3,304 research outputs found

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Multistart Methods for Quantum Approximate Optimization

    Full text link
    Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters to maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima in the space of parameters makes it harder for the classical optimizer. In this paper we study the use of a multistart optimization approach within a QAOA framework to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT

    A Reconfigurable Computing Solution to the Parameterized Vertex Cover Problem

    Get PDF
    Active research has been done in the past two decades in the field of computational intractability. This thesis explores parallel implementations on a RC (reconfigurable computing) platform for FPT (fixed-parameter tractable) algorithms. Reconfigurable hardware implementations of algorithms for solving NP-Complete problems have been of great interest for research in the past few years. However, most of the research that has been done target exact algorithms for solving problems of this nature. Although such implementations have generated good results, it should be kept in mind that the input sizes were small. Moreover, most of these implementations are instance-specific in nature making it mandatory to generate a different circuit for every new problem instance. In this work, we present an efficient and scalable algorithm that breaks out of the conventional instance-specific approach towards a more general parameterized approach to solve such problems. We present approaches based on the theory of fixed-parameter tractability. The prototype problem used as a case study here is the classic vertex cover problem. The hardware implementation has demonstrated speedups of the order of 100x over the software version of the vertex cover problem

    Making Queries Tractable on Big Data with Preprocessing

    Get PDF
    A query class is traditionally considered tractable if there exists a polynomial-time (PTIME) algorithm to answer its queries. When it comes to big data, however, PTIME al-gorithms often become infeasible in practice. A traditional and effective approach to coping with this is to preprocess data off-line, so that queries in the class can be subsequently evaluated on the data efficiently. This paper aims to pro-vide a formal foundation for this approach in terms of com-putational complexity. (1) We propose a set of Π-tractable queries, denoted by ΠT0Q, to characterize classes of queries that can be answered in parallel poly-logarithmic time (NC) after PTIME preprocessing. (2) We show that several natu-ral query classes are Π-tractable and are feasible on big data. (3) We also study a set ΠTQ of query classes that can be ef-fectively converted to Π-tractable queries by re-factorizing its data and queries for preprocessing. We introduce a form of NC reductions to characterize such conversions. (4) We show that a natural query class is complete for ΠTQ. (5) We also show that ΠT0Q ⊂ P unless P = NC, i.e., the set ΠT0Q of all Π-tractable queries is properly contained in the set P of all PTIME queries. Nonetheless, ΠTQ = P, i.e., all PTIME query classes can be made Π-tractable via proper re-factorizations. This work is a step towards understanding the tractability of queries in the context of big data. 1
    corecore