the follower xα,p for which the attack is completed, the current approx-

imation of the computation ΦB0B1C
e (xα,p) is injured by the action of a lesser follower xα,p

′
with

p′ < p (namely a number in the entourage of xα,p
′
which is less than the use of the current ap-

proximation of ΦB0B1C
e (xα,p) may be enumerated into one of the oracle sets of this computation).

So we cannot argue that enumerating xα,p into Ai guarantees that Ai(x
α,p) ̸= ΦB0B1C

e (xα,p). This

problem can be overcome, however, by the following observation. If a number of the entourage of

xα,p
′
is enumerated into its target (after xα,p has been realized hence Fαp has been defined) then

this requires permission by D. But this permission by D allows to raise the γ-position of xα,p
′

above f(maxFαp ). So by making Fαp sufficiently large by adding numbers for all members of the

higher priority entourages of Nα, we may argue that D will permit xα,p
′
to enter Ai, too. This

way we may conclude that the least follower xα,p
′
entering Ai will not be injured and will witness

that N4e+i is met.

In order to deal with the just described interactions between the followers of a critical nonorder-

ing strategy Nα, we say an Nα-follower x is stronger than an Nα-follower x
′ if x < x′, i.e., if x is

appointed earlier than x′. Then if a number in the entourage of x is enumerated into its target

(thereby possibly injuring x′) we cancel x′ and its entourage if the interval F ′ corresponding to x′

has not yet been defined and we declare x′ to be injured if F ′ is defined already. In the latter case

x′ is not canceled but no further action for x′ is taken. (Note that we cannot cancel an interval F

once it is assigned (unless the strategy is initialized). Otherwise, assuming that Nα acts infinitely

often (without being initialized), we cannot argue that the permanent intervals define a very strong

array.)

For the formal construction we need some further notions and notation. A new large number

x at stage s + 1 is a number x > s + 1 such that x is greater than all numbers y used in the

construction by the end of stage s where a number y is used by the end of stage s if either y has

been appointed as a follower or (potential) trace by the end of this stage or y is in one of the

intervals Fαp defined by the end of this stage.

For a follower xα,p of a critical strategy Nα, an interval Fαp becomes associated with xα,p at

the stage at which the follower becomes realized. A realized follower xα,p becomes admissible at a

stage s+1 if permission is given to let γ(xα,p, s+1) > f(maxFαp ). As long as xα,p is not realized,

the entourage of xα,p consists of A-numbers only and its members (in increasing order, i.e., in order

of appointment) are denoted by xα,p = xα,p0 , xα,p1 , . . . , xα,pm (m ≥ 0). Once realized, the entourage

of xα,p has the form xα,p = xα,p0 , . . . , xα,pm , yα,pm , . . . , yα,p0 , zα,pm or xα,p = xα,p0 , . . . , xα,pm , yα,pm , . . . , yα,p0

where xα,p0 , . . . , xα,pm are A-numbers, yα,pm , . . . , yα,p0 are B-numbers and zα,pm is a C-number. In the

former case the follower xα,p is called C-certified. At the stage at which xα,p becomes realized, the

entourage has its maximum length. The entourage of xα,p becomes reduced only if the follower is

admissible and C-certified. If such a reduction takes place, the greatest A-, B- and C-numbers in

the entourage are enumerated into their targets. Hence, just after such a reduction, the follower is

not C-certified. So, following any reduction step, the follower has to get a new C-certificate before

the next reduction can take place. This certification happens at a stage where α is accessible.

The follower xα,p of a noncritical strategy Nα has a C-trace whenever it is realized.

We say a strategy Nα gets permitting via a number x at stage s+ 1 if

Ds+1 � γ(x, s) + 1 ̸= Ds � γ(x, s) + 1 (2.61)
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and, at the end of stage s, x = xα,p is a follower of Nα and one of the following holds.

(I) Nα is critical and xα,p is admissible, C-certified and not injured.

(II) Nα is uncritical and xα,p is realized.

We say that Nα gets permitting at stage s+ 1 if Nα gets permitting via some number x at stage

s+ 1.

Now the construction is as follows.

Construction.

Stage 0. All sets under construction are empty at stage 0 and all strategies are initialized

(i.e., no parameters are associated with any strategy and no number is used at stage 0).

Moreover, γ(x, 0) = f(x) + 1 for all x ≥ 0.

Stage s+1. A strategy Nα with |α| = n requires attention at stage s+1 if Nα is not satisfied

at the end of stage s and either Nα gets permitting at stage s + 1 (in that case, say Nα

requires attention via permitting) or α ⊑ δs and one of the following holds.

(i) No follower is assigned to Nα at the end of stage s.

(ii) Nα is critical and has the followers xα,0 < . . . < xα,p−1 at the end of stage s and, for

all r ≤ p− 1, xα,r is realized and xα,r is injured or C-certified.

(iii) Nα is critical and has a follower xα,p at the end of stage s such that xα,p is not yet

realized and Φ
B0,sB1,sCs
e,s (xα,p) = 0 where n = 4e+ i.

(iv) Nα is critical and has an admissible follower xα,p at the end of stage s such that xα,p

is not injured and not C-certified.

(v) Nα is uncritical and has the followers xα,0 < . . . < xα,p−1 at the end of stage s and all

of them are realized at the end of stage s.

(vi) Nα is uncritical and has a follower xα,p at the end of stage s such that xα,p is not yet

realized and Φ
A1−i,sB1−i,sCs
e,s (xα,p) = 0 where n = 4e+ 2 + i.

Fix the least α such that Nα requires attention at stage s + 1. If Nα requires attention via

permitting, fix the least follower xα,p such that Nα gets permitting via xα,p and perform the

following action according to the case via which Nα gets permitting.

(I) Let xα,p0 , xα,p1 , . . . , xα,pm , yα,pm , . . . yα,p0 , zα,pm be the entourage of xα,p = xα,p0 at the end

of stage s and fix j ≤ 1 such that xα,pm is targeted for Aj (hence yα,pm is targeted for

Bj). Enumerate xα,pm into Aj , y
α,p
m into Bj and z

α,p
m into C. Declare that Nα is not C-

certified. Delete xα,pm , yα,pm and zα,pm from the entourage of xα,p0 . If m > 0 then appoint

yα,pm−1 as the B1−j-trace of xα,pm−1 (replacing the old Aj-trace x
α,p
m of xα,pm−1; note that

xα,pm−1 and yα,pm−1 have been previously targeted for A1−j and B1−j , respectively). If

m = 0 (i.e., the follower itself has just been enumerated into its target set), declare

Nα to be satisfied.

In either case fix q ≥ p maximal such that Fαq is defined at the end of stage s. Let

γ(xα,p, s+ 1) = max{γ(xα,p, s), f(maxFαq )}+ 1,
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cancel all followers xα,r0 with r > q and their entourages (if any) and declare all xα,r0

with p < r ≤ q to be injured (if any).

(II) Fix i such that xα,p is targeted for Bi. Enumerate xα,p into Bi, enumerate the C-trace

yα,p of xα,p into C and declare Nα to be satisfied.

Otherwise, perform the following action according to the first clause above via which Nα

requires attention where in case of (iii), (iv) and (vi) the corresponding follower xα,p is

chosen to be minimal. (Actually, it will follow by construction that at most one of these

clauses may apply and if (iii), (iv) or (vi) applies then the corresponding follower xα,p is

uniquely determined.)

(i) Assign the least new large number xα,0 as a first follower to Nα. If Nn is critical of

the form Ai ̸= ΦB0B1C
e , declare the entourage of xα,0 to be xα,00 = xα,0 and xα,0 to be

targeted for Ai. If Nn is uncritical of the form Bi ̸= Φ
A1−iB1−iC
e , declare xα,0 to be

targeted for Bi.

(ii) Assign the least new large number xα,p as an additional follower to Nα, declare the

entourage of xα,p to be xα,p0 = xα,p and xα,p to be targeted for Ai where Nn is of the

form Ai ̸= ΦB0B1C
e .

(iii) Declare xα,p to be realized. Let xα,p = xα,p0 , xα,p1 , . . . , xα,pm be the entourage of xα,p at

the end of stage s (note that the entourage consists of A-numbers only). Add the least

new large numbers yα,pm < yα,pm−1 < . . . < yα,p0 < zα,pm to the entourage of xα,p as new

(potential) traces. For 0 ≤ l ≤ m, declare yα,pl to be targeted for Bjl where jl is such

that xα,pl is targeted for Ajl and declare zα,pm to be targeted for C. Moreover, declare

yα,pm to be the Bjm-trace of xα,pm , declare zα,pm to be the C-trace of xα,pm and yα,pm and

declare xα,p to be C-certified. Finally, let Fαp = [xα,p0 , u] where u is chosen so that

|Fαp | = m+ 2 +
∑
r<p |Fαr |.

(iv) Let xα,p = xα,p0 , xα,p1 , . . . , xα,pm , yα,pm , yα,pm−1, . . . , y
α,p
0 be the entourage of xα,p at the end

of stage s (note that the entourage consists of A-numbers xα,pl and B-numbers yα,pl

only). Append the least new large number zα,pm to the entourage of xα,p, target zα,pm for

C and let zα,pm be the C-trace of xα,pm and yα,pm . Moreover, declare xα,p to be C-certified.

(v) Assign the least new large number xα,p as an additional follower to Nα targeted for Bi

where Nn is of the form Bi ̸= Φ
A1−iB1−iC
e .

(vi) Declare xα,p to be realized. Assign the least new large number yα,p as a trace of xα,p

targeted for C.

In any case, declare that Nα receives attention or becomes active at stage s + 1 (via xα,p

where p = 0 for Clause (i)) and initialize all strategies Nβ with α < β, i.e., declare them to be

unsatisfied and cancel all followers, entourages and intervals of such strategies. Furthermore,

for any β < α, to any existing entourage whose last element xβ,pm is targeted for some Ai,

append a new large number xβ,pm+1 as a trace of xβ,pm targeted for A1−i. Finally, for any critical

strategy Nβ and any follower x = xβ,p of Nβ such that x is realized but not admissible at

the end of stage s and (2.61) holds, let γ(xβ,p, s+ 1) = max{γ(xβ,p, s), f(maxF βp )}+ 1 and

declare that xβ,p becomes admissible at stage s+ 1.
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(Any sets, concepts and parameters remain unchanged unless mentioned otherwise above.)

This completes the construction.

Verification.

We begin with a few observations and explanations before we turn to proving that the constructed

sets have the required properties.

We let xα,0[s], xα,1[s], . . . , xα,p[s] denote the followers of Nα at the end of stage s in order

of their appointment (if any). Similarly, if Nα is critical we denote the entourage of xα,r[s]

by xα,r0 [s], . . . , xα,rm [s] (if xα,r[s] is not yet realized) respectively by xα,r0 [s], . . . , xα,rm [s], yα,rm [s], . . . ,

yα,r0 [s] (if xα,r[s] is realized but not C-certified) respectively xα,r0 [s], . . . , xα,rm [s], yα,rm [s], . . . , yα,r0 [s],

zα,rm [s] (if xα,r[s] is realized and C-certified) where the x-numbers are targeted for A0 or A1, the

y-numbers are targeted for B0 or B1 and the z-numbers are targeted for C. We drop the pa-

rameter [s] if it is obvious from the context. Since followers and traces are appointed in order,

xα,0[s] < xα,1[s] < . . . < xα,p[s] and the members of any entourage are strictly increasing. More-

over, if there is more than one Nα-follower at the same stage then the members of the entourage

of the stronger follower are less than all members of the entourage of the weaker follower unless

the weaker follower is injured:

If p < p′, xα,p[s] and xα,p
′
[s] are defined, xα,p

′
[s] is not injured and v and v′ are

in the entourage of xα,p[s] and xα,p
′
[s], respectively, then xα,p[s] is realized and v < v′.

(2.62)

The first part of (2.62) is immediate since a new Nα-follower is appointed only if all stronger

followers are realized. For a proof of the second part, it suffices to show that v′ is appointed later

than v. Fix the stage t+ 1 < s such that xα,p[s] becomes realized at stage t+ 1. Then xα,p
′
[s] is

appointed after stage t+ 1. So if v is appointed by the end of stage t+ 1 then the claim is trivial.

This leaves the case that v is appointed after stage t + 1. Then v must be a C-trace and there

must be stages t′ and t′′ such that t < t′ < t′′ < s, Nα gets permitting via xα,p[s] at stage t′ + 1

and acts accordingly and v is appointed as a C-trace at stage t′′ +1 where t′′ +1 is the least stage

> t′ +1 at which α is accessible and Nα becomes active via xα,p[s] or a weaker follower (since, for

any α-stage t̂ with t′ < t̂ ≤ t′′, Nα requires attention via xα,p[s] and Clause (iv) at stage t̂ + 1).

Since all followers weaker than xα,p[s] are canceled or injured at stage t′+1, it follows that xα,p
′
[s]

is appointed at a stage t′′′ +1 > t′ +1. In fact, since t′′′ is an α-stage and Nα acts at stage t′′′ +1

via xα,p
′
[s], it follows by minimality of t′′ that t′′ < t′′′. So v′ is appointed later than v in this

case, too.

Finally, observe that whenever a number y enters any set, there is a C-trace z ≥ y entering C

at the same stage.

We prove a series of claims very similar to those in the proof of Theorem 77 to show that the

constructed sets have the required properties. Claims 1, 2 and 5 and their proofs are the same as

there.

Claim 3. Every strategy Nα on the true path (i.e., α @ f) is initialized only finitely often and

requires attention only finitely often. Moreover, N|α| is met.

Proof. The proof is by induction on |α|. Fix α @ f . By Claim 2 and by inductive hypothesis, we

may fix the least stage s0 such that α ≤ δs for all s ≥ s0 and no strategy Nβ with β @ α requires
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attention after stage s0. Since no γ <L α is accessible after stage s0, it follows that there are only

finitely many followers which are assigned to strategies Nβ with β <L α. Since any strategy acts

via the same follower only finitely often (and since a follower is assigned to one strategy only), this

implies that there is a stage s such that no strategy Nβ , β <L α, requires attention after stage

s. So, since there are infinitely many α-stages, we may let s1 ≥ s0 be the least α-stage such that

α ≤ δs for all s ≥ s1 and no strategy Nβ with β < α requires attention after stage s1. Then Nα

acts whenever it requires attention and is not initialized after stage s1. Moreover, by minimality

of s1, Nα is initialized at the end of stage s1 (hence is not satisfied at the end of stage s1) and a

follower xα,00 of Nα is appointed at stage s1+1. Since Nα is not initialized after stage s1 and since

xα,00 is the strongest Nα-follower existing after stage s1, x
α,0
0 is never canceled hence permanent.

Case 1. Nα is critical.

Fix e ≥ 0 and i ≤ 1 such that |α| = 4e + i. Now, first assume that Nα is declared to be

satisfied at a stage s + 1 ≥ s1 + 1. Then Nα does not require attention after stage s + 1.

Moreover, N|α| is met. Namely, fix the follower xα,p such that Nα gets permitting via xα,p

and Clause (I) at stage s+ 1. Then xα,p is admissible – hence realized – and not injured at

stage s and xα,p is enumerated into Ai at stage s+1. Moreover, for the stage s′+1 < s+1 at

which xα,p becomes realized, Φ
B0,s′B1,s′Cs′

e,s′ (xα,p) = 0. So it suffices to show that no number

≤ s′ enters any of the sets B0, B1, C after stage s′. By initialization and by choice of

s1 no strategy Nβ with β ̸= α will enumerate numbers ≤ s′ after stage s′. Moreover no

numbers from entourages of Nα-followers stronger than xα,p are enumerated after stage s′.

(Namely, this had to happen by stage s thereby injuring xα,p.) On the other hand any weaker

Nα-followers acting after stage s′ are appointed after this stage hence may enumerate only

numbers > s′. Finally, the B0-, B1- and C-numbers in the entourage of xα,p are appointed

at stage s′ + 1 or at later stages hence are greater than s′, too.

Next assume that there is a permanent Nα-follower x
α,p which is never realized (i.e., such

that Nα never acts via xα,p and Clause (iii)). Then, once xα,p is appointed, no weaker Nα-

follower may be appointed, hence there are only finitely many Nα-followers. Since a strategy

receives attention via a fixed follower only finitely often, it follows that Nα receives attention

only finitely often, hence, by choice of s1, requires attention only finitely often. It follows that

for all sufficiently large α-stages s, Φ
B0,sB1,sCs
e,s (xα,p) ̸= 0 hence ΦB0B1C

e (xα,p) ̸= 0. Moreover,

xα,p is not enumerated into Ai. So N|α| is met.

By the preceding observations, it suffices to show that Nα will be satisfied at some stage

≥ s1 + 1 or will have a permanent follower xα,p which is never realized. For a contradiction,

assume that neither is the case. Then Nα requires (hence receives) attention infinitely often.

(Namely, assume not and fix the least α-stage s ≥ s1 + 1 such that Nα does not require

attention after stage s. Then there are Nα-followers at the end of stage s and none of this

followers acts later. Since, by assumption, all of these followers are realized and since Nα

is not satisfied at any stage ≥ s, any of these followers must be injured or C-certified at

stage s (since otherwise Nα will require attention via Clause (iv) at stage s + 1). But this

implies that Nα requires attention via Clause (ii) at stage s + 1, a contradiction.) Since a

strategy receives attention via a fixed follower only finitely often, it follows that there are
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infinitely many Nα-followers. In fact, since after stage s1 an Nα-follower can be canceled

only if a stronger Nα-follower acts, there are infinitely many permanent Nα-followers, say

xα,0 < xα,1 < xα,2 < . . .. Moreover, these followers are just the Nα-followers which become

realized, i.e., which get an interval F assigned to it after stage s1. (Namely, once realized, an

Nα-follower x cannot be canceled by stronger Nα-followers. So any Nα-follower x realized

after stage s1 is permanent. The converse holds by assumption.) It follows that the sequence

of the permanent followers is computable and so is the sequence F = {Fαp }p≥0 of the intervals

associated with these followers. Since, by definition, maxFαp < minFαp+1 and |Fαp | < |Fαp+1|,
this implies that F is a very strong array of intervals. Moreover, the stage tp such that xα,p

becomes realized at stage tp + 1 hence Fαp becomes assigned to xα,p at stage tp + 1 and the

entourage

xα,p0 = xα,p, . . . xα,pmp
, yα,p0 , . . . , yα,pmp

, zα,pmp

of xα,p defined at the end of this stage can be computed from p. Note that tp < tp+1 and

that xα,p is not injured at stage tp + 1 (p ≥ 0). Moreover, for any stage t ≥ tp + 1, the

followers x < xα,p of Nα at stage t are just the followers xα,0, . . . , xα,p−1 and all of them are

realized at stage t.

Moreover, by definition, for any p the interval Fαp is large enough so that we can effectively

(uniformly in p) split an appropriate initial segment of Fαp into intervals Iαp,r, r ≤ p such that

Iαp,p contains the mp + 2 least elements xα,p0 < x̂α,p,p0 < · · · < x̂α,p,pmp
of Fαp

(note that xα,p = xα,p0 is the least element of Fαp ) and, for r < p,

Iαp,r contains the mr + 1 least elements x̂α,p,r0 < · · · < x̂α,p,rmr
of Fαr .

Based on these effective partitions define the partial computable function ψ on Fαp (p ≥ 0)

by letting

ψ(xα,p0 ) = tp + 1 (2.63)

and

ψ(x̂α,p,rm ) = µ t > tp + 1 [zα,rm [t] ↓ and xα,r is admissible at stage t

and γ(xα,r, t) > f(maxFαp )]

(for p ≥ 0, r ≤ p,m ≤ mr). Now, since D is F-permitting via f , we may fix p minimal such

that

∀x ∈ Fαp (ψ(x) ↓ ⇒ D � f(x) + 1 ̸= Dψ(x) � f(x) + 1), (2.64)

holds. In order to get the desired contradiction, distinguish the following two cases.

First assume that xα,p is never injured. (We will show that Nα becomes satisfied via xα,p

contrary to assumption.) Note that, by (2.63) and (2.64), xα,p becomes admissible, say at

stage t′ + 1 > tp + 1. So, since Nα does not become satisfied, we may fix m ≤ mp maximal

such that xα,pm is not enumerated into A0 ∪ A1. Now if m = mp then t′′ = t′ + 1 is the least

stage such that zα,pmp
is defined and xα,p is admissible. If m < mp then, since xα,p is never

injured, there is an α-stage t′′ − 1 ≥ t′ + 1 such that Nα acts via xα,p according to Clause
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(iv) at stage t′′ and the C-trace zα,pm is appointed as the maximum element of the entourage

xα,p0 , . . . xα,pm , yα,pm , . . . , yα,p0 , zα,pm at this stage. In either case this implies that ψ(x̂α,p,pm ) = t′′.

So, by (2.64), there is a stage t′′′ + 1 > t′′ such that Nα gets permitting via xα,p at stage

t′′′ + 1. Moreover, since xα,p does not become injured at stage t′′′ + 1, Nα acts via xα,p. So

xα,pm is enumerated into A0 ∪A1 contrary to choice of m.

Finally assume that xα,p becomes injured. Then there are a number r < p and a stage

t + 1 > tp + 1 such that Nα gets permitting and acts via xα,r at stage t + 1. Fix the least

such r and fix the least corresponding t. (We will show that Nα becomes satisfied via xα,r

contrary to assumption.) Note that, by minimality of r, xα,r is never injured while, by choice

of t,

∀ s ≥ t+ 1 (γ(xα,r, s) > f(maxFαp )) (2.65)

and the entourage of xα,r at the end of stage t+ 1 has the form xα,r0 , . . . , xα,rm∗ , y
α,r
m∗ , . . . , y

α,r
0

for some m∗ ≥ 0. (Note that the entourage cannot be empty since Nα is not satisfied.) So,

since Nα is not satisfied after stage tp, there is a greatest number m ≤ m∗ such that xα,rm

is not enumerated into A0 ∪ A1. But this is impossible. Namely, as in the first case, we

may argue that there is a stage t′′ > t + 1 at which the C-trace zα,rm becomes appended to

the entourage xα,r0 , . . . xα,rm , yα,rm , . . . , yα,r0 of xα,r and that (by (2.65)) ψ(x̂α,p,rm ) = t′′. So, by

(2.64) (and (2.65)), Nα will get permitting via xα,r after stage t′′ and xα,rm will be enumerated

into A0 ∪A1 contrary to choice of m.

Case 2. Nα is uncritical.

Fix e ≥ 0 and i ≤ 1 such that |α| = 4e + 2 + i. If Nα is declared to be satisfied at a

stage s + 1 ≥ s1 + 1 or if there is a permanent Nα-follower which is never realized then,

by a straightforward variant of the argument given in the first case, we may argue that Nα

requires attention only finitely often and requirement N|α| is met. So it suffices to show that

Nα will be satisfied at some stage ≥ s1 + 1 or will have a permanent follower xα,p which is

never realized.

For a contradiction, assume that neither is the case. Then Nα requires (hence receives)

attention via Clause (v) infinitely often. So infinitely many followers xα,0 < xα,1 < . . . are

assigned to Nα after stage s1, say at stages t0 + 1 < t1 + 1 < . . . . All of these followers are

permanent and eventually realized. (Namely, if xα,p is appointed at stage tp + 1 then the

followers xα,0, . . . , xα,p−1 are realized at stage tp and, sinceNα does not become satisfied after

stage s1, Nα does not get permitting via any of these followers after stage tp hence does not

act via any of these followers after stage tp. So x
α,p is permanent.) So we may fix the stage

t′p+1 at which xα,p becomes realized (p ≥ 0). Note that the sequences {xα,p}p≥0 and {t′p}p≥0

are computable and strictly increasing. Moreover, since Nα does not get permitting via xα,p

after stage t′p + 1, it follows (by x ≤ γ(x, s) for all x, s) that D � xα,p + 1 = Dt′p+1 � xα,p + 1

for p ≥ 0. So D is computable, a contradiction.

Claim 4. For n ≥ 0, requirement Mn is met.

Proof. The proof is similar to the proof of the corresponding claim in the proof of Theorem 77.

In particular, assume that Mn is infinitary and define s0 and S = {sl : l ≥ 0} as there (where the
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existence of s0 can be established in a similar way as we established the existence of s1 in the proof

of Claim 3). Observe that, by choice of S, at every stage sl + 1 with sl ∈ S, a strategy Nβ with

α0 @ β becomes active and hence all strategies Nγ with α0 <L γ are initialized at stage sl + 1.

So, for all nodes γ and sl ∈ S, the following holds.

If Nγ enumerates a number x ≤ sl into some set at stage t+ 1 and t ≥ sl then α0 @ γ. (2.66)

We prove one more auxiliary observation before we proceed with the same case distinction as

above. We claim that for all t0, t, y, z ≥ 0, the following holds.

y is enumerated into any set at stage t0 + 1

Ct0 � y = C � y

z is a C-trace active at stage t0 + 1

z is enumerated into C at stage t+ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇒ t = t0. (2.67)

For a proof, first observe that, as z is active at stage t0 + 1, t0 ≤ t holds. Since z enters C at

stage t + 1 and since Ct0 � y = C � y, it follows that y ≤ z. Now assume for a contradiction that

t0 < t. Fix nodes β and γ such that y is enumerated for the sake of Nβ and z enters C for the

sake of Nγ . Observe that Nβ acts at stage t0 + 1 while Nγ is not initialized at any stage s with

t0 +1 ≤ s ≤ t+1. Hence γ ≤ β. Moreover, if γ < β, then at the stage tz +1 where z is appointed

to Nγ , Nβ is initialized. Hence, as z is active at stage t0 + 1, z is appointed before y is appointed

to Nβ , hence z < y contradicting y ≤ z. It follows that β = γ. If Nβ is uncritical, then a realized

follower of Nβ is enumerated and Nβ is declared to be satisfied at stage t0 + 1. This implies that

no trace of Nβ active at stage t0+1 is enumerated by Nβ after t0+1, contradicting the assumption

t0 < t. This leaves the case that Nβ is critical. Then there are followers xβ,p and xβ,p
′
such that,

at the end of stage t0, y is in the entourage of xβ,p and z is in the entourage of xβ,p
′
. Moreover,

none of these followers is injured (or canceled) by the end of stage t0 + 1, since Nβ acts via xβ,p

and xβ,p
′
at stage t0+1 and t+1, respectively. Since Nβ enumerates y at stage t0+1 hence injures

or cancels all weaker Nβ-followers it follows that p
′ ≤ p. So, by y ≤ z and (2.62) (applied to stage

s = t0), p
′ = p. So z is the unique C-trace in the entourage of xβ,p at the end of stage t0. Hence

z is enumerated together with y at stage t0 + 1, which implies t = t0. This completes the proof of

(2.67). Now distinguish the following cases.

Case 1: n = 3e+ 2.

For given x, fix sk ∈ S minimal such that l(n, sk) > x and such that the following holds for

i = 0 and i = 1.

Csk � ϕ
Ai,sk

Bi,sk
Csk

e,sk (x) = C � ϕ
Ai,sk

Bi,sk
Csk

e,sk (x).

Note that sk exists by the assumption that Mn is infinitary and that sk is computable in C.

As in Case 1 of the above proof, we show that ΦA0B0C
e (x) = Φ

A0,sk
B0,sk

Csk
e,sk (x) by proving

that for all l ≥ k, the following holds.

∃i(Φ
Ai,sl+1

Bi,sl+1
Csl+1

e,sl+1 (x) = Φ
Ai,sl

Bi,sl
Csl

e,sl (x)). (2.68)

Simultaneously, we show by induction that the following holds for all l ≥ k.

∀i(Csl � ϕ
Ai,sl

Bi,sl
Csl

e,sl (x) = C � ϕ
Ai,sl

Bi,sl
Csl

e,sl (x)). (2.69)
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For k in place of l, (2.69) is immediate by choice of k. So assume that (2.69) holds for some

l ≥ k. We prove (2.68) as well as (2.69) for l + 1 in place of l where we refer to the latter as

(2.69)l+1.

If, for both i = 0 and i = 1,

Ai,sl+1
Bi,sl+1

� ϕ
Ai,sl

Bi,sl
Csl

e,sl (x) = Ai,slBi,sl � ϕ
Ai,sl

Bi,sl
Csl

e,sl (x), (2.70)

then (2.68) and (2.69)l+1 are immediate by (2.69). Assume for the rest of the proof that

(2.70) fails for some i and let t0 + 1 > sl be the least stage witnessing that. Note that

t0 < sl+1. By symmetry, w.l.o.g. assume that i = 0. By this assumption, fix a number

y0 < ϕ
A0,sl

B0,sl
Csl

e,sl (x) such that y0 enters A0B0 at stage t0 + 1.

We claim that (2.70) holds for i = 1. Assume not and fix t1 with t0 ≤ t1 < sl+1 such that a

number y1 < ϕ
A1,sl

B1,sl
Csl

e,sl (x) is enumerated into A1B1 at stage t1 +1 by some strategy Nγ .

Then, a C-trace z is enumerated at stage t1 + 1 and, by (2.66), α0 @ γ. As z is appointed

to Nγ at a stage t + 1 where γ is accessible and by sl+1 > t1, it follows that z is appointed

at a stage ≤ sl + 1, hence active at stage t0 + 1 (note that by construction, z cannot be

appointed at stage t0 + 1). As y0 < ϕ
A0,sl

B0,sl
Csl

e,sl (x), together with (2.69), it follows that

the hypotheses of (2.67) hold for t = t1 and y = y0, so t0 = t1. Hence y0 enters A0B0 and

y1 enters A1B1 at the same stage, contradicting the construction. So (2.70) holds for i = 1

which implies (2.68).

Finally, assume that (2.69)l+1 fails. By this assumption, fix z < ϕ
Ai,sl+1

Bi,sl+1
Csl+1

e,sl+1 (x) en-

tering C at stage t+ 1 where t ≥ sl+1 for the sake of Nγ . Then, z ≤ sl+1, hence α0 @ γ by

(2.66). It follows that z is appointed at a stage ≤ sl+1, hence, as above, z is active at stage

t0 + 1. So, again, the hypotheses of (2.67) hold for y = y0, so t = t0. But t0 < sl+1 ≤ t, a

contradiction. This completes the proof for Case 1.

Case 2. n = 3e+ i.

Given x, fix sk minimal such that the following hold.

(a) l(n, sk) > x,

(b) none of the numbers targeted for Bi or C which exist at the end of stage sk will enter

its target after stage sk.

Similarly as in Case 2 of the proof of Claim 4 in the proof of Theorem 77, we can argue that

such a k exists. Since k can be computed from BiC uniformly in x, it suffices to show

ΦAiBiC
e (x) = Φ

Ai,sk
Bi,sk

Csk
e,sk (x). (2.71)

As above, it suffices to define a strictly increasing function g such that, for all r ≥ 0, the

following hold.

Φ
Ai,sg(r)

Bi,sg(r)
Csg(r)

e,sg(r) (x) = Φ
Ai,sk

Bi,sk
Csk

e,sk (x), (2.72)

Bi,sg(r)Csg(r) � ϕ
Ai,sg(r)

Bi,sg(r)
Csg(r)

e,sg(r) (x) = BiC � ϕ
Ai,sg(r)

Bi,sg(r)
Csg(r)

e,sg(r) (x), (2.73)

Bi,sg(r)Csg(r) � ϕ
B0,sg(r)

B1,sg(r)
Csg(r)

e,sg(r) (x) = BiC � ϕ
B0,sg(r)

B1,sg(r)
Csg(r)

e,sg(r) (x). (2.74)
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Define the function g correspondingly as in the corresponding case above: let g(0) = k and,

for r ≥ 0, let g(r + 1) = g(r) + 1 unless the nonordering strategy Nβ which acts at stage

sg(r) + 1 is critical and acts via Clause (iii) or (iv). In this case, let g(r + 1) = q where

q > g(r) is minimal such that Nβ does not act via any of its followers existing at the end of

stage sg(r) + 1 at any stage ≥ sq + 1. Note that here, we cannot argue that Nβ acts at stage

sg(r+1)−1+1, but by definition of g we may fix the greatest stage tr (which is not necessarily

a β-stage) such that Nβ acts at stage tr + 1 via some follower existing at the end of stage

sg(r) + 1 and such that sg(r+1)−1 + 1 ≤ tr < sg(r+1).

For r = 0, g(r) = k, hence (2.72), (2.73) and (2.74) are immediate by choice of k. Now fix

r ≥ 0 such that (2.72), (2.73) and (2.74) hold. We need to establish (2.72), (2.73) and (2.74)

for r+1 in place of r, to which we refer as (2.72)r+1, (2.73)r+1 and (2.74)r+1, respectively. For

establishing (2.72)r+1, by inductive hypotheses and as l(n, sg(r+1)) > l(n, sg(r)) ≥ l(n, sk) >

x, it is enough to prove the following.

Φ
Ai,sg(r+1)

Bi,sg(r+1)
Csg(r+1)

e,sg(r+1)
(x) = Φ

Ai,sg(r)
Bi,sg(r)

Csg(r)
e,sg(r) (x)

or

Φ
B0,sg(r+1)

B1,sg(r+1)
Csg(r+1)

e,sg(r+1)
(x) = Φ

B0,sg(r)
B1,sg(r)

Csg(r)
e,sg(r) (x).

(2.75)

Fix β such that Nβ acts at stage sg(r)+1. Note that we cannot prove (2.55) anymore, as now

strategies Nγ are allowed to act at stages at which γ it not accessible. However, we know

that Nβ acts at stages sg(r) + 1 and tr + 1 (where sg(r+1)−1 ≤ tr < sg(r+1)) without being

initialized in between and that all assignments of B- and C-traces to a strategy Nγ are still

performed only at stages where γ is accessible, so the following variant of (2.55) holds.

No strategy Nγ with γ < β gets any B- or C-trace assigned

at any stage s+ 1 with sg(r) + 1 ≤ s+ 1 ≤ sg(r+1).
(2.76)

We begin with showing that at least one of the following holds.

Ai,sg(r+1)
� ϕ

Ai,sg(r)
Bi,sg(r)

Csg(r)
e,sg(r) (x) = Ai,sg(r) � ϕ

Ai,sg(r)
Bi,sg(r)

Csg(r)
e,sg(r) (x), (2.77)

B1−i,sg(r+1)
� ϕ

B0,sg(r)
B1,sg(r)

Csg(r)
e,sg(r) (x) = B1−i,sg(r) � ϕ

B0,sg(r)
B1,sg(r)

Csg(r)
e,sg(r) (x). (2.78)

For a contradiction assume failure of both (2.77) (witnessed by y0 < ϕ
Ai,sg(r)

Bi,sg(r)
Csg(r)

e,sg(r) (x)

entering Ai at stage t0 + 1 where sg(r) ≤ t0 < sg(r+1)) and (2.78) (witnessed by y1 <

ϕ
B0,sg(r)

B1,sg(r)
Csg(r)

e,sg(r) (x) entering B0 at stage t1 + 1 where sg(r) ≤ t1 < sg(r+1)). Similarly as

in Case 1, we can use (2.66) and (2.67) to argue that t0 = t1. So y0 enters Ai and y1 enters

B1−i at the same stage. By construction, this cannot happen, a contradiction. So, (2.77) or

(2.78) holds which together with (2.73) and (2.74) implies (2.75).

If now suffices to show (2.73)r+1 and (2.74)r+1. In case both (2.77) and (2.78) hold, these

are immediate by inductive hypotheses. So from now on assume failure of either (2.77)

or (2.78) (witnessed by z0 < max{ϕ
Ai,sg(r)

Bi,sg(r)
Csg(r)

e,sg(r) (x), ϕ
B0,sg(r)

B1,sg(r)
Csg(r)

e,sg(r) (x)} < sg(r)

enumerated into either Ai or B1−i at a stage t0 + 1 > sg(r) where t0 + 1 ≤ sg(r+1)) and,

for a contradiction, assume failure of (2.73)r+1 or (2.74)r+1 (witnessed by a number z1 <
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max{ϕ
Ai,sg(r+1)

Bi,sg(r+1)
Csg(r+1)

e,sg(r+1)
(x), ϕ

B0,sg(r+1)
B1,sg(r+1)

Csg(r+1)
e,sg(r+1)

(x)} < sg(r+1) entering BiC at

a stage t1 + 1 > sg(r+1)).

Fix β′ such that z0 is enumerated by Nβ′ . Let t′0 + 1 be the stage at which z0 is appointed.

Then, the following holds by choice of z0 and t0.

t′0 + 1 < z0 < sg(r) < t0 + 1 ≤ sg(r+1) (2.79)

and z0 is not canceled at any stage t+ 1 with t′0 ≤ t ≤ t0. Moreover, by (2.66) for l = g(r),

α0 @ β′.

Similarly, if we fix β′′ such that z1 is enumerated into its target by Nβ′′ and the stage t′1 + 1

at which z1 is appointed to Nβ′′ , the following holds

t′1 + 1 < z1 < sg(r+1) < t1 + 1, (2.80)

z1 is not canceled at any stage t+ 1 with t′1 ≤ t ≤ t1 and by (2.66) for l = g(r+ 1), α0 @ β′′

holds. Furthermore, as z1 is a B- or a C-number, t′1 is a β′′- hence an α0-stage. Note that

(2.79) and (2.80) imply that t0 + 1 < t1 + 1. Moreover, by inductive hypotheses (2.73) and

(2.74), z0 < z1 hence t′0 + 1 ≤ t′1 + 1.

We claim that β′ = β′′ ≤ β. First observe that z0 is not canceled at stage sg(r) + 1 whence

β′ ≤ β holds.

Now assume β < β′′. Then Nβ′′ is initialized at stage tr + 1 (recall that Nβ acts at stage

tr+1 where sg(r+1)−1 ≤ tr < sg(r+1)). Hence, by (2.80), t′1+1 > tr+1. As t′1 is an α0-stage,

it follows that t′1 + 1 ≥ sg(r+1) + 1, contradicting (2.80). So β′′ ≤ β holds, as well.

Next, assume that β′ < β′′. Then Nβ′′ is initialized at stage t0 + 1, hence, by (2.79) and

(2.80), t′1 + 1 > t0 + 1 holds. Moreover, as β′′ ≤ β, Nβ is initialized at stage t0 + 1, as

well, hence, by (2.79), t0 + 1 > tr + 1. As t′1 is an α0-stage, it follows altogether that

t′1 + 1 ≥ sg(r+1) + 1, contradicting (2.80) as in the preceding case. It follows that β′′ ≤ β′.

If β′′ = β, then it follows that β′ = β′′ = β, hence β′ = β′′ ≤ β is immediate. So finally

assume that β′′ < β. Then, by (2.80) and by (2.76), t′1+1 ≤ sg(r). So, by t
′
0+1 ≤ t′1+1 ≤ sg(r)

and by (2.79), z0 exists and is not canceled at stage t′1+1. Hence β′ ≤ β′′ whence β′ = β′′ ≤ β

follows in this case, too.

Having established that z0 and z1 are both associated with Nβ′ , we may use a very similar

argument as in Case 2 of the proof of Claim 4 in the proof of Theorem 77 to get to a

contradiction. For completeness, we repeat it here with the necessary adjustments.

First assume that Nβ acts via permitting or via one of the Clauses (i), (ii), (v) or (vi) at

stage sg(r) + 1. Then g(r + 1) = g(r) + 1. Since t′1 is an α0-stage and t′1 + 1 < sg(r+1), the

latter implies that t′1 ≤ sg(r). In fact, since z1 becomes appointed as a Bi- or C-trace of Nβ′

at stage t′1 + 1 and since no new trace is appointed at stage sg(r) + 1, t′1 < sg(r) holds.

Now assume that Nβ acts at stage sg(r) + 1 via Clause (iii) or (iv). Then, by definition of

g, any of the B- or C-numbers associated with a follower of Nβ existing at the end of stage
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sg(r)+1 (where a number z is associated with a follower y if z = y or z is a trace of y or z is in

the entourage of y) which enter their targets later do so by the end of stage tr +1 ≤ sg(r+1).

Hence, if we assume that β = β′, then (by (2.80) and as t′1 in an α0-stage),

sg(r) + 1 < t′1 + 1 ≤ sg(r+1)−1 + 1 ≤ tr + 1 (2.81)

holds and z1 is associated with a follower xβ of Nβ that has not yet existed at the end of

stage sg(r) + 1. As Nβ is not initialized at any stage t + 1 with sg(r) + 1 ≤ t + 1 ≤ tr + 1,

if follows with (2.81) and as followers are assigned in order of magnitude that xβ is weaker

than all followers of Nβ existing at the end of stage sg(r) + 1. In particular, by choice of tr,

xβ is weaker than the follower via which Nβ acts at stage tr + 1 whence xβ is canceled or

injured at stage tr + 1 ≤ sg(r+1), contradicting the enumeration of z1 after stage sg(r+1). It

follows that β′ < β, hence, by (2.80) and (2.76), t′1 ≤ sg(r). As β acts at stage sg(r) + 1, it

follows that t′1 < sg(r).

So, in both cases, t′1 < sg(r) holds. Moreover, Nβ′ becomes active via (iii) or (iv) at stage

t′1 + 1. Now, in order to get the desired contradiction, we look at the size of t′1. If t
′
1 < sg(0)

then z1 is associated with Nβ′ at the end of stage sg(0) and enters Bi or C after stage sg(0).

Since g(0) = k this contradicts the choice of k.

So w.l.o.g. we may assume that t′1 ≥ sg(0). Fix the unique number r′ < r such that sg(r′) ≤
t′1 < sg(r′+1) and fix the strategy Nβ′′′ which acts at stage sg(r′) +1. Now, if t′1 = sg(r′) then

β′′′ = β′, Nβ′ becomes active via (iii) or (iv) at stage sg(r′) + 1 and z1 is appointed as a Bi-

or C-trace at stage sg(r′) + 1. So, by definition of g, z1 cannot be enumerated after stage

tr′ + 1. So, by r′ < r, t1 + 1 ≤ tr′ + 1 < sg(r+1) contrary to choice of t1.

This leaves the case that sg(r′) < t′1 < sg(r′+1). Since t′1 is an α0-stage, it follows that

sg(r′)+1 < sg(r′+1) and that t′1 ≤ sg(r′+1)−1. By the former, Nβ′′′ becomes active via Clause

(iii) or (iv) at stage sg(r′) + 1. Since a Bi- or C-trace is assigned to Nβ′ at stage t′1 + 1, it

follows by (2.76) (applied to β′′′ and r′ in place of β and r) that β′′′ ≤ β′. If β′ = β′′′, using

the same argument (considering the strength of the follower xβ
′
such that z1 is associated

with xβ
′
) as in the case above that β = β′ and that Nβ acts via Clause (iii) or (iv) at

stage sg(r) + 1, we get to a contradiction. Hence we may conclude that β′′′ < β′, so Nβ′

is initialized at stage tr′ + 1 ≥ sg(r′+1)−1 + 1 ≥ t′1 + 1 and z1 is canceled. By the latter,

t1+1 < tr′ +1 ≤ sg(r+1). But, just as in the preceding case, this contradicts the choice of t1.

All in all, it follows that (2.73)r+1 and (2.74)r+1 hold which completes the proof of Claim

4.

Claim 6. A0, A1, B0, B1, C ≤T D.

Proof. The marker function γ(x, s) is computable and nondecreasing in the second argument.

Moreover, if γ(x, s) < γ(x, s+1) then x is a follower of a critical strategy Nα and either x becomes

admissible at stage s+1 or Nα acts via x at stage s+1 and Ds+1 � γ(x, s) + 1 ̸= Ds � γ(x, s) + 1.

Since any follower becomes admissible only once and since any strategy acts via the same follower

only finitely often, the former implies that γ∗(x) = lims→ω γ(x, s) = sups→ω γ(x, s) < ω exists,

while the latter implies that the function γ∗(x) is computable in D. Since any number y enters
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any set under construction at stage s+1 only if it is in the entourage of a follower x – hence x ≤ y

– and Ds+1 � γ(x, s) + 1 ̸= Ds � γ(x, s) + 1, it follows that A0, A1, B0, B1, C ≤ D.

As Claims 2 to 6 imply that the constructed sets have the required properties, this completes

the proof of Theorem 79.
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Chapter 3

Join and Meet Preservation for

Bounded Turing Reducibilities

3.1 Introduction

Various notions of reducibilities stronger than Turing reducibility have been studied in computabil-

ity theory, e.g., the so called classical strong reducibilities: one-one reducibility (1-reducibility),

many-one reducibility (m-reducibility), truth-table reducibility (tt-reducibility) and weak truth-

table reducibility (wtt-reducibility) (see e.g. Odifreddi [Odi81]). More recently, one has started

to look at the so called strongly bounded Turing reducibilities: identity bounded Turing reduci-

bility (ibT-reducibility) and computable Lipschitz reducibility (cl-reducibility) which are defined

in terms of Turing functionals where the use is bounded by the identity function and the identity

function plus a constant and which were introduced by Soare [Soa04] and Downey, Hirschfeldt

and LaForte [DHL01], [DHL04], respectively. cl-reducibility is not only a notion of relative com-

plexity but can also be viewed as a notion of relative randomness and hence is important in the

field of algorithmic randomness (see the monograph [DH10] by Downey and Hirschfeldt for more

background). The degree structures of the strongly bounded Turing reducibilities on the c.e. sets

have been studied intensively. Barmpalias [Bar05] showed that the partial ordering (Rcl,≤) of the

c.e. cl-degrees has no maximal elements; Barmpalias and Fan and Lu [FL05] showed that there

are maximal pairs, hence the partial orderings of the ibT- and cl-degrees are not upper semilat-

tices; and Barmpalias and Lewis [BL06b] and Day [Day10] showed that these partial orderings are

not dense. In another article, Barmpalias and Lewis [LB06] prove various decidability results for

the global structure of cl-degrees and further results on this reducibility. Ambos-Spies, Bodewig,

Kräling and Yu [ASBKY] embedded the nonmodular lattice N5 into the c.e. ibT- and cl-degrees

thereby showing that these partial orderings are not distributive and Ambos-Spies [AS17] proved

some global results; e.g., he showed that the first order theories of the partial orderings of the c.e.

ibT- and cl-degrees are undecidable. Recently, Ambos-Spies [ASb] introduced a more general class

of bounded Turing reducibilities, the uniformly bounded Turing reducibilities. A reducibility r is a

(uniformly) bounded Turing reducibility ((u)bT-reducibility) if there is a family F of (uniformly)

computable functions such that, for all sets A and B, A is r-reducible to B if and only if A is
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Turing reducible to B with use bounded by some function f in F . We call a (uniformly) bounded

Turing reducibility admissible if it is reflexive and transitive and we call it monotone if it is induced

by a family of strictly increasing functions. Examples of monotone admissible ubT-reducibilities

are the strongly bounded Turing reducibilities ibT and cl as well as the linearly bounded and

the primitive recursively bounded Turing reducibilities. An example of a monotone admissible

bT-reducibility which is not uniformly bounded is wtt-reducibility. Here, we mainly look at the

monotone admissible bT reducibilities.

If a reducibility r is stronger than a reducibility r′, of course, every upper r-bound for some

sets A0 and A1 is also an upper r′-bound for A0 and A1 and the same holds for lower bounds. But

this does not necessarily imply that least upper r-bounds (joins) have to be least upper r′-bounds,

too. Again, the same holds for greatest lower bounds (meets). Here, we ask the question for which

reducibilities r and r′, joins and meets in the c.e. r-degrees are preserved in the c.e. r′-degrees. We

say r-r′ join (meet) preservation holds if, for all noncomputable c.e. sets A0, A1 and B such that

the r-degree of B is the join (meet) of the r-degrees of A0 and A1, it holds that the r
′-degree of B

is the join (meet) of the r′-degrees of A0 and A1, too.

For most of the classical strong reducibilities mentioned above, the structure of the c.e. degrees

is an upper semilattice where the join of the degrees of two sets A0 and A1 is induced by the effective

disjoint union A0 ⊕ A1. So, for two such reducibilities where r is stronger than r′, of course, r-r′

join preservation holds. So, for example, m-tt join preservation, tt-wtt join preservation and wtt-T

join preservation hold. For reducibilities r whose degree structures are not upper semilattices with

join induced by the effective disjoint union, the question of r-r′ join preservation is less obvious.

For the classical strong reducibilities, 1-reducibility is an example of such a reducibility, but, as

one can easily show (see Lemma 82 below), 1-m join preservation holds. It easily follows that r-r′

join preservation holds for all classical strong reducibilities where r is stronger than r′. For the

(uniformly) bounded Turing reducibilities, the question of join preservation is less straightforward.

Ambos-Spies, Ding, Fan and Merkle [ASDFM13] showed that ibT-cl join preservation holds and

Ambos-Spies, Bodewig, Kräling and Yu (see [AS17]) showed that cl-wtt join preservation holds,

too. This may lead one to conjecture that – just as in case of the classical strong reducibilities –

r-r′ join preservation holds for any monotone admissible (u)bT-reducibilities where r is stronger

than r′, too. As we show here, however, this is not the case. In fact, for r = ibT,cl and for any

monotone admissible ubT-reducibility r′ which is strictly weaker than cl, r-r′ join preservation

fails (see Theorem 87 below).

We complement the main result of this chapter by considering meet preservation in the mono-

tone admissible bT-reducibilities, too. There we generalize the result in [ASDFM13] that ibT-cl

meet preservation holds by showing that indeed, r-r′ meet preservation holds for all monotone

admissible bT-reducibilities r and r′ such that r is stronger than r′ (see Lemma 89).

So, for the monotone admissible (uniformly) bounded Turing reducibilities, meet preservation

holds in general while, in some instances, join preservation fails. For the classical reducibilities, i.e.,

the classical strong reducibilities (1-, m-, tt-, and wtt-reducibility) together with Turing reducibility,

the converse is true. There join preservation holds in general, whereas, as Downey and Stob

[DS86] showed, wtt-T meet preservation fails. We complete the picture by showing that 1-m meet

preservation holds while r-r′ meet preservation fails for all other pairs of classical reducibilities r

and r′ such that r is strictly stronger than r′.
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The outline of the chapter is as follows. In Section 3.2, we give the definitions and notation

needed. In Section 3.3, we show that join preservation holds in general in the classical strong redu-

cibilities together with Turing reducibility. Contrasting this, we see in Section 3.4 that, while join

preservation holds in many cases of admissible ubT-reducibilities, there are examples of nonmono-

tone admissible ubT-reducibilities where join preservation fails. Our main result of this chapter

shows that there are also cases of monotone admissible ubT-reducibilities where join preservation

fails. On the other hand, meet preservation holds in general for the monotone admissible bounded

Turing reducibilities as we show in Section 3.5. In Section 3.6, we give a complete picture of

meet preservation in the classical strong reducibilities together with Turing reducibility. Finally,

in Section 3.7, we state some open problems.

Large parts of this chapter have been published in two papers by Losert in Lecture Notes in

Computer Science [Los15] as well as in Information and Computation [Los17].

3.2 Preliminaries

A reducibility r is admissible if it is reflexive and transitive. For two reducibilities r and r′, we say

that r is stronger than r′ (denoted by r ≼ r′) if, for all sets A and B, from A ≤r B, it follows that

A ≤r′ B and r is strictly stronger than r′ (r ≺ r′) if r ≼ r′ and r ̸= r′.

Definition 80. For two admissible reducibilities r and r′, we say that r-r′ join preservation holds

(in the c.e. degrees) if, for any noncomputable c.e. sets A0, A1 and B,

degr(A0) ∨ degr(A1) = degr(B) ⇒ degr′(A0) ∨ degr′(A1) = degr′(B)

holds. Otherwise, we say that r-r′ join preservation fails. Similarly, r-r′ meet preservation holds

(in the c.e. degrees) if, for any noncomputable c.e. sets A0, A1 and B,

degr(A0) ∧ degr(A1) = degr(B) ⇒ degr′(A0) ∧ degr′(A1) = degr′(B)

holds and r-r′ meet preservation fails otherwise.

Note that, if r is not stronger than r′ on the noncomputable c.e. sets (i.e., if there are noncom-

putable c.e. sets A and B such that A ≤r B and A ̸≤r′ B), then r-r′ join preservation fails. This

can be seen by considering the degrees of such sets A and B. Namely, degr(A)∨degr(B) = degr(B),

but degr′(A)∨degr′(B) ̸= degr′(B) because B is not an upper r′-bound for A and B. Similarly, in

that case, r-r′ meet preservation fails. So in the following we discuss join and meet preservation

only for reducibilities r and r′ such that r is stronger than r′.

From the enumeration {ΦXe }e≥0 of all Turing functionals, we obtain an enumeration {ΦX,fe }e≥0

of all f -bounded Turing functionals by bounding the use of each ΦXe on input x by f(x) + 1 (by

making the computation divergent in case of greater oracle queries). For any pair of sets A and B,

A is f -bounded Turing reducible to B if and only if there is an index e such that A = ΦB,fe . By

letting f = id, we obtain an enumeration {Φ̂Xe }e≥0 of all identity bounded Turing functionals.

We call a reducibility r a bounded Turing reducibility (bT-reducibility) if there is a family F
of computable functions such that A ≤r B if and only if A ≤f−T B for some function f ∈ F ;

in this case we say that r is induced by F . If F is uniformly computable, r is called a uniformly

bounded Turing reducibility (ubT-reducibility). We call a bounded Turing reducibility monotone
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if it is induced by a family F which only consists of strictly increasing functions. Note that

ibT and cl are monotone admissible ubT-reducibilities which are induced by FibT = {id} and

Fcl = {id + e : e ≥ 0}, respectively. Another example of a monotone admissible ubT-reducibility

we consider here is linearly bounded Turing reducibility. Note that lbT-reducibility is induced by

FlbT = {x ↦→ c0x+ c1 : c0, c1 ≥ 0}. The strength of ubT-reducibilities is determined by the growth

rates of the corresponding bounds:

Lemma 81 (Ambos-Spies [ASb]). Let r and r′ be admissible ubT-reducibilities. Then, r ≼ r′ if and

only if there are uniformly computable families F and F ′ that induce r and r′, respectively, such

that F ≤∗ F ′, i.e., for every function f ∈ F , there is a function f ′ ∈ F ′ such that f(x) ≤ f ′(x)

for almost all x ≥ 0.

3.3 Join Preservation in the Classical Strong Reducibilities

It is a straightforward observation that r-r′ join preservation holds for reducibilities r and r′ such

that r is stronger than r′ and such that the structures of the c.e. r-degrees and of the c.e. r′-degrees

form upper semilattices with join induced by the effective disjoint union. This is the case for all

pairs r, r′ ∈ {m, tt, wtt, T} such that r is stronger than r′, so in these cases, r-r′ join preservation

holds. We show that this is still true if we include the strongest classical reducibility, namely

1-reducibility. The c.e. 1-degrees do not form an upper semilattice, but it is possible to generalize

the above observation as follows.

Lemma 82. Let r and r′ be admissible reducibilities such that r ≼ r′ and, for any c.e. sets A0

and A1, the following hold.

Ai ≤r A0 ⊕A1 (i ≤ 1), (3.1)

degr′(A0) ∨ degr′(A1) = degr′(A0 ⊕A1). (3.2)

Then, r-r′ join preservation holds.

Proof. Given c.e. sets A0, A1 and B such that

degr(A0) ∨ degr(A1) = degr(B) (3.3)

holds, it suffices to show that A0 ⊕A1 =r′ B.

For a proof of A0 ⊕ A1 ≤r′ B it suffices to note that by (3.3) and by r ≼ r′, A0, A1 ≤r′ B,

hence A0 ⊕ A1 ≤r′ B by (3.2). Finally, for a proof of B ≤r′ A0 ⊕ A1, note that B ≤r A0 ⊕ A1 by

(3.1) and (3.3), hence B ≤r′ A0 ⊕A1 by r ≼ r′.

Theorem 83. Let r, r′ ∈ {1, m, tt, wtt, T} be given such that r ≼ r′. Then, r-r′ join preservation

holds.

Proof. This is immediate by the preceding lemma as for all r ∈ {1, m, tt, wtt, T}, (3.1) holds and
for all r′ ∈ {m, tt, wtt, T}, (3.2) holds.
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3.4 Join Preservation in the ubT-Reducibilities

For the admissible ubT-reducibilities, we will see that join preservation does not always hold as it

is the case for the classical reducibilities. First, we give some positive examples from the literature.

Theorem 84 (Ambos-Spies [ASb]). Let r be an admissible ubT-reducibility such that lbT ≼ r.

Then, the following are equivalent.

(i) r is monotone.

(ii) For any c.e. sets A0 and A1, degr(A0) ∨ degr(A1) exists.

(iii) For any c.e. sets A0 and A1, degr(A0) ∨ degr(A1) = degr(A0 ⊕A1) holds.

This implies that for monotone ubT-reducibilities r and r′ such that lbT ≼ r ≺ r′, r-r′ join

preservation holds. In fact, the following is true.

Corollary 85. Let r and r′ be admissible ubT-reducibilities such that lbT ≼ r ≺ r′ and such that

r or r′ is monotone. Then, r-r′ join preservation holds if and only if r′ is monotone.

Proof. If r′ is monotone, then r-r′ join preservation holds by Lemma 82. Namely, by lbT ≼ r,

(3.1) holds while, by Theorem 84, (3.2) holds.

On the other hand, if r′ is not monotone, then r is monotone. Hence, by Theorem 84, degr(A0)∨
degr(A1) = degr(A0 ⊕A1) holds for all c.e. sets A0 and A1 while, again by Theorem 84, there are

c.e. sets A0 and A1 such that degr′(A0)∨degr′(A1) = degr′(A0⊕A1) fails. It follows that r-r
′ join

preservation fails.

For admissible bounded Turing reducibilities r and r′ such that r is strictly stronger than lbT,

we cannot apply Lemma 82 to show that r-r′ join preservation holds, because here, (3.1) in general

fails. Still, some positive results are known.

Lemma 86 (Ambos-Spies, Ding, Fan and Merkle [ASDFM13]; Ambos-Spies [AS17]). ibT-cl, ibT-

wtt and cl-wtt join preservation hold.

Together with the fact that r-r′ join preservation holds for all monotone ubT-reducibilities r and

r′ such that lbT ≼ r ≺ r′, this leads to the question if r-r′ join preservation holds for all monotone

admissible (uniformly) bounded Turing reducibilities with r ≼ r′. If we consider the nonmonotone

case, Corollary 85 gives us a counterexample, namely two admissible ubT-reducibilities weaker than

lbT where join preservation fails, as follows. For admissible reducibilities r and r′ such that lbT ≼
r ≺ r′ and such that r is monotone and r′ is nonmonotone, r-r′ join preservation fails by Corollary

85. Such reducibilities exist because lbT-reducibility is monotone and in Ambos-Spies [ASb] it has

been shown that, for any admissible ubT-reducibility r, there is a nonmonotone admissible ubT-

reducibility r′ with r ≼ r′. Since nonmonotone ubT-reducibilities are rather artificial, a further

question is whether there are also natural examples of (monotone) ubT-reducibilities such that

join preservation fails.

In the following, we give such an example. We show that cl-r′ join preservation (as well as ibT-

r′ join preservation) fails for all monotone admissible ubT-reducibilities r′ with cl ≺ r′. So, for

example, join preservation fails for the naturally defined monotone admissible ubT-reducibilities

cl and lbT.
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Theorem 87. Let r′ be a monotone admissible ubT-reducibility such that cl ≺ r′. Then, for

r = ibT, cl, r-r′ join-preservation fails.

Proof. By Lemma 86, ibT-cl join preservation holds. So, it is enough to prove the theorem for

r = ibT. Since, by cl ≺ r′, any upper ibT-bound for two sets A0 and A1 is also an upper r′-bound

for A0 and A1, it suffices to construct c.e. sets A0, A1, B and C such that degibT(A0)∨degibT(A1) =

degibT(B) and such that A0, A1 ≤r′ C but B ̸≤r′ C. Let F be a uniformly computable family

of strictly increasing functions such that r′ is induced by F . As F is uniformly computable, we

can fix a computable function f such that f ≥∗ h for all h ∈ F . As cl ≺ r′, hence r′ ̸≼ cl,

F ̸≤∗ {id + e : e ≥ 0} holds, so, there is a function g ∈ F such that {g} ̸≤∗ {id + e : e ≥ 0}, i.e.,
for any e ≥ 0, g(x) > x + e for infinitely many x. Since g is strictly increasing, this implies that

for all e ≥ 0, g(x) > x+ e for all but finitely many x, so, id+ e ≤∗ g for all e ≥ 0. So, in order to

complete the proof, it suffices to show that the following lemma holds.

Lemma 88. Let g be a strictly increasing computable function such that id+ e ≤∗ g for all e and

let f be any computable function (in particular, f can be chosen as above). Then, there are c.e.

sets A0, A1, B and C such that the following hold.

degibT(A0) ∨ degibT(A1) = degibT(B), (3.4)

A0, A1 ≤g−T C, (3.5)

B ̸≤f−T C. (3.6)

Proof. We enumerate c.e. sets A0, A1, B and C such that (3.4) to (3.6) hold using a tree argument.

We let A0,s, A1,s, Bs and Cs be the finite parts of A0, A1, B and C enumerated by the end of

stage s, respectively. Moreover, for any of these sets X, we write x↘s+1 X if x enters X at stage

s, i.e., if x ∈ Xs+1 \Xs.

In order to guarantee (3.4), we use the join technique introduced in [ASBKY] where it is shown

that the nondistributive lattice N5 can be embedded into the partial orderings (RibT,≤) and

(Rcl,≤). The proof we give is self-contained hence duplicates some of the arguments given there

and some parts of our proof follow the corresponding parts in [ASBKY] quite closely.

To guarantee that (3.5) holds and that B is an upper ibT-bound for A0 and A1, we meet the

following global permitting (or coding) requirement for i = 0, 1.

(x↘s+1 Ai ⇒ ∃y ≤ x(y ↘s+1 B)) & (x↘s+1 Ai ⇒ ∃y ≤ g(x)(y ↘s+1 C)) (3.7)

To guarantee that B is in fact the least upper ibT-bound for A0 and A1, i.e., that (3.4) holds, we

meet the following join requirements for e ≥ 0 (where, here and in the following, e = ⟨e0, e1, e2⟩).

Qe : A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2 ⇒ B ≤ibT We0 .

Finally, we satisfy condition (3.6) by meeting the nonordering requirements

Pe : B ̸= ΦC,fe

for e ≥ 0.

Before giving the actual construction, we explain the ideas underlying the strategies for meeting

the individual requirements and how to combine them.
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As the join requirements Qe are conditional requirements whose hypotheses are not decidable,

we have to guess on the correctness of the hypotheses. We define the length of agreement between

A0 and Φ̂
We0
e1 and between A1 and Φ̂

We0
e2 at stage s by letting

l(e, s) = max{x : ∀y < x(A0,s(y) = Φ̂
We0,s
e1,s (y) & A1,s(y) = Φ̂

We0,s
e2,s (y))}.

Note that l(e, s) is computable. Moreover, the functionals Φ̂ei are bounded, so for all e ≥ 0,

lims→∞ l(e, s) ≤ ∞ exists and the following holds.

(A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2 ) ⇔ lim

s→∞
l(e, s) = ∞ ⇔ lim sup

s→∞
l(e, s) = ∞. (3.8)

We call a join requirement Qe infinitary if its hypothesis is true (i.e., if lims→∞ l(e, s) = ∞) and

we call Qe finitary otherwise. The strategy for meeting the join requirements is the join technique

introduced by Ambos-Spies, Bodewig, Kräling and Yu in [ASBKY]. Assuming Qe is infinitary, we

aim to make the conclusion (B ≤ibT We0) true by a permitting strategy (up to some computable

subset of B). We define a computable set S = {sn : n ≥ 0} of Qe-expansionary stages, i.e., stages

s0 < s1 < s2 < . . . such that l(e, s0) < l(e, s1) < l(e, s2) < . . .. Between stages sn+1 and sn+1+1,

only numbers that are greater than sn+1 are allowed to enter B. The subset of B consisting of the

numbers that enter B at a stage that is not expansionary will hence be computable. Furthermore,

the subset of B consisting of the numbers that enter B at an expansionary stage but are greater

or equal to the length of agreement at that stage is computable, too. So, only numbers x that

enter B at a stage s + 1 where s ∈ S and x < l(e, s) need permitting by We0 , i.e., some number

≤ x has to be enumerated into We0 after stage s. We cannot control We0 directly, but we put a

sufficiently small number into A0 or A1. Then, We0 is forced to also enumerate a small number,

otherwise the hypothesis of Qe would become false. As one can easily check, this is achieved by

guaranteeing the following for all numbers x.

x↘s+1 B & x < l(e, s) ⇒∃y < min{x′, l(e, s)}(y ↘s+1 A0 or y ↘s+1 A1)

where x′ = µz(z > x & z /∈We0,s).
(3.9)

In case that the hypothesis of Qe is true, a Turing functional Γ that computes B(x) given We0 �

x + 1 works as follows. On input x, find a Qe-expansionary stage s with l(e, s) > x such that

We0,s � x+ 1 = We0 � x+ 1. Then, let ΓWe0 (x) = Bs(x). By the assumption that the hypothesis

of Qe is true and by (3.9), B(x) cannot change after stage s, i.e., ΓWe0 (x) = Bs(x) = B(x).

For meeting the nonordering requirements Pe, we use the standard Friedberg-Muchnik strategy.

For some fixed new number x (i.e., a number that has not yet been enumerated into any of the

sets we construct), we wait for a stage s such that ΦCs,f
e,s (x) = 0. If such a stage does not exist,

we never enumerate x into B, so, by the use principle, Pe is met. Otherwise, at stage s + 1, we

put x into B and, in order to preserve the computation ΦCs,f
e,s (x), we impose a restraint of length

f(x) + 1 on C, thereby ensuring

B(x) = 1 ̸= 0 = Bs(x) = ΦCs,f
e,s (x) = ΦC,fe (x). (3.10)

In the presence of the join requirements and the global permitting requirement, this strategy needs

some amendments. To describe the potential conflicts, consider the situation in which we wish to

meet requirement Pe and simultaneously meet the global permitting requirement (3.7) and follow
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the join technique (3.9) for a single infinitary join requirement Qe′ (e′ = ⟨e′0, e′1, e′2⟩) of higher

priority.

When we put a number x into B at stage s + 1 in order to guarantee (3.10), then, according

to (3.9), we have to put a number y < x′ into A0 or A1 at stage s+ 1 where

x′ = µz(z > x & z /∈We′0,s
).

(In the actual construction, we choose to put y into A1.) If we do so, then, as long as x ≤ y, this

is consistent with the first part of condition (3.7). But, for the second part of this condition, we

have to put a number z ≤ g(y) into C. In case that z ≤ f(x), however, this injures the restraint

imposed on C in order to preserve the computation ΦCs,f
e,s (x). In order to overcome this problem,

we make sure that we can find a number y such that f(x) < y < x′ where y is not yet in A1 and

the interval [y, g(y)] is not yet completely enumerated into C. (Then putting y into A1 and some

new number z with y ≤ z ≤ g(y) into C makes the enumeration of x into B compatible with (3.7)

and (3.9).)

For that matter, we assign a sufficiently long interval In of unused numbers to Pe. In contains

finitely many candidates xn,k for a possible attack on Pe where these numbers are chosen so that

xn,k+1 > f(xn,k) and g(xn,k) ≥ xn,k+k+2 for all k. (Note that the latter can be achieved since, by

choice of g, g(y) > y+k+2 for all sufficiently large y; also note that g(xn,k) ≥ xn,k+k+2 implies

g(y) ≥ y+k+2 for all y ≥ xn,k.) We arrange that, for some k (and some stage s), (xn,k, xn,k+1] ⊆
We′0,s

where xn,k is not in Bs, xn,k+1 is not in A1,s and the interval [xn,k+1, g(xn,k+1)] is not

completely contained in Cs. (Hence, for x = xn,k and y = xn,k+1, y < x′ whence we can ensure

(3.10) and simultaneously obey (3.7) and (3.9) by putting xn,k into B, xn,k+1 into A1 and some

unused number from the interval [xn,k+1, g(xn,k+1)] into C at stage s+ 1.)

In order to ensure (xn,k, xn,k+1] ⊆We′0
for some k, we will successively and in decreasing order

put numbers w from In into A0 at stages s + 1 where l(e′, s) is greater than the endpoint of In.

This forces We′0
to respond by enumerating more and more numbers from In (or smaller ones).

As we will argue, this implies that, at some point s, there is a subinterval (xn,k, . . . xn,k+1] ⊂ In

such that the enumeration of the numbers ≥ xn,k + 1 from In into A0 has forced all the numbers

xn,k + 1, . . . , xn,k+1 into We′0
. (In the actual construction, all the numbers have to be forced

simultaneously into all sets We′0
attached to the infinitary higher priority join requirements, but

we will show that this can be achieved by the above strategy.) So we can use xn,k for an attack

on Pe – provided that xn,k ̸∈ Bs, xn,k+1 ̸∈ A1,s and [xn,k+1, g(xn,k+1)] ̸⊆ Cs.

The latter, however, is not trivially true, since to make the enumeration of w into A0 compatible

with (3.7), simultaneously, we have to put a trace wB ≤ w into B and a trace wC ≤ g(w) into C.

So whenever we put w into A0, then, we simultaneously put w into B (which is compatible with

(3.9) since w also goes into A0) and a number from the interval [w, g(w)] into C. Since we put only

numbers w > xn,k into A0 this procedure also puts only numbers > xn,k into B and no numbers

into A1 hence guarantees xn,k ̸∈ Bs and xn,k+1 ̸∈ A1,s. To ensure that [xn,k+1, g(xn,k+1)] ̸⊆ Cs,

however, we have to carefully choose the trace wC ∈ [w, g(w)] to be put into C. Here we let

wC = w + k′ + 1 for the unique k′ such that w ∈ (xn,k′ , xn,k′+1]. Note that, by choice of the

numbers xn,k′ , this ensures that wC ≤ g(w). On the other hand, this ensures that xn,k+1 + k + 2

is not enumerated into C since, if w ∈ In, for w ≤ xn,k+1, then wC ≤ w + k + 1 < xn,k+1 + k + 2

while, for xn,k+1 < w, then wC ≥ w+(k+1)+1 > xn,k+1+k+2 and if w ∈ In′ for n′ ̸= n, then the
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definition of the intervals will ensure that either wC < xn,0 < xn,k+1+k+2 or wC > xn,k+1+k+2.

This completes the discussion of the basic conflicts among the different goals of the construction

and how these conflicts can be resolved.

Before giving the construction of the sets, we need the following notions and notation. We

implement the guesses about which of the join requirements are infinitary on the full binary tree

T = {0, 1}<ω. A node α of length n codes a guess about the hypotheses of the first n join

requirements Q0, . . . , Qn−1 where, for e < n, α(e) = 0 codes the guess that Qe is infinitary and

α(e) = 1 codes the guess that Qe is finitary. The true path f : ω → {0, 1} of the construction is

defined by

f(e) =

⎧⎨⎩0 if A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2

1 otherwise.

To each node α of length e, we assign a strategy Pα for meeting requirement Pe which is based on

the guess α. We show that the strategy Pf�e on the true path succeeds in meeting Pe.

At any stage s of the construction we have an approximation δs of f � s, i.e., a guess on

which of the first s join requirements are infinitary. For the definition of δs, we inductively define

α-stages for each node α as follows. Each stage s ≥ 0 is a λ-stage. If s is an α-stage, then we

call s α-expansionary if l(|α|, s) > l(|α|, t) for all α-stages t < s and we call s an α0-stage if s is

α-expansionary and an α1-stage if s is an α-stage but not α-expansionary. Now, for each s ≥ 0,

let δs ∈ T be the unique α of length s such that s is an α-stage. It easily follows from (3.8) that

the true path is the leftmost path visited infinitely often in the construction.

The intervals In which might be assigned to the strategies for meeting the nonordering require-

ments are inductively defined as follows, where the nth interval In consists of n(xn,0 + 1) many

subintervals In,k = (xn,k, xn,k+1].

x0,0 = µx(g(x) ≥ x+ 2),

xn,k = µx(x > xn,k−1, f(xn,k−1) & g(x) ≥ x+ k + 2)

for n ≥ 0 and 1 ≤ k ≤ n(xn,0 + 1),

xn+1,0 = µx(x > xn,n(xn,0+1) + n(xn,0 + 1) + 2 & g(x) ≥ x+ 2) for n ≥ 0,

In,k =(xn,k, xn,k+1] for n ≥ 0 and 0 ≤ k ≤ n(xn,0 + 1)− 1,

In =

n(xn,0+1)−1⋃
k=0

In,k.

Note that this definition ensures that xn,k+1 > f(xn,k), g(w) ≥ w + k + 2 and w + k + 2 < xn+1,0

for w ∈ In,k.

For a node α of length e, we call a number x ∈ In∪{xn,0} α-safe at stage s if for e′ = ⟨e′0, e′1, e′2⟩,
the following hold.

x = xn,k for some k with 0 ≤ k ≤ n(xn,0 + 1)− 1, (3.11)

x /∈ Bs, xn,k+1 /∈ A1,s and xn,k+1 + k + 2 /∈ Cs, (3.12)

∀e′([e′ < e & α(e′) = 0] ⇒ In,k ⊆We′0,s
). (3.13)

Now we are ready to give the actual construction of the sets A0, A1, B and C.
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Construction.

Stage 0 is vacuous (i.e., A0,0 = A1,0 = B0 = C0 = ∅).

Stage s+ 1. A strategy Pα with |α| = e requires attention at stage s+ 1 if α ⊑ δs, Pα is not

satisfied at the end of stage s and one of the following holds.

(i) No interval is assigned to Pα at the end of stage s.

(ii) Interval In =
(
xn,0, xn,n(xn,0+1)

]
is assigned to Pα at the end of stage s,

∀e′([e′ < e & α(e′) = 0] ⇒ l(e′, s) > xn,n(xn,0+1)) (3.14)

holds, no number x ∈ In ∪ {xn,0} is α-safe at stage s and In ̸⊆ A0,s.

(iii) Interval In is assigned to Pα at the end of stage s, (3.14) holds and there is a number

x ∈ In ∪ {xn,0} such that x is α-safe at stage s and Bs(x) = ΦCs,f
e,s (x) = 0.

Fix the least α such that Pα requires attention at stage s + 1 (as Pδs requires attention at

stage s + 1, there is such an α). Declare that Pα receives attention or becomes active at

stage s+1, initialize all strategies Pβ with α < β (i.e., if an interval is assigned to Pβ at the

end of stage s, then cancel this assignment and if Pβ is satisfied at the end of stage s, then

declare Pβ to be unsatisfied) and perform the following action according to the clause above

via which Pα requires attention.

(i) Assign Is+1 to Pα. (Note that e < s+ 1.)

(ii) Let y be the greatest number in In \ A0,s. Put y into A0 and B and, for the unique k

such that y ∈ In,k, put y + k + 1 into C.

(iii) Let x be the greatest α-safe number in In ∪ {xn,0} such that Bs(x) = ΦCs,f
e,s (x) = 0.

Let k be the unique number such that x = xn,k. Put x into B, xn,k+1 into A1 and

xn,k+1 + k + 2 into C. Then, declare Pα to be satisfied.

This completes the construction.

Verification.

Note that all constructed sets are c.e. We prove a series of claims to show that the construction

meets all of our requirements.

Claim 1 (True Path Lemma). f = lim infs→∞ δs, i.e., for any α, α @ f if and only if α @ δs for

infinitely many s and there are only finitely many s such that δs <L α.

Proof. This is immediate by (3.8) and by definition of δs and f .

Claim 2. Every strategy Pα on the true path (i.e., α @ f) is initialized only finitely often and

requires attention only finitely often. Moreover, for any such strategy, there is an interval In

which is permanently assigned to it, i.e., there is a stage s such that In is assigned to Pα and this

assignment is never canceled after stage s.
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Proof. The proof is by induction on |α|. Given α and e = |α|, by Claim 1 and by inductive

hypothesis fix s0 minimal such that α ≤ δs for all s ≥ s0 and such that no strategy Pβ with

β @ α requires attention after stage s0. Then, Pα is not initialized after stage s0. So Pα receives

attention whenever it requires attention after stage s0. Moreover, by minimality of s0, an interval

In is permanently assigned to Pα at stage s1 + 1 where s1 is the least α-stage ≥ s0 (note that s1

exists because Pα is on the true path). Then, after stage s1 + 1, Pα receives attention at most

|In| many times via Clause (ii) and at most once via Clause (iii), hence Pα requires attention only

finitely often.

Claim 3. The global permitting requirement (3.7) is met.

Proof. It is crucial to note that numbers x with xn,0 ≤ x < xn+1,0 can be enumerated into any of

the sets under construction at stage s+ 1 only by the strategy Pα to which In is assigned at this

stage. So, it follows by a straightforward induction that if a strategy Pα acts via (ii) at stage s+1

then, for the number y being enumerated there, neither y is in Bs nor y + k + 1 is in Cs. And,

similarly, if a strategy Pα acts via (iii) and some xn,k at stage s+ 1 then neither xn,k is in Bs nor

xn,k+1 + k + 2 is in Cs by α-safeness of xn,k. This easily implies the claim, since a number x is

enumerated into A0 at some stage s+1 only if some strategy Pα acts at stage s+1 via (ii), hence

x ∈ In,k for some k and, at stage s+ 1, x is enumerated into B and x+ k + 1 is enumerated into

C where x+ k + 1 ≤ g(x) by choice of In,k; and since a number x is enumerated into A1 at some

stage s + 1 only if some strategy Pα acts at stage s + 1 via (iii), hence x = xn,k+1 for some n, k

and, at stage s+ 1, xn,k < xn,k+1 is enumerated into B and xn,k+1 + k + 2 is enumerated into C

where by choice of xn,k+1, xn,k+1 + k + 2 ≤ g(x).

Claim 4. The join requirements Qe are met.

Proof. Fix e such that Qe is infinitary, so, α0 @ f for α = f � e. (Otherwise, the requirement

is trivially met.) Hence there are infinitely many α0-stages. By Claims 1 and 2, we can fix an

α0-stage s0 > e such that no strategy Pβ with β ≤ α0 becomes active after this stage. Let

S = {sn : n ≥ 0} be the set of the α0-stages ≥ s0. Then, S is computable, s0 < s1 < s2 < . . . and

l(e, s0) < l(e, s1) < l(e, s2) < . . .. So, as explained in the discussion of the strategy for meeting

the requirements Qe, it suffices to show that (3.9) holds for s ∈ S. But this is immediate by

construction since at a stage sm + 1 only a strategy Pβ with α0 ⊑ β may act. Namely, if Pβ acts

via (ii) then the number x enumerated into B is simultaneously enumerated into A0 and if Pβ acts

via (iii) then the claim follows from the corresponding action by β-safeness of the number x put

into B.

Claim 5. The nonordering requirements Pe are met.

Proof. The proof closely follows the proof of the corresponding claim in [ASBKY]. For fixed e,

assume for a contradiction that Pe is not met. Let α = f � e, let In be the interval permanently

assigned to Pα and let s1+1 (= n) be the stage at which In is assigned to Pα. Then the assumption

that Pe is not met easily implies that Pα is not satisfied after stage s1 + 1 and that no number in

In is α-safe after stage s1 + 1. So all numbers in In are enumerated into A0 in decreasing order

after stage s1+1 according to Clause (ii) in the definition of requiring and receiving attention. For

x ∈ In, fix the α-stage tx > s1 such that x is enumerated into A0 at stage tx + 1 and let txn,0
be
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the least α-stage greater than txn,0+1. (Note that, for x ∈ In, tx < tx−1 since numbers from In are

enumerated into A0 in decreasing order.) Since, for any x ∈ In, (3.14) holds for s = tx, it follows

that

We′0,tx
� x+ 1 ̸=We′0,tx−1

� x+ 1

for any infinitary higher priority join requirement Qe′ . So, for

J = {e′0 : ∃e′1, e′2(⟨e′0, e′1, e′2⟩ < e & Q⟨e′0,e′1,e′2⟩ is infinitary)},

the following holds.

∀j ∈ J ∀x ∈ In(Wj,tx � x+ 1 ⊂Wj,tx−1
� x+ 1). (3.15)

For x ∈ In and j ∈ J , let

wj(x) = |Wj,tx � x+ 1| and wJ(x) =
∑
j∈J

wj(x),

and call x unsaturated if x /∈Wj,tx for some j ∈ J . By definition, |J | ≤ e and wj(x) ≤ x+1, hence

wJ(xn,0) ≤ e(xn,0 + 1). (3.16)

On the other hand,

wJ(xn,0) ≥ |{x ∈ In : x is unsaturated}|. (3.17)

holds. Namely, it follows by (3.15) that, for x ∈ In, wj(x−1) ≥ wj(x) if x ∈Wj,tx and wj(x−1) >

wj(x) if x /∈Wj,tx , whence wJ(x− 1) ≥ wJ(x) and wJ(x− 1) > wJ(x) if x is unsaturated.

Now, by (3.16) and (3.17), in order to get the desired contradiction, it suffices to show that

|{x ∈ In : x is unsaturated}| > e(xn,0 + 1). (3.18)

This is done as follows. For a number x = xn,k ∈ In∪{xn,0} (0 ≤ k ≤ n(xn,0+1)−1), as x /∈ A0,tx ,

as Pα is not satisfied at stage tx and by choice of the numbers wC enumerated into C together

with numbers w entering A0 (see also the discussion preceding the construction), (3.12) holds for

s = tx. So, since there are no α-safe numbers in In ∪ {xn,0} after stage s1 + 1, (3.13) must fail for

s = tx. It follows that, for every k, at least one number in In,k must be unsaturated. As there

are n(xn,0 + 1) many subintervals In,k in In each of which must contain at least one unsaturated

number and as e < n by construction, it follows that there are at least (e + 1)(xn,0 + 1) many

unsaturated numbers in In. So (3.18) holds.

Claims 3 to 5 show that the constructed sets have the required properties, hence this completes

the proof of Lemma 88.

As we have seen, this also completes the proof of Theorem 87.

3.5 Meet Preservation in the ubT-Reducibilities

In contrast to Theorem 87, meet preservation holds for the monotone admissible bounded Tur-

ing reducibilities in general. This is immediate by the following theorem which generalizes the

observation by Ambos-Spies, Ding, Fan and Merkle in [ASDFM13] that ibT-cl and cl-wtt meet

preservation hold.
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Theorem 89. Let r and r′ be admissible bounded Turing reducibilities such that r is stronger than

r′ and such that r′ is monotone. Then, r-r′ meet preservation holds.

Proof. The proof is essentially the same as the one for the results in [ASDFM13]. Let F ′ be a

family of strictly increasing computable functions inducing r′. As shown by Ambos-Spies in [ASb],

w.l.o.g., we may assume that F ′ is closed under composition. Let A0, A1 and B be c.e. sets such

that

degr(A0) ∧ degr(A1) = degr(B) (3.19)

holds. As r is stronger than r′, B is also a lower r′-bound for A0 and A1, so, it suffices to show

that for a given c.e. set C such that C ≤r′ A0, A1, C ≤r′ B holds. Fix functions fi ∈ F ′ such that

C ≤fi−T Ai for i = 0, 1. Since F ′ is closed under composition, f0◦f1 = f ∈ F ′ and, since f0 and f1

are strictly increasing, max{f0, f1} ≤ f . It follows that C ≤f−T A0, A1. Let Cf = {f(x) : x ∈ C}
be the f -shift of C. Then, Cf ≤ibT A0, A1. As ibT is stronger than r, Cf ≤r A0, A1, so, by

(3.19), Cf ≤r B, hence Cf ≤r′ B. We know that C ≤f−T Cf , hence by f ∈ F ′, C ≤r′ Cf , so, by
transitivity of r′, C ≤r′ B.

3.6 Meet Preservation in the Classical Strong Reducibilities

While we have seen in Section 3.3 that r-r′ join preservation holds for all classical strong reducibi-

lities such that r is stronger than r′, meet preservation does not always hold in the classical strong

reducibilities. Downey and Stob [DS86] use an embedding result into the c.e. T-degrees together

with the distributivity of the c.e. wtt-degrees to prove the following.

Lemma 90 ([DS86]). There is a wtt-minimal pair that is not a T-minimal pair.

Proof. The proof uses the fact that sufficiently complex nondistributive lattices can be embedded

into the c.e. T-degrees while the c.e. wtt-degrees are distributive. Namely, the nondistributive

finite 1-4-1 lattice can be embedded into the c.e. T-degrees preserving the least element, i.e., there

are noncomputable c.e. sets A0, A1, A2, A3 and A such that for all i, j ∈ {0, 1, 2, 3} with i ̸= j,

the following hold.

Ai and Aj are a T-minimal pair,

degT(Ai) ∨ degT(Aj) = degT(A). (3.20)

Now consider the sets A0 ⊕ A1 and A2 ⊕ A3. By distributivity of the c.e. wtt-degrees (shown

by Lachlan; see e.g. Stob [Sto83]), A0 ⊕ A1 and A2 ⊕ A3 form a wtt-minimal pair. Namely, for

given c.e. B ≤wtt A0 ⊕ A1, A2 ⊕ A3, it suffices to show that B is computable. By distributivity,

as B ≤wtt A0 ⊕ A1, there are c.e. sets B0 ≤wtt A0 and B1 ≤wtt A1 such that B0 ⊕ B1 = B.

Moreover, again by distributivity, as B0, B1 ≤wtt B ≤wtt A2 ⊕A3, there are c.e. sets B02 ≤wtt A2

and B03 ≤wtt A3 such that B02 ⊕B03 = B0 and c.e. sets B12 ≤wtt A2 and B13 ≤wtt A3 such that

B12 ⊕ B13 = B1. Altogether, it follows that Bij ≤wtt Ai, Aj for i ∈ {0, 1} and j ∈ {2, 3}. But,

as Ai and Aj form a T-minimal pair and hence a wtt-minimal pair, this implies that all Bij are

computable. So B = (B02 ⊕B03)⊕ (B12 ⊕B13) is computable, too.

On the other hand, by (3.20) and by noncomputability of A, A0⊕A1 and A2⊕A3 do not form

a T-minimal pair.
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Using an embedding result into the c.e. tt-degrees by Fejer and Shore, this idea can be trans-

ferred to show that there is an m-minimal pair that is not a tt-minimal pair. Furthermore, we can

use a similar method to show that there is a tt-minimal pair that is not a wtt-minimal pair.

Lemma 91. There is an m-minimal pair that is not a tt-minimal pair.

Proof. Fejer and Shore have shown in [FS85] that every finite lattice can be embedded into the c.e.

tt-degrees preserving the least element. So, in particular, the 1-4-1 lattice can be embedded into

the c.e. tt-degrees preserving zero. Since the c.e. m-degrees are distributive (Lachlan [Lac70]), we

can apply the argument used in the proof of Lemma 90.

Lemma 92. There is a tt-minimal pair that is not a wtt-minimal pair.

Proof. Suppose that every tt-minimal pair is also a wtt-minimal pair. As shown by Jockusch and

Mohrherr in [JM85], the diamond lattice can be embedded into the c.e. tt-degrees preserving both

least and greatest elements, i.e., there are noncomputable c.e. sets A0 and A1 such that

A0 and A1 form a tt-minimal pair,

degtt(A0) ∨ degtt(A1) = degtt(∅′).

Since, by Theorem 83, tt-wtt join preservation holds and by assumption, it follows that

A0 and A1 form a wtt-minimal pair,

degwtt(A0) ∨ degwtt(A1) = degwtt(∅′),

which is a contradiction to the nondiamond theorem for the wtt-degrees stated by Ladner and

Sasso in [LS75].

We give an alternative and direct proof of Lemma 92, showing that there is a pair of noncom-

putable c.e. sets that form a tt-minimal pair but which are wtt-comparable, hence they have a

noncomputable wtt-meet.

Theorem 93. There are c.e. sets A0 and A1 such that the following hold.

A0 is not computable, (3.21)

A0 ≤wtt A1 (in fact, A0 ≤ibT A1), (3.22)

degtt(A0) ∧ degtt(A1) = 0. (3.23)

Proof. We enumerate sets c.e. A0 and A1 in stages such that (3.21), (3.22) and (3.23) hold.

To guarantee that (3.21) holds, we meet the following noncomputability requirements for all

e ≥ 0.

Pe : A0 ̸= ϕe.

To make sure that (3.22) holds, we have the global permitting requirement as follows.

x↘s+1 A0 ⇒ x↘s+1 A1.
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Finally, to guarantee that (3.23) holds, we meet the following minimal pair requirements for all

e = ⟨e0, e1⟩.

Qe : If Φe0 and Φe1 are tt-functionals and ΦA0
e0 = ΦA1

e1 = f , then f is computable.

For a priority ordering of the requirements, we let R2i = Pi and R2i+1 = Qi for i ≥ 0.

Our strategy is as follows. To meet the noncomputability requirements, we use a standard

diagonalization strategy, i.e., we appoint a follower x to Pe and wait for a stage s such that

ϕe,s(x) = 0. If such a stage exists, we put x into A0 at stage s + 1. For the sake of the global

permitting requirement, in that case, we also put x into A1.

To meet the minimal pair requirements, we aim to destroy their hypothesis. To do so, we wait

for a stage s such that it is possible to achieve Φ
A0,s+1

e0,s+1(x) ̸= Φ
A1,s+1

e1,s+1(x) by putting finitely many

numbers into A1 at stage s+1 without changing A0. We can then show that if we do not succeed

in destroying the hypothesis, then the conclusion holds.

For resolving conflicts between different requirements, we use a standard finite injury strategy,

i.e., we force lower priority requirements to respect restraints imposed by higher priority require-

ments, so each requirement is injured at most finitely often and is eventually met. This is achieved

by choosing the stage s+1 as the follower that can be appointed to any diagonalization requirement

at some stage s + 1 and by ensuring that a minimal pair requirement acting at some stage s + 1

can only enumerate numbers greater than s′ where s′ + 1 is the last stage before s+ 1 at which a

requirement of higher priority has acted. So, by the convention that if a computation is defined at

some stage s, the use of this computation is less than s, all computations seen at stages less than

or equal to such stages s′ are not changed if we enumerate followers appointed at stages greater

than s′ or if a lower priority minimal pair requirement acts after s′. Now we are ready to give the

actual construction of the sets A0 and A1 where A0,s and A1,s denote the finite parts of A0 and

A1 enumerated by the end of stage s, respectively.

Construction.

Stage 0 is vacuous, i.e., A0,0 = A1,0 = ∅.

Stage s + 1. We first define under which circumstances a requirement Ri requires attention

at a stage s+ 1.

Case 1. Ri = Pe for some e ≥ 0.

Pe requires attention at stage s+1 if e ≤ s, Pe is not satisfied at the end of stage s and

one of the following holds.

(i) Pe has no follower at the end of stage s.

(ii) Pe has a follower x at the end of stage s and ϕe,s(x) = 0.

Case 2. Ri = Qe for some e ≥ 0, e = ⟨e0, e1⟩.

Qe requires attention at stage s + 1 if e ≤ s, Qe is not satisfied at the end of stage s

and there is a number x < s such that all of the following hold.

• Φ
A0,s
e0,s (x) ↓,

• Φσe1,s+1(x) ↓ for all σ ∈ {0, 1}s+1,
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• There is a string σ ∈ {0, 1}s+1 such that A1,s ⊆ σ (i.e., for all x′ < s, if A1,s(x
′) = 1

holds, then σ(x′) = 1 holds, too), such that, for the greatest s′ < s such that a

requirement Ri′ with i
′ < i becomes active at stage s′ +1, A1,s � s′ +1 = σ � s′ +1

holds and such that Φ
A0,s
e0,s (x) ̸= Φσe1,s+1(x).

If no requirement requires attention at stage s + 1, let A0,s+1 = A0,s and A1,s+1 = A1,s.

Otherwise, fix the least i such that Ri requires attention at stage s+ 1. We say Ri becomes

active or receives attention.

Case 1. Ri = Pe for some e ≥ 0.

Perform the following action according to the clause via which Pe requires attention.

(i) Appoint s+ 1 as a follower to Pe.

(ii) Let A0,s+1 = A0,s ∪ {x}, A1,s+1 = A1,s ∪ {x} and declare Pe to be satisfied.

Case 2. Ri = Qe for some e ≥ 0.

Let A0,s+1 = A0,s and for the least x and σ that make the conditions for Qe to require

attention true, let A1,s+1 = σ and declare Qe to be satisfied.

In all cases, cancel all followers of requirements of lower priority than Ri (i.e., of requirements

Ri′ such that i′ < i) and declare these requirements to be unsatisfied.

This completes the construction. For the verification, we prove a series of claims.

Verification.

It is immediate by construction that A0 and A1 are c.e., so it remains to show the following

claims.

Claim 1. Every requirement requires attention at most finitely often.

Proof. The proof is by a standard induction argument. For fixed Ri, by inductive hypothesis fix

the least stage s0 such that no requirement Ri′ with i
′ < i requires attention after stage s0.

If Ri = Pe for some e ≥ 0, a follower x is permanently assigned to Pe at some stage s1+1 > s0.

Then, Pe becomes active at most once after stage s1 + 1. Since Pe receives attention whenever it

requires attention after stage s0, it follows that Pe requires attention at most finitely often.

If Ri = Qe for some e ≥ 0, Qe becomes active at most once after stage s0, so, as in the case of

Pe, Qe requires attention at most finitely often.

Claim 2. The noncomputability requirements Pe are met.

Proof. For fixed e, by Claim 1, fix a stage s0 such that no requirement of higher priority than Pe

requires attention after stage s0 and a stage s1 +1 > s0 such that a follower x (= s1 +1) becomes

permanently assigned to Pe at stage s1 +1. If Pe requires attention at some stage s2 +1 > s1 +1,

this must be via Clause (ii), so ϕe(x) = ϕe,s2(x) = 0 and we put x into A0 at stage s2 + 1, so

A0(x) = 1, hence Pe is met.

Otherwise, ϕe(x) ̸= 0. Furthermore, x never enters A0, so A0(x) = 0 and Pe is met.

Claim 3. The global permitting requirement is met.
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Proof. If a number x is enumerated into A0, this can only happen if some noncomputability

requirement Pe becomes active via Clause (ii). But then, x is also enumerated into A1.

Claim 4. The minimal pair requirements Qe are met.

Proof. Fix e such that the hypothesis of Qe holds, i.e., Φe0 and Φe1 are tt-functionals and ΦA0
e0 =

ΦA1
e1 = f . (Otherwise, the claim is trivial.) Now, to compute f(x) for some x ≥ 0, by Claim 1, fix

the least stage s0 such that neither Qe nor any higher priority requirement requires attention after

stage s0. Then, wait for a stage s1 > s0 such that Φ
A0,s1
e0,s1 (x) ↓= Φ

A1,s1
e1,s1 (x) and such that Φσe1,s1+1 ↓

for all σ ∈ {0, 1}s1+1. Note that such a stage must exist by the assumption that Φe0 and Φe1 are

tt-functionals and that ΦA0
e0 = ΦA1

e1 . We claim that then, f(x) = ΦA1
e1 (x) = Φ

A1,s1
e1,s1 (x).

Suppose not. As Φ
A1,s1
e1,s1 (x) is defined, by convention, ϕA1,s1

e1,s1 (x) < s1. Moreover, by choice of

s0, Qe does not require attention at stage s1 + 1, so for all σ ∈ {0, 1}s1+1, if A1,s1 ⊆ σ and for the

greatest s′ < s1 such that a requirement of higher priority than Qe becomes active at stage s′ +1,

A1,s1 � s′ + 1 = σ � s′ + 1 holds, Φ
A1,s1
e1,s1 (x) = Φ

A0,s1
e0,s1 (x) = Φσe1,s1+1(x). Hence the enumeration of

numbers y with s′ < y < s1 into A1 after stage s1 does not change the computation of Φ
A1,s1
e1,s1 (x).

So ΦA1
e1 (x) can only after stage s1 if a number z ≤ s′ enters A1 after stage s1. By definition of

s0, we know that s′ + 1 ≤ s0. Since after stage s0, only requirements with lower priority than Qe

become active and, by construction, all of them are only allowed to enumerate numbers greater

than or equal to s0 (because, for the lower priority noncomputability requirements, by definition of

s0, all followers get canceled at stage s0 and, for the lower priority minimal pair requirements, the

corresponding stage s′ +1 in the definition of requiring attention is at least s0, again by definition

of s0), hence greater than s′, this cannot happen. This completes the proof of Claim 4.

Claims 2 to 4 show that A0 and A1 have the required properties which completes the proof of

Theorem 93.

Despite of the above negative results, there is a pair of classical strong reducibilities where meet

preservation holds as we show next.

Theorem 94. 1-m meet preservation holds.

For the proof of Theorem 94, we use some facts about simple sets which were defined by Post

[Pos44] and are widely used in computability theory.

Definition 95 ([Pos44]). A set A is simple if it is c.e., coinfinite and for every infinite c.e. set

B, A ∩B ̸= ∅ holds.

Before we turn to the proof of Theorem 94, we need the following lemma.

Lemma 96. Let A0 and A1 be 1-incomparable c.e. sets such that deg1(A0)∧deg1(A1) exists. Then,

A0 and A1 are neither simple nor computable.

A special case of Lemma 96 – namely that, for 1-incomparable simple sets A0 and A1, deg1(A0)∧
deg1(A1) does not exist – is proven in Odifreddi [Odi99], Proposition VI.5.1. and attributed to

Young [You64]. The proof of Lemma 96 is similar to the proof of this special case.
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First, we state some well known facts on the 1-degrees of simple and computable sets which we

later need in the proof.

If A1 is computable then A0 ≤1 A1 if and only if

A0 is computable and |A0| ≤ |A1| and |A0| ≤ |A1| hold.
(3.24)

If A0 and A1 are c.e., A0 is computable and A1 is not computable

then A0 ≤1 A1 if and only if A0 is cofinite or A1 is not simple.
(3.25)

If A0 is noncomputable, A1 is simple and A0 ≤1 A1 then A0 is simple. (3.26)

If A is simple and x ∈ A then A <1 A \ {x}. (3.27)

If A0 and A1 are c.e., A0 is infinite, A0 ≤1 A1 via f and A1 ̸≤1 A0

then f(A0) ⊂ A1.
(3.28)

Claims (3.24) through (3.26) are straightforward and Claim (3.27) is due to Dekker (see e.g. Rogers

[Rog67], Theorem 8.XIV). It remains to show that (3.28) holds. Fix c.e. sets A0 and A1 such that

A0 is infinite, A0 <1 A1 and a computable one-one function f such that A0 ≤1 A1 via f . Then,

f(A0) ⊆ A1 is immediate. Now assume that f(A0) = A1. Then, ω = A1 ∪ range(f). To get a

contradiction, we obtain a computable one-one function g such that A1 ≤1 A0 via g as follows.

Fix an infinite computable subset B of A0 and a computable one-one function b enumerating B.

Now, given y, simultaneously enumerate A1 and range(f) . If y first occurs in the enumeration of

range(f) and if, for the least x such that f(x) = y, x /∈ B holds, then let g(y) = x. Otherwise, let

g(y) = b(y).

We now turn to the proof of Lemma 96.

Proof of Lemma 96. First, we show that neither A0 nor A1 are computable. By symmetry, it

suffices to show that A0 is not computable. Assume for a contradiction that A0 is computable. If

A1 is computable, too, by 1-incomparability of A0 and A1, it follows from (3.24) that either A0 is

finite and A1 is cofinite or vice versa. But then, again by (3.24), A0 and A1 do not have a common

lower bound which contradicts the assumption that deg1(A0) ∧ deg1(A1) exists.

It remains to consider the case where A1 is not computable. Then, by 1-incomparability of A0

and A1, it follows from (3.25) that A0 is not cofinite and A1 is simple. By simplicity of A1 and

again by (3.25), the computable sets that are 1-reducible to A1 are only the cofinite sets. Since A1

is computable but not cofinite, A0 and A1 do not have a common lower bound which contradicts

the assumption as in the case above.

Finally, we prove that A0 and A1 are not simple. Again, by symmetry, it suffices to consider

A0. So assume for a contradiction that A0 is simple. W.l.o.g., we may assume that A1 is not

computable. Let B be a c.e. set such that

deg1(B) = deg1(A0) ∧ deg1(A1) (3.29)

holds. In order to get a contradiction, it suffices to show that there is a c.e. set B̂ such that the

following holds.

B <1 B̂ ≤1 A0, A1 (3.30)

By assumption, A0 is simple and B ≤1 A0, so it follows by (3.26) that B is either simple or

computable. If B is simple, fix an element x0 ∈ B and let B̂ = B \{x0}. Then, by (3.27), B <1 B̂.
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In order to prove that (3.30) holds, it remains to show that B̂ ≤ Ai for i = 0, 1. For fixed i, by

1-incomparability of A0 and A1 and by (3.29), Ai ̸≤ B. Again by (3.29), fix a computable one-one

function f such that B ≤1 Ai via f . Now, by (3.28), f(B) ⊂ Ai holds. Fix y0 ∈ Ai \ f(B). Then

B̂ is 1-reducible to Ai by the computable one-one function f̂ defined as follows.

f̂(x) =

⎧⎨⎩y0 if x = x0

f(x) otherwise.

Now consider the case where B is computable. Then, by (3.25) and by simplicity of A0, B is

cofinite. By (3.24), the cofinite 1-degrees form an infinite ascending chain. Furthermore, by (3.25),

any cofinite set is 1-reducible to any noncomputable c.e. set. So (3.30) holds for any cofinite set B̂

such that |B| < |B̂|.

Now we are ready to prove Theorem 94 using Lemma 96.

Proof of Theorem 94. Given c.e. sets A0, A1, B and C such that deg1(A0) ∧ deg1(A1) = deg1(B)

and C ≤m A0, A1 hold, it suffices to show that C ≤m B holds. If A0 and A1 are 1-comparable,

then this is trivial. So, for the remainder of the proof, we may assume that A0 and A1 are

1-incomparable, hence, by Lemma 96, neither simple nor computable.

Fix computable functions f0 and f1 such that C is m-reducible to Ai via fi for i = 0, 1. Let

M = {x : ∀i ≤ 1 ∀x′ < x (fi(x
′) ̸= fi(x))}

and let Ĉ = C ∩M . Then,

C ≤m Ĉ (3.31)

via g where g is inductively defined as follows. Let g(x) = x if x ∈ M . Otherwise, let g(x) =

g(x′) for the least x′ such that fi(x
′) = fi(x) for some i ≤ 1. Note that by the definition and

computability of M , g is well-defined and computable.

On the other hand, for i ≤ 1,

Ĉ ≤1 Ai (3.32)

via the functions f̂i, where f̂i is defined as follows. For i ≤ 1, fix infinite computable sets Di ⊂ Ai

(this is possible because A0 and A1 are neither simple nor computable) together with strictly

increasing computable functions di enumerating Di in order, respectively. Then, let

f̂i =

⎧⎨⎩fi(x) if x ∈M and fi(x) /∈ D

di(x) otherwise.

Now, as deg1(A0) ∧ deg1(A1) = deg1(B) and by (3.32), it follows that Ĉ ≤1 B, hence Ĉ ≤m B.

Together with (3.31), this gives us C ≤m B, which completes the proof.

We can summarize the results from this section as follows.

Theorem 97. Let r, r′ ∈ {1, m, tt, wtt, T} be given such that r ≺ r′. Then, r-r′ meet preservation

holds if and only if r = 1 and r′ = m.
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Proof. By Theorem 94, 1-m meet preservation holds. On the other hand, by Lemma 90, there is

a minimal pair in the c.e. wtt-degrees that is not a minimal pair in the c.e. T-degrees; by Lemma

91, there is a minimal pair in the c.e. m-degrees that is not a minimal pair in the c.e. tt-degrees;

and by Lemma 92, there is a minimal pair in the c.e. tt-degrees that is not a minimal pair in

the c.e. wtt-degrees. Considering the fact that for r, r′ ∈ {m, tt, wtt, T} such that r ≼ r′, every

r′-minimal pair is also an r-minimal pair, it follows from these results that r-r′ meet preservation

fails for all r, r′ ∈ {m, tt, wtt, T} such that r ≺ r′.

For the case of 1-reducibility note that for c.e. sets A0 and A1 such that degm(A0) and degm(A1)

form a minimal pair in the c.e. m-degrees, deg1(2A0) and deg1(2A1) form a minimal pair in the

c.e. 1-degrees in the sense that deg1(2A0)∧ deg1(2A1) = 01 where 01 is the 1-degree of the infinite

and coinfinite computable sets. Furthermore, degm(Ai) = degm(2Ai) for i = 0, 1. Together with

the observations above, it follows that 1-tt meet preservation, 1-wtt meet preservation and 1-T

meet preservation all fail. This completes the proof of the theorem.

3.7 Open Problems

Contrasting previous positive results on join preservation in the bounded Turing degrees (see

Lemma 86) we have shown that r-r′ join preservation fails for the strongly bounded Turing redu-

cibilities r = ibT,cl and any monotone admissible uniformly bounded Turing reducibility r′ with

cl ≺ r′. On the other hand, by Corollary 85, r-r′ join preservation holds for all monotone ad-

missible uniformly bounded Turing reducibilities r and r′ such that lbT ≼ r ≺ r′. This naturally

leads to the question of a classification of the monotone admissible (uniformly) bounded Turing

reducibilities r and r′ for which r-r′ join preservation holds. In particular, can our main theorem

be extended to show that, for any monotone admissible uniformly bounded Turing reducibilities

r and r′ such that lbT ̸≼ r, cl ≺ r′ and r ≺ r′, r-r′ join preservation fails? Moreover, one may

consider nonmonotone reducibilities, too. For the latter, a classification of the (u)bT-reducibilities

for which meet preservation holds is open, too.
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