7 research outputs found

    Bounded-Degree Polyhedronization of Point Sets

    Get PDF
    URL to paper listed on conference siteIn 1994 Grunbaum [2] showed, given a point set S in R3, that it is always possible to construct a polyhedron whose vertices are exactly S. Such a polyhedron is called a polyhedronization of S. Agarwal et al. [1] extended this work in 2008 by showing that a polyhedronization always exists that is decomposable into a union of tetrahedra (tetrahedralizable). In the same work they introduced the notion of a serpentine polyhedronization for which the dual of its tetrahedralization is a chain. In this work we present an algorithm for constructing a serpentine polyhedronization that has vertices with bounded degree of 7, answering an open question by Agarwal et al. [1]

    Bounded-Degree Polyhedronization of Point Sets

    Get PDF
    Abstract In 1994 Grünbaum showed that, given a point set S in R 3 , it is always possible to construct a polyhedron whose vertices are exactly S. Such a polyhedron is called a polyhedronization of S. Agarwal et al. extended this work in 2008 by showing that there always exists a polyhedronization that can be decomposed into a union of tetrahedra (tetrahedralizable). In the same work they introduced the notion of a serpentine polyhedronization for which the dual of its tetrahedralization is a chain. In this work we present a randomized algorithm running in O(n log 6 n) expected time that constructs a serpentine polyhedronization that has vertices with degree at most 7, answering an open question by Agarwal et al

    Circumscribing Polygons and Polygonizations for Disjoint Line Segments

    Get PDF
    Given a planar straight-line graph G=(V,E) in R^2, a circumscribing polygon of G is a simple polygon P whose vertex set is V, and every edge in E is either an edge or an internal diagonal of P. A circumscribing polygon is a polygonization for G if every edge in E is an edge of P. We prove that every arrangement of n disjoint line segments in the plane has a subset of size Omega(sqrt{n}) that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to R^3. We show that it is NP-complete to decide whether a given graph G admits a circumscribing polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization
    corecore