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Abstract 

 
Active research has been done in the past two decades in the field of 

computational intractability. This thesis explores parallel implementations on a RC 

(reconfigurable computing) platform for FPT (fixed-parameter tractable) algorithms.  

Reconfigurable hardware implementations of algorithms for solving NP-

Complete problems have been of great interest for research in the past few years. 

However, most of the research that has been done target exact algorithms for solving 

problems of this nature. Although such implementations have generated good results, it 

should be kept in mind that the input sizes were small. Moreover, most of these 

implementations are instance-specific in nature making it mandatory to generate a 

different circuit for every new problem instance.  

In this work, we present an efficient and scalable algorithm that breaks out of the 

conventional instance-specific approach towards a more general parameterized approach 

to solve such problems. We present approaches based on the theory of fixed-parameter 

tractability. The prototype problem used as a case study here is the classic vertex cover 

problem. The hardware implementation has demonstrated speedups of the order of 100x 

over the software version of the vertex cover problem. 
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Chapter 1 

Terminology and Introduction to Computational Complexity 

The graphs studied in this work are simple and undirected graphs. Graphs with 

self-loops and vertices with no edges are not discussed here. Some of the properties of 

graphs are described here. We restrict the terminology and notation to the scope of the 

study and those relevant to the work. In this chapter, we also discuss the fundamentals 

underlying the concept of fixed-parameter tractability. 

1.1 Terms and Definitions 

A graph is a set of vertices and the edges that connect them [8]. A graph is 

defined by a vertex set V and an edge set E and is denoted by G (V, E). In the following 

text, the vertices V might also be referred to as nodes. Similarly the edges E might also be 

referred to as branches.  

Graph theory is the branch of mathematics that examines the properties of 

graphs. Depending on the applications, edges may or may not have a direction; edges 

joining a vertex to itself may or may not be allowed, and vertices and/or edges may be 

assigned weights. If the edges have a direction associated with them (indicated by an 

arrow in the graphical representation) we have a directed graph. From the point of view 

of digital system design, many CAD algorithms are based on directed graphs. Directed 
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graphs are also used to represent finite state machines. The development of algorithms to 

handle graphs is therefore of major interest.  

Removal of a certain number of vertices and (or) edges from the graph results in 

what are known as subgraphs. It should be noted that the removal of a vertex implies the 

removal of all its edges from the graph. 

The degree of a vertex represents the number of edges that are incident on it.  

1.2 Data Structures for the Representation of Graphs 

For the purpose of implementing graph algorithms and search space techniques, 

one often uses a data structure that makes it easier to manipulate the graph. In computers, 

a finite directed or undirected graph (with n vertices) is often represented by its 

adjacency matrix: an n-by-n matrix whose entry in row i and column j gives the 

existance of an edge from the ith to the jth vertex. In this regard, it has to be kept in mind 

that different algorithms may have different requirements and hence the need for a data 

structure that suits is requirements. The data structure used has to be suitable to represent 

the graph in any computing environment, be it in software or custom hardware.  

Figure 1.1 depicts a simple undirected graph and figure 1.2 gives the adjacency 

matrix representation of the graph. Given a graph G(V,E) with n vertices, the individual 

elements of the adjacency matrix are constructed with the condition that [8] 

1=ijA  if ( ) ,Evv ji ∈ and 0=ijA  if ( ) Evv ji ∉  

It is evident from the adjacency matrix representation shown in figure 1.2, that the 

adjacency matrix representation of any graph is symmetric for undirected graphs. We use 

undirected graphs for the vertex cover problem in this thesis and describe the graphs 

using adjacency matrices. 
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Figure 1.1 An example of a simple undirected graph 
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Figure 1.2 Adjacency matrix representation of graph shown in figure 1.1 
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1.3 Computational Complexity 

One of the main concerns regarding the design of an algorithm is the efficiency of 

the algorithm. The computational complexity describes the asymptotic performance or 

speed with which the algorithm produces the final result as a function of problem size [8]. 

The input size of an algorithm is the number of elements that are necessary to describe 

the input. The input size of a graph algorithm operating on a graph G(V,E) is 

characterized by two parameters – 

1. The size of the vertex set |V| 

2. The size of the edge set |E| 

In the fields of algorithm analysis and computational complexity theory, the 

runtime or space requirements of an algorithm are expressed as a function of the problem 

size. Computational complexity is of two types: 

1. Time complexity 

2. Space complexity 

The time complexity of a problem asymptotically describes the number of steps 

required to solve an instance of a problem, as a function of the input size. The space 

complexity on the other hand asymptotically describes the amount of memory required to 

solve the instance of the problem. In this thesis we focus on the time complexity of graph 

algorithms. 

An algorithm that grows exponentially as the problem size grows would take 

more time to find a solution than an algorithm that takes polynomial time. Hence, 

algorithms with polynomial time complexity are preferred over algorithms with 

exponential time complexity. Polynomial time algorithms are considered computationally 
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tractable or efficient, whereas exponential time algorithms are computationally 

intractable. 

We know that the notion of time complexity is extremely important in designing 

an algorithm. We also discussed that an algorithm that grows in a polynomial fashion 

takes lesser time in comparison to an algorithm that grows in an exponential fashion. Any 

problem that can be solved in polynomial time is considered tractable. It is intractable 

otherwise. While exact algorithms can be used to find optimal solutions for tractable 

problems, in the case of intractable problems, often one has to be satisfied with 

algorithms that do not guarantee optimal solutions.  

In complexity theory, the class P(P stands for polynomial) consists of all those 

decision problems that can be solved using an algorithm on a deterministic sequential 

machine in polynomial time. Before we discuss the class of NP, we need to understand 

the meaning of a nondeterministic computer. The class NP consists of all those decision 

problems that can be verfied(we purposely do not use the word “solved”, we use the 

word “verified” as most NP problem are decision problems) in polynomial time on a 

deterministic machine. In this context, it will be beneficial to discuss the whole notion of 

Decision Problems.  

1.4 Decision Problems 

Simply put, a Decision problem is one whose solution is either a “Yes” or a 

“No”. To illustrate the notion of NP-Complete, here is an example from [9] to get an 

idea for the question.  

“Given two large numbers X and Y, we might ask whether Y is a multiple of any 

integers between 1 and X, exclusive. For example, we might ask whether 69799 
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is a multiple of any integers between 1 and 250. The answer is YES, though it 

would take a fair amount of work to find it manually. On the other hand, if 

someone claims that the answer is YES because 223 is a divisor of 69799, then 

we can quickly check that with a single division. Verifying that a number is a 

divisor is much easier than finding the divisor in the first place”.  

Since all polynomial time algorithms that can be executed on a deterministic computer 

will definitely execute on a non-deterministic computer, the class P set of problems 

belong to the domain of the class NP.  

With these ideas in mind, we now introduce the notion of Parameterized Complexity. 

1.5 Parameterized Complexity 

Currently, no polynomial-time algorithm has been found to solve any NP-

complete problem. It is rather unlikely that a polynomial-time algorithm will exist for 

these kind of problems. Numerous techniques using approximation techniques and 

heuristic techniques are used to attempt to solve NP-complete problems[8].  

There have been cases of exact algorithms being used to find solutions[1]. But, in 

the cases, where exact algorithms were used, the input sizes were either small or modest 

at best. 

The work of Fellows and Langston proved that certain intractable problems 

become tractable when the input parameters are fixed [11,12,13,14]. Later the work of 

Downey and Fellows [37] led to the creation of a solid base for Parametrized 

Complexity theory.  
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1.6 Fixed-Parameter-Tractability 

From the definition of fixed-parameter tractability in [2],given a parametrized 

problem (I,k) with an instance I and a parameter k, if there exists an algorithm such that 

the problem instance (I,k) executes in time ))(( cIkfΟ ,where I is the size of I, f(k) is 

an arbitrary function, and c is a constant, then the problem (I,k) becomes tractable. The 

algorithms that can execute in the time ))(( cIkfΟ  are called fixed-parameter-tractable 

algorithms. Some of the well known fixed-parameter-tractable algorithms are listed 

below[8]. 

1. The Vertex Cover Problem(The prototype problem studied in this work) 

2. The Face Cover Problem 

3. The Disk Dimension Problem 

4. The Planar Dominsating Set Problem 

In this chapter, we have discussed some of the key terms in graph theory related to this 

thesis. We have discussed the theory of fixed-parameter tractability. In the next chapter, 

we discuss some of the research done in acceleration of optimization algorithms in a 

reconfigurable computing platform.  
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Chapter 2 

Introduction and Background 

 
2.1 Reconfigurable Architectures  

 In the last several years, reconfigurable architectures have been used in a variety 

of methods to speedup combinatorial problems. More specifically, a lot of research has 

gone into effectively harnessing the power of reconfigurable logic and its inherent 

properties that includes concurrency. The research community targeted many problems 

that were NP-complete and devised algorithms to solve them. Normally, the very fact that 

the problem is NP-complete would deter persons from pursuing an exact algorithm for 

them. Although exact algorithms are not usually pursued for solving NP-complete 

problems, several exact algorithms were proposed. Some of these algorithms targeted 

modest input sizes or problem instances with a very low parameter. The reader will 

recollect that a FPT problem is defined with the problem I and the parameter k. 

2.2 Models of Reconfiguration 

The models of configuration are broadly classified as follows. 

1. Generic computation engine 

2. Instance-specific reconfiguration 
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Shown in Figure 2.1 are the steps involved in the generic computation engine 

[16][35][36]  

 

2.2.1 Compile-Time Reconfiguration 

In this model of reconfiguration, the circuit is compiled, synthesized and loaded 

once. The same configuration file is used for testing and processing different sets of data. 

This is the model used for most custom-computing machines. The configuration remains 

in the FPGA for the duration of the application. The same engine can be used and reused 

for different inputs. Hence for each application or algorithm, a new configuration is built 

that can be downloaded to the FPGA. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Generic graph engine compute model [16] 
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Figure 2.2 Instance-specific reconfiguration [16] 

 

2.2.2 Instance Specific Reconfiguration 

The other model of reconfiguration called the instance-specific reconfiguration, is 

based on the idea that the hardware circuit is optimized to the specific graph instance. It 

is also denoted as dynamic compilation whereas our approach uses static compilation. 

Shown in Figure 2.2 are the steps involved in instance-specific reconfiguration. 

Suyama et al.[33] were the first to propose the use of reconfigurable computing 

power to solve hard problems such as the SAT. They developed an instance-specific logic 

circuit specialized to solve each problem instance of the SAT problem. Suyama et al[33] 

proposed a new parallel checking algorithm that would assign all variable values 

concurrently and scan all the clauses (constraints) simultaneously. They implemented a 

Compile 

Configure 

Execute 

Different sets of data

Generate problem specific circuit description
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hard random 3-SAT problem with 300 variables and ran the logic circuits at about 1 

MHz. They reported that the time taken for logic circuit generation from a problem 

description to be in the order of hours. 

Suyama et al.[34] later developed a series of algorithms suitable for logic circuit 

implementation. The circuit implemented was able to solve a 400 variable problem 

within 1.6 minutes at a clock rate of 10 MHz. The aim of most of the then existing 

algorithms was to find just one solution, if it existed. An important improvement of their 

work over the then existing methods was that they aimed at finding all or multiple 

solutions. 

Hamadi and Merceron [26] implemented the GSAT algorithm on FPGA’s to 

speedup the resolution of SAT problems. The GSAT algorithm, a greedy local search 

procedure searches for satisfiable instantiations of formulas under conjunctive normal 

form. They proposed an incomplete algorithm, which dealt with formulas of large size. 

They argued that though the algorithm was incomplete, the existing technology was out 

of bounds for an exhaustive search with regards to large formulas. Incomplete algorithms 

are those that may not find a solution even if it does exist. Complete algorithms on the 

other hand are guaranteed to find a solution if it indeed existed. 

In the initial years of using reconfigurable computing to solve hard problems, the 

SAT or the Satisfiability problem and numerous flavors of the same were explored to a 

great deal.  

In particular Plessl and Platzner [15] discuss an instance-specific reconfigurable 

architecture for “minimum covering”. It should be noted that the algorithm used is an 

exact algorithm, targeting an instance-specific architecture. Plessl and Platzner [15] have 
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demonstrated raw speedups of several orders of magnitude over the software versions. 

However they were constrained by the long synthesis and compilation times, as the 

architecture was instance-specific. Also, their approach uses a NP-Complete algorithm 

which limits scaling the problem size. 

Numerous reconfigurable architectures were proposed for the boolean SAT 

problem. Zhong et al.[30] proposed a reconfigurable accelerator to accelerate problems in 

the CAD domain. This work too targeted the algorithm on an “input specific”[30] basis 

rather than a parameterized form.  

Platzner et al. [17] also proposed different architectures to solve the boolean 

satisfiability problem. Overall speed-ups (taking into account the hardware compilation 

time of Xilinx design implementation tools) of 6.5x have been achieved. An exact 

algorithm was implemented in this case as well. 

One of the limitations of all the above-discussed implementations is that a new 

circuit customized to the problem is developed for every problem instance. In hardware 

terms, this translates to a huge overhead from factors such as compilation time, synthesis 

time, mapping and place and route to name a few. For each new set of problem instances, 

the entire cycle of processing from a high level description to a bit-level generation is 

repeated. 

Leong et al.[32] were the first to propose an implementation in 2001, which 

discussed this limitation of the architectures. They broke away from the architectures that 

were in vogue till then, by proposing an implementation that was devoid of the overheads 

involving re-synthesis, and repeated cycles of place and route for each problem instance. 



 13

Leong et al.[32] chose the WSAT algorithm as the prototype for implementing this new 

approach. 

All of the discusses approaches use NP-complete algorithms. This thesis uses a 

computationally efficient algorithm. Also, the implementation approach in this thesis is a 

generic computation engine and not an instance specific engine. 

2.3 The Pilchard Reconfigurable Platform 

 The Pilchard Reconfigurable computing platform was developed by Leong et al. 

[41] at the Chinese University of Hong Kong. The Pilchard houses a Xilinx Virtex 1000E 

FPGA, which has close to a million gates on it. Unlike other reconfigurable platforms 

that are based on a PCI interface, the Pilchard board resides in the DIMM (dual In-line 

memory module) slot of a standard personal computer. The Pilchard interface offers 

higher bandwidth, and lower latency [41]. One of the key features of the Pilchard board is 

the built-in clock generator. The built-in clock generator is capable of generating clocks 

whose periods are 1.5, 2, 2.5, 3, 5, 8 and 16 times that of the main clock. This way the 

user need not generate a clock divider circuit on chip. The Pilchard supports a 64-bit data 

bus and a 14-bit address bus. The main system clock can be either set to a frequency of 

100 or 133 MHz. Shown in figure 2.3 is a snap shot of the Pilchard board. 

2.4 Case Study – The Vertex Cover Problem 

The Vertex Cover problem can be defined as follows. Given a graph G(V,E) and 

a parameter k, the objective is to find a subset S of the graph G, that will cover every 

edge of G. An edge is covered if either or both of its endpoints are present in S. In other 

words, removal of the vertices that are in S, amounts to the non-existance of the graph G. 

(Please note that, when a vertex is removed from the graph, all the edges that are  
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Figure 2.3 The Pilchard board 

incident on it are removed, and hence the notion of the non-existance of the 

graph, when such a subset S is found.) 

2.4.1 Algorithmic Reduction Techniques for FPT Problems 

 Pre-processing techniques prove very useful in handling large graph inputs. The 

objective of any pre-processing technique is to reduce the size of the graph instance 

before the actual process of branching. Abu-Khzam [2] in his work has mentioned a 

variety of reduction techniques to FPT problems. In particular, he established a suite of 

algorithmic tools to demonstrate the fact that FPT problems are in general amenable to 

reduction in size by use of suitable reduction techniques. He also introduces a new idea 

known as re-processing or interleaving. More information on this can be found in [2].

 Some of the commonly used pre-processing techniques [2] are discussed below. 
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The discussed techniques are based on the properties of the graphs themselves. Of late, a 

variety of heuristics are in use, some of which have been used in this work. 

(i)  Checking to see of the input graph is fully connected. Dealing with a fully 

connected graph is easier. Most algorithms assume that the input graph is already 

connected 

(ii)  Dealing with high degree vertices: High degree vertices play an important role in 

the reduction techniques involved in the vertex cover problem. The fundamental concept 

behind the branching algorithm is that any randomly chosen vertex or all of its neighbors 

have to be in the cover. Let us assume that that we have a problem instance (G,k). Now if 

we chose a vertex P at random and it has (k+1) neighbors, then P has to be in every 

vertex cover of size k. This can be reasoned as follows. Let us assume that the selected 

vertex P is not in the cover. This would mean that all the neighbors of P are in the cover. 

But the number of neighbors it has is (k+1). Since the number of neighbors exceeds the 

requested parameter k, to guarantee that we get a cover of a maximum size of k, our 

assumption that the highest degree vertex is not in the cover is wrong. To give us a 

chance of finding a cover of maximum size k, either the highest degree vertex or all of its 

neighbors have to be in every vertex cover of size k. 

(iii)  Dealing with low degree vertices: Abu-Khzam [2] has shown that if an instance 

(G,k), of the vertex cover problem has vertices of degree less than 3, then (G,k) can be 

pre-processed into a graph, (G’,k’) such that δ(G’) > 2 and k’< k. The author has also 

shown that a pendant vertex can be deleted in almost all problem instances. A pendant 

vertex is a vertex of degree one. 
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(iv)  Detecting special subgraphs: Abu-Khzam [2] has shown that detection of special 

subgraphs can simplify the path to finding a solution to the problem instance to a great 

extent. In the case of the Vertex Cover problem, the presence of a simple path of length 

(2k+1) in an instance (G,k) implies that (G,k) is a no instance or no cover of size kmax 

exists for the instance (G,k). 

Several other reduction or preprocessing techniques are discussed in [2]. Downey, 

Fellows and Stege [37] give a comprehensive outlook of the notion of Parameterized 

Complexity with special emphasis on the Vertex Cover problem. 

However, these reduction techniques or preprocessing techniques are not 

computationally intensive. This thesis does not implement these techniques on hardware. 

Rather we concentrate on the computationally intensive part, namely branching. 

 
2.4.2 Search Techniques for Finding a Solution to the Vertex Cover Problem 

The fundamental idea behind finding an optimal cover to the graph lies in the fact 

that any vertex (chosen at random) or all of its neighbors have to be in the cover for a 

solution to be obtained. This property of the vertex cover problem is exploited to find an 

optimal solution given a graph G(V,E) and a parameter k.  

In order that we minimize the number of iterations to find a solution, we choose 

vertices based on degree (rather than choose vertices at random). In this regard, it has 

been observed (from solutions) that, more often than not, the vertex of highest degree 

ends up being in the cover. By the property stated above, we can now start the algorithm 

with the assumption that the highest degree will be in the cover. 
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The algorithm then proceeds in a recursive fashion by adding more vertices or the 

neighbors of the vertices to the cover. Since there are two possible ways or forking or 

branching at each selected vertex, search tree algorithms are often referred to as 

branching algorithms [2].  

2.4.3 Obtaining an Initial Solution and the Backtracking Approach 

Rather than find a solution by an exhaustive search method, the branching 

algorithm proceeds by finding an initial partial solution, which may or may not represent 

the final correct solution. The algorithm then systematically proceeds by either finding a 

subset of the graph that represents the solution or by hitting a constraint that makes it 

impossible to process more nodes in the graph. In either case, the algorithm proceeds by 

returning to an earlier partial solution (stored in a stack) and taking the alternate choice. 

Thus we call this as a backtracking approach. 

Remark 1 

During the backtracking process, if the assumption that “ the maximum degree 

vertex is in the cover” does not hold and if the number of neighbors of the highest degree 

vertex is greater than the parameter k, then we can safely declare that no solution is 

possible for the requested parameter k.  

Remark 2 

During the backtracking process, if all the possible nodes (dictated by the 

algorithm) have been visited and no solution has been found, we can again declare that no 

solution is possible for the requested parameter k 
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2.4.4 Algorithmic Formulation 

The algorithmic formulation of obtaining an initial solution and the backtracking 

approach is described below. Given a graph G(V,E) and a parameter k, the algorithm for 

finding a cover of size k≤ is as follows 

while vertex_count k≤ { 

vertex of highest degree added to the cover 

vertex_count = vertex_count + 1 

if edgeless{ 

  solution found  done} 

} 

k_edit = k 

backtracking starts / continues:  

neighbors of k_edit vertex added to the cover 

k_new = k_new + 1 

if number_of_neighbors of most recently added vertex > k_new { 

 parameter value condition violated 

 k_edit = k_edit –1 

} 

elsif number_of_neighbors of most recently added vertex = k_new { 

 if edgeless{ 

   solution found  done} 

  else { 

   k_edit = k_edit –1} 
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   backtracking continues 

} 

else{ 

 number_of_neighbors of most recently added vertex < k_new { 

  while vertex_count k≤ { 

vertex of highest degree added to the cover 

vertex_count = vertex_count + 1 

if edgeless { 

  solution found  done} 

} 

  k_edit = k_edit –1 

  backtracking continues 

} 

if top of stack reached ( 

 declare no solution for requested parameter  

 } 

close 

 In this chapter, we discussed some of the key aspects of reconfigurable computing 

related to the hardware acceleration of optimization problems. In the next chapter, we 

discuss the actual implementation of the branching algorithm on the Pilchard 

reconfigurable platform. 
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Chapter 3 

Approaches to Branching Implementations 

 We seek to devise and develop efficient algorithms for solving large problem 

instances. Techniques such as the Brute-force and Bounded search trees are used to 

implement this. The bounded search tree technique is a commonly used approach for 

solving many interesting problems. The Brute-force technique as discussed below is a 

totally exhaustive technique in comparison to the bounded search technique that is 

selective in its search space.  

3.1 The Brute-Force Branching Technique 

 The brute-force branching technique as the name suggests, is an algorithm that 

performs a truly exhaustive search of the search space without exploiting any properties 

or regard to any sort of logical conclusions that can be derived from a graph. For 

example, In the Vertex Cover problem, given a graph G(V,E) and a parameter k, any 

vertex chosen or all of it neighbors have to in the cover.  

 The brute-force technique does not take into account any such property. Instead 

what it does is a fully exhaustive search of the search space. This is illustrated with the 

help of the following example. The graph considered in the example is shown in figure 

3.1. 
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Figure 3.1 A simple graph to illustrate branching techniques 

3.1.1 Why is the Brute-Force Technique Inefficient? 

 The search space that the brute force algorithm goes through before finding a 

solution is shown in table 3.1. The brute-force technique execution time grows 

exponentially with the value of the parameter k. For a graph of size k, the number of 

possible iterations or search spaces that the algorithm has to go through is 2k. For large 

problem instances, the brute force algorithm introduces redundancy. Table 3.1 shows an 

example of the exhaustiveness of the search approach. 

 From a hardware perspective, the brute force algorithm can be easily implemented 

as a modified counter. However, the catch is that the time required to find a solution also 

grows exponentially with the problem size. In the table shown below, the highlighted 

parts of the text represent cases, in which the brute-force algorithm does find a solution, 

although the number of vertices in the cover exceeds the parameter k. 

4

1 2

3

5
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Table 3.1 Search space for an instance (I,k) where k=2. 

 

Cover Vector Number of Iteration 

1 2 3 4 5 

Edgeless (Yes/No) Cover < 
k(Yes/No) 

1 0 0 0 0 1 No NA 
2 0 0 0 1 0 No NA 
3 0 0 0 1 1 No NA 
4 0 0 1 0 0 No NA 
5 0 0 1 0 1 No NA 
6 0 0 1 1 0 No NA 
7 0 0 1 1 1 Yes No 
8 0 1 0 0 0 No NA 
9 0 1 0 0 1 No NA 
10 0 1 0 1 0 No NA 
11 0 1 0 1 1 No NA 
12 0 1 1 0 0 No NA 
13 0 1 1 0 1 No NA 
14 0 1 1 1 0 Yes No 
15 0 1 1 1 1 No NA 
16 1 0 0 0 0 No NA 
17 1 0 0 0 1 No NA 
18 1 0 0 1 0 No NA 
19 1 0 0 1 1 No NA 
20 1 0 1 0 0 No NA 
21 1 0 1 0 1 Yes No 
22 1 0 1 1 0 No NA 
23 1 0 1 1 1 Yes No 
24 1 1 0 0 0 No NA 
25 1 1 0 0 1 No NA 
26 1 1 0 1 0 No NA 
27 1 1 0 1 1 Yes No 
28 1 1 1 0 0 No NA 
29 1 1 1 0 1 Yes No 
30 1 1 1 1 0 Yes No 
31 1 1 1 1 1 Yes No 
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 We can infer from table 3.1 that the brute force algorithm required 32 steps to 

arrive at a conclusion that no cover of size less than or equal to k exists. 

In table 3.1, the entire search space for the brute-force branching is shown. In the 

succeeding sections, we shall see how the bounded search technique is more efficient 

than the brute-force technque The search space of the brute-force technique grows 

exponentially as the size of the problem. In fact, adding just one more node to the 

example shown in figure 3.1 would double the existing search space. Hence the brute 

force is a computationally intensive algorithm that is impractical as the problem size 

scales up-to even modest graph sizes of 50 vertices 

 

3.1.2 Why the Bounded Search Technique? 

 It is imperative that we maintain a balanced decomposition of the search space to 

achieve scalability [38]. In a worst-case scenario, the asymptotically fastest FPT 

algorithm currently known for vertex cover is due to the work of Chen at al [39][38], and 

runs in )2852.1( knk +Ο . The brute force technique in comparison takes )( knΟ , to 

examine all subsets of size k. The bounded search tree technique consists of an 

exhaustive search in a tree whose size is bounded by a function of the parameter. The 

search for finding the cover is usually done using a depth-first search. The basis for 

selecting nodes to be in the cover is based on the highest current degree node. The tree 

branches at every selected node. At every selected node, there are two ways of branching. 

The first path is to assume that the selected node is in the cover and proceed. The second 

path is to assume that the neighbors of the selected vertex rather than the selected vertex 

are in the cover.  
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Thus the left subtree denotes the path that the selected vertex is in the cover. The 

right subtree on the other hand denotes the path that the neighbors of the selected vertex 

are in the cover. At this point, it is interesting to note that solutions are found faster if the 

neighbors of an earlier selected vertex are in the cover. This is because, when the selected 

vertex v is assumed to be not in the cover, all of its neighbors must be in the cover. If the 

degree of v is high, we converge faster to the solution.  

 If (G,k) is an instance of the vertex cover problem, the search for an 

answer(Yes/No) proceeds using the following search technique. Let xy be an edge in the 

graph G. Either x or y or both belong to the cover. We can take one of two paths here. We 

can either assume x to be in the cover and proceed or assume y to be in the cover and 

proceed recursively. If we assume x to be in the cover, the search proceeds with a new 

graph (G-x,k-1). Similarly, if we assume y to be in the cover, the search proceeds with a 

new graph (G-x,k-1). If (G-x,k-1) is edgeless, then we add x to the solution and stop. If 

not, we keep iteratively adding nodes or vertices of highest current degree and proceed. If 

the number of vertices added exceeds k, we retract (backtrack) the steps that we came 

through, and add the neighbors of the nodes that we had most recently added. Thus the 

number of possible covers in this particular search tree is 2k. 

 

3.2 Backtracking 

 The process of retracting the steps that the search tree came through initially and 

taking the path of the right subtree that was not taken previously is called backtracking. 

To illustrate this idea, we use the graph shown earlier in figure 3.1. This technique is 

computationally less intensive in comparison to the brute-forcce technique. The graph is 
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shown again in figure 3.2. Shown in figure 3.3 is the pictorial representation of the 

backtracking process. The reader will observe that the search space is now visibly 

reduced and that an answer (Yes/No) is found much quicker, in comparison to the brute-

force approach. This effect is more profound is large graph instances, wherein the brute 

force algorithm takes a longer time to find an answer. 

 

3.3 Hardware Implementation on the Pilchard 

 The branching process is found to be split-up into the following functions. 

1. Function to select the highest degree vertex based on the current graph 

2. Function to check if the graph is edgeless  

3. Function for backtracking and adding the neighbors of the most recently added 

vertex 

4. Function to maintain and update the stack (to store intermittent values of the 

cover vector at each leaf node) 

It is important that we design each of the above steps in such a way that we obtain 

maximum concurrency and thus generate an appreciable speed-up over the software 

version of branching. Keeping this mind, the above-mentioned blocks were designed to 

obtain maximum parallelism and concurrency. On closer analysis of the graphs, it was 

clear that one could obtain considerable speedups by improving upon those modules in 

which the software versions of branching consumed a lot of time. The four points 

mentioned above fell into this category and hence the motivation to devise efficient 

hardware implementation of the same.  
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Figure 3.2 A simple graph to illustrate the backtracking approach 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 3.3 The backtracking process 

4

1 2

3

5

C = { } 
k = 2 

C = {3} 
k = 1 

C = {3,4} 
k = 0 

C = {3,1,5}
k = -1 

C = {2,4} 
k = 0 

No No

No & Done



 27

3.3.1 Design of the Select Function- Ones Counting, an Important Combinational 

Block 

 The select vertex function systematically scans through each node of the graph 

and computes the degree of each node and thereby finds the maximum degree vertex 

based on the “current graph”. The word “current graph” is important here because the 

graph is assumed to be devoid of all edges that emanate from a vertex that has already 

been added to the cover. For example, for the graph instance shown in figure 3.1, at the 

end of the first iteration, the maximum degree vertex is 3. After vertex 3 has been added 

to the cover, all the edges that are incident/emanate on/from it are removed and the graph 

is modified as shown in figure 3.4. Figure 3.5 shows a further modified graph, after node 

4 has been removed. Now the maximum degree vertex is 4. In instances where there are 

more than one node that have the same maximum degree, the vertex that appears earlier 

in the search is added to the cover. For example, if in an instance, node 8 and 11 shares 

the same degree of say 56, node 8 is chosen ahead of 11. 

 The degree of a vertex is found by counting the number of incident edges it has. 

In an adjacency matrix, a ‘1’ represents the existence of an edge between any two nodes 

and a ‘0’ represents the absence of an edge. Hence to ascertain the degree of a node, we 

have to count the number of edges (represented by a ‘1’ in the adjacency matrix) that are 

currently not covered by any node in the graph. There are a number of ways to do this 

and the most commonly used ways are 

1. Using a sequential counter to count the number of ones 

2. Using look-up tables 

3. Using adder trees  
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Figure 3.4 After node 3 has been removed 

 
 
 
 

 
 

 

 

 

 

 

 

Figure 3.5 After node 4 has been removed, graph is still not edgeless 
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data(1)

data(2)

data(3)

data(15) 

All the above methods are discussed in the following sections 

3.3.1.1 Using a Sequential Counter to Count the Number of Ones 

 Several important algorithms include the step of counting the number of “1” bits 

in a data word. Shown in figure 3.6 is the pictorial arrangement of the adders for the 

proposed 16 bit ones counter. A behavioral VHDL program, as shown in figure 3.7, can 

describe ones counting very easily. The RTL description shown in figure 3.7 is that of an 

ones counter that capable of counting the number of ones in a 16 bit data word. Although, 

this program is fully synthesizable, it generates a very slow, inefficient realization with 

15 4-bit adders in series. 

 

  

 

 

 

 

 

 

 

 

  

Figure 3.6 Schematic of a sequential ones counter 

data(0)



 30

 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_unsigned.all; 
 
entity seq_count is 
port  (  

data_in: in STD_LOGIC_VECTOR (15 downto 0); 
ones_count: out STD_LOGIC_VECTOR (3 downto 0)  
); 

end seq_count; 
 
architecture seq_count_a of seq_count is 
 
begin 
process (data_in) 

variable tmp_ones_count : STD_LOGIC_VECTOR(3 downto 0); 
 
begin 
 
tmp_ones_count := "00000"; 
 
for i in 0 to 15 loop 

if (data_in(i) = '1' ) then  
 tmp_ones_count := tmp_ones_count + "0001"; 
end if; 

end loop; 
 
ones_count <= tmp_ones_count; 
 
end process; 
end seq_count_a; 
 

 

Figure 3.7 Sequential ones counter 
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3.3.1.2  Using Look Up Tables for Counting the Number of Ones 

 As the name suggest, look up tables “look up” the value for a set of data inputs, 

from a pre-determined list of values. Since they do not need to explicitly perform 

calculations, they possess very little delay.  

 However, the drawback in using look up tables is their size. A complete look up 

table has to contain all the combinations of the possible inputs. In the case of counting the 

number of ones from a data word of 16 bits, there are 216 possibilities.  

 Shown in figure 3.8 is the layout of the 16-bit look up table.To generate this look 

up table, MATLAB® was used as a scripting tool. This script is shown in figure 3.9.  

 

 

Figure 3.8 Layout of a 16 bit look up table 
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%function vhd_gen(n,bit_width,LUT_size) 
%profile on -detail builtin 
clc 
clear; 
close all; 
home; 
LUT_size=16; 
n=2048; 
bit_width=16; 
i=0:n; 
s=dec2bin(i,bit_width); 
d = sum(s,2); 
temp=d(1); 
final_one=dec2bin(d-temp); 
[x,sum_width]=size(final_one); 
 
%opening file for writing 
 
fname=sprintf('vhd_gen%d.vhd',LUT_size); 
fprintf('creating file %s\n',fname); 
fid=fopen(fname,'w'); 
%writing beginning stuff to the file 
 
fprintf(fid,'-- vhdl file for 16 bit LUT \n'); 
fprintf(fid,'-- %s',fname); 
fprintf(fid,' contains %d points of %d bit width \n',n,bit_width); 
 
fprintf(fid,'LIBRARY ieee;\nUSE ieee.std_logic_1164.ALL;\nUSE 
ieee.std_logic_arith.ALL;\n'); 
fprintf(fid,'\n\nENTITY lut16 IS\n    GENERIC(\n'); 
fprintf(fid,'        bit_width : integer :=%d;\n',bit_width); 
fprintf(fid,'        sum_width : integer :=%d\n',sum_width); 
fprintf(fid,'    );\n    PORT(\n'); 
fprintf(fid,'        bit_vector :in std_logic_vector (%d downto 
0);\n',bit_width-1); 
fprintf(fid,'        one_count : OUT std_logic_vector ((sum_width-1) 
DOWNTO 0));\n'); 
fprintf(fid,'end lut16;\n'); 
 
%begin writing architecture 
 
fprintf(fid,'ARCHITECTURE behavior OF lut16 IS\n\n BEGIN\n\n'); 
fprintf(fid,'process(bit_vector)\nbegin\n    case bit_vector is\n'); 
 
for i=1:n+1 
        fprintf(fid,'        when "'); 
     
 

Figure 3.9  Matlab code to generate a 16 bit look up table 
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        for j=1:bit_width 
            fprintf(fid,'%s',s(i,j)); 
        end 
        fprintf(fid,'" => '); 
        fprintf(fid,'one_count <= "'); 
 
        for k=1:sum_width 
            fprintf(fid,'%s',final_one(i,k)); 
        end 
         
        fprintf(fid,'";\n'); 
end 
 
fprintf(fid,'        when others => one_count <= "11111";\n'); 
 
%fprintf(fid,'        when others => \n'); 
fprintf(fid,'    end case;\n\n'); 
fprintf(fid,'end process;\nEND behavior;\n'); 
fclose(fid); 
disp('done') 
%profile report 
 

Figure 3.9 (Continued) 

 

3.3.1.2.1 Synthesis and Timing Results for the 16 bit Look Up Table 

 As expected, the look up table turned out be very bulky and occupied a sizeable 

part of the FPGA. The 16-bit look up table occupied 151 out of the available 12288 

slices. Although this appears as a small number, this number would pose a severe 

bottleneck when the problem size is scaled up. For example, when the problem size is 

256, we would require a minimum of 16 look up tables. This translates to the look up 

tables occupying 2416 slices, or 20 % of the chip, a certainly unacceptable number. 

Moreover, the bulky nature of the look up tables makes it difficult for the place and route 

tool to efficiently place and route the design for obtaining good speed. 
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 In fact, these look up tables themselves take a large amount of time to go through 

the synthesis, mapping and place and route process. A hierarchical synthesis method was 

used to synthesize them. Synopsys FPGA compiler was used to synthesize them. 

Synthesis alone took close to 36 hours.  

 Even though the already synthesized look up table was used in the overall design, 

the final design exhibited huge synthesis and place and route times. Hence the design 

flow from a RTL level description to a bit-level generation took close to 2 hours at times.  

Due to all these factors, the adder tree approach discussed in the next section was 

used to count the number of ones. 

3.3.1.3 Using Adder Trees to Count the Number of Ones 

To synthesize a more efficient realization of the ones counter, we must come up 

with an efficient structure and then write an architecture that describes it. Synopsys 

Designware components were used to implement the individual adders.  

The adder trees occupied a very low percentage area of the chip in comparison to 

the look up table. The number of slices that the adder tree occupied was a mere 18 slices 

in comparison to the 151 occupied by the look up table. Since the adder trees were not 

bulky, the processes of synthesizing and place and route became easier and more 

importantly faster!  

 

3.3.1.4 Function to Select the Highest Degree Vertex Based on the Current Graph 

 The “select highest degree vertex” function is implemented based on the current 

graph and the current cover vector. At any point, nodes that are already present in the 
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cover are not considered towards determining the current highest degree vertex. To 

illustrate this further, in the example shown in figure 3.10, the highest degree vertices are 

3 and 4. 

By our search technique, since 3 appears earlier in the search, node 3 is assumed 

to be included in the cover. Now all the edges that are incident on 3 are removed and a 

new graph is constructed. It can be seen from the modified graph shown in figure 3.11 

that all edges incident on node 3 have been removed. The next call to the function “select 

highest degree vertex is based on this new graph as shown in figure 3.11. In this new 

modified graph, the highest degree vertex is 4. It is this evident, as to the choise of high 

degree vertices. Shown in figure 3.12 is the flowchart for the implementation of the 

“select vertex” function. 

 

 

Figure 3.10     Graph to illustrate 

“select highest degree vertex” process 

 

 

 
 

Figure 3.11     Modified graph 
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Figure 3.12 Flowchart for implementing the function “select vertex” 

Set base degree to 0.
Set node to 0 
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The state machine representation of the “select highest degree” function is shown in 

figure 3.13. Also shown in table 3.2 is the state machine encodings of the “select highest 

degree vertex” function. 

3.3.2 Function to Check if the Graph is Edgeless Based on the Current Cover 

Vector 

 The “edgeless check” function is implemented based on the current graph and the 

current cover vector. If a node is found to be in the cover vector, all the edges incident on 

it are covered, and this is a forgone conclusion. However, if a node is not present in the 

cover, we will have to check if all the edges that are incident on it are covered. Even if 

one of the edges is not covered, we declare that the graph is not fully edgeless and the 

branching process is continued from the point it was stopped. The flow chart for the 

implementation of the edgeless check function is shown in figure 3.14. Shown in figure 

3.15 is the state machine representation of the “edgeless check” function. Also shown in 

table 3.3 is the state machine encodings of the same. 

 

3.3.3 Recursive Implementation - Maintaining and Updating the Stack 

 Unlike the C programming language that dynamically updates and stores the stack 

for each recursive function call, VHDL or for that matter, no hardware description 

language supports arbitrary depth recursion. Any kind of recursive implementation must 

have a bound on it at run time.  

Hence, stacks have to be exclusively created in advance for implementation that 

are recursive. The branching process being an inherently recursive implementation, 

warrants the creation of such a stack to store the intermittent values of the cover vector. 
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Figure 3.13 State machine implementation of the “select highest degree vertex 

function” 

Table 3.2 State machine implementation of the “select highest degree vertex 

function” 

 
State Machine Encoding Function of state 

0000 Idle State 
0001 Initialization State 
0010 Adder Pipeline stage 1 
0011 Adder Pipeline stage 2 
0100 Adder Pipeline stage 3 
0101 Adder Pipeline stage 4 
0110 Address counter check state & Degree check state 
0111 Wait state & Address increment state 
1000 Degree check of final address 
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Figure 3.14 Flowchart for implementing the function “edgeless check” 

Set base degree to 0.
Set node to 0 

if addr_cnt =
255 

addr_cnt = addr_cnt + 1
addr = addr + 1 

Access next node 

End edgeless check

Yes

Yes

No

If cover (node)
= 1 

neighbor_edges(i) = ‘1’ if adjlist(i) = ‘1’ and cover(i) = ‘0’ 

No

Yes

if neighbor_edges
= all ones

Yes

Declare graph is 
edgeless 

Graph is not 
edgeless 

No



 40

 

Figure 3.15 State machine implementation of the “edgeless check” function 

 
 

Table 3.3 State machine implementation of the “edgeless check” function 

 
 

State Machine Encoding Function of state 
000 Idle state 
001 Initialization state  
010 Counter check state 
011 Edgeless vector check 
100 Address increment and wait state 
101 Edgeless check of last address 
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subtype reg is std_logic_vector(63 downto 0); 

type regArray is array (integer range <>) of reg; 

signal registerFile : regArray(0 to 63); 

Figure 3.16 Creating a stack on chip 

One of the simplest methods of creating a stack on chip is shown in figure 3.16. 

The stack shown in figure 3.16 has a width of 64 and a depth of 64. This approach did not 

pose any problems for small problem instances. For small problem instances of size 16 

and 32, the total area occupied on the chip was not an appreciable one. There were no 

errors or discrepancies in timing too. Shown in table 3.4 and table 3.5 is the respective 

area and timing report’s of the 16 and 32 bit problem instances. However, when the 

problem size was scaled up to a size of 64, an exponential increase in the area occupied 

was observed. The timing results were still worse, with the timing even failing to meet 

the minimum required speed of 6 MHz!  

One of the other drawbacks of using this approach was that the time taken for 

synthesis and place and route was agonizingly huge. It turns out any kind of exercise to 

build a large memory on chip is just not worth it, be it an FPGA or an ASIC. Shown in 

table 3.6 is the time taken for the place and route process for different problem instances.  

It was apparent that, building a stack or memory on chip, using the real estate on 

chip was a futile exercise. It was beneficial to use this approach for small instances, but a 

“strict no” for bigger problem sizes. One of the possible alternatives was to use a memory 

component from external vendors such as Synopsys Designware. However, 

documentation manuals [42] 
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Table 3.4 Area occupied by each problem instance 

 

 

 

Table 3.5 Timing report for each problem instance 

 

Problem 

Instance size 

Attempted Maximum 

Speed (MHz) 

Tool Generated 

Maximum Speed 

(MHz) 

Timing 

Failure/Success 

16 33 35 Successful 

32 20 22 Successful 

64 6 On the order of a few 

kilohertz 

Failed 

 

Problem Instance Size Number of slices Percentage occupation on chip 

16 709 out of 12288 5% 

32 2079 out of 12288 16% 

64 9315 out of 12288 
 75% 
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Table 3.6 Time for place and route for each problem instance 

 

Problem Instance size Time for Place and Route 

16 7 minutes 

32 27 minutes 

64 2 hours and 17 minutes 

 

from Designware suggested that their RAM’s and ROM’s were to be used only as a 

scratch-pad memory and not for implementing huge data-paths on chip. 

 The only other viable alternative was to use the Xilinx Dual Port RAM on the 

chip. This approach was not pursued in the beginning because of latency issues. Shown in 

figure 3.17 and figure 3.18 are the read and write timing diagrams [43] for the Xilinx 

Dual Port RAM. It is evident from the figure that there is a definite lag (delay) between 

the onset of an address on the address bus and the appearance of the contents of the 

address on the output data bus. 

3.4 Memory Issues for Implementation of Graphs of Size Greater than 64 

 One of the main limitations of the Pilchard reconfigurable platform is the limited 

addressing capability. Although, 14 address lines are provided, only 8 of then can 

actually be used. Hence, the designer is limited to addressing just 28 or 256 addresses 

from the console. Compounded to this problem is the capability of the data bus of the 

Pilchard. The input and output data bus of the Pilchard reconfigurable platform being  
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Figure 3.17 Timing diagram of writing to the dual port RAM [43] 

 
 
 

 

Figure 3.18 Timing diagram of reading from the dual port RAM [43] 
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limited to a width of 64 bits provides a serious impediment to the efficient execution of 

the algorithm. 

 For graphs of size 64 and less, this was never a problem. Trouble begins when we 

target graphs of size greater than 64. The data structure used in the work here is an 

adjacency matrix, essentially a square matrix. Once the size of the adjacency matrix 

exceeds 64, we cannot transfer the entire contents of a row or a column of the matrix in a 

single transaction. Questions then arise as to a suitable method of transferring the entire 

adjacency matrix onto the onboard Xilinx Virtex RAM. Several ideas were experimented 

with. They are discussed in the sections that follow. 

3.4.1 Method 1: Using the Symmetry of the Adjacency Matrix 

One of the first methods to be discussed was the exploitation of the symmetries of the 

adjacency matrix. Since the adjacency matrix is symmetrical about the diagonal, it 

naturally becomes a choice. Given either the upper triangular or the lower triangular 

matrix of any adjacency matrix, it is easy to reconstruct the graph because of the 

symmetries. The following algorithm extracts the row of the vertex without re-

constructing the entire graph. With the example graph and adjacency matrix shown in 

figure 3.19 and figure 3.20, the algorithm is verified.  

In the adjacency matrix representation of the sample graph shown in figure 3.16, 

1,2,3,4,5 represent the vertices. A, B, C, D, E are variables that are either 1's or 0's that 

represent the existence of a connection between the vertices. Hence the dotted lines 

denoted the existence of an edge. 
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Figure 3.19 Sample graph of size 5 

 

 
 
 
 
 

 1 2 3 4 5 

1 0 A B C D 

2 A 0 E F G 

3 B E 0 H I 

4 C F H 0 J 

5 D G I J 0 

Figure 3.20 Adjacency matrix representation of figure 3.19 

1 2

4 3

5

A

B
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D
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F
G

H

I
J
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The number of elements required to represent the 1st row of an adjacency matrix 

of n vertices, excluding the element along the diagonal of the matrix is (n-1). 

Similarly the number of elements required to represent the 2nd row of an 

adjacency matrix of n vertices, excluding the element along the diagonal of the matrix is 

(n-2). 

Going by the same lines of reduction, the number of elements required to 

represent the mth row of an adjacency matrix of n vertices, excluding the element along 

the diagonal of the matrix is (n-m). 

Therefore, the total number of elements required to represent the entire adjacency 

matrix  

01).........()3)2()1( ++−+−+−+− mnnnn  

Note that the last row needs 0 unique elements to represent it. 

Hence, it is fairly evident that the number of elements required to represent a graph of 

size n is just the elements of the upper triangular matrix and is given by 

Number of elements = ]2)1(*[ ÷−nn  

In the graph shown in figure 3.17, the graph is of size 5 and hence the number of 

elements required is  

10]2)15(*5[ =÷−  

Having derived this, we now aim to obtain the row vector corresponding to a particular 

vertex “i”. The row vector corresponding to any vertex is divided into two parts, the 

divider being the “0” along the diagonal. We shall use this property to extract the row 

vector corresponding to the vertex “i”.  
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This process is split into 3 stages: 

Pick until (i-1) elements of a total of n elements in the order shown below, where n 

represents the size of the square matrix. 

(i-1)th element, (i+2)nd element, (i+4)th element, (i+6)th element.. 

……………..(i-1)elements 

• After we extract the above elements, we then append a zero this result 

• All that we are left with is to add the rest of the elements. We have already 

extracted i elements. We have to extract the remaining (n-i) elements. So we add 

the remaining (n-i) elements starting from the element represented by the 

expression  

]1))2/((*)1[( +−− ini  

• Exceptions to handle  

The algorithm will hold for all the vertices except the last element of the last 

vertex. But in any case, we will be handling the first and the last vertex separately. 

3.4.1.1 Limitations of Using this Approach 

The limitation of using this approach is that a lot of time is wasted in 

reconstructing the matrix every time a row of the matrix needs to be addressed. The 

branching algorithm is a highly data intensive algorithm in the sense that the access to the 

adjacency matrix is frequent. Any approach that wastes a lot of time reconstructing the 
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matrix would add a large overhead to the algorithm. Hence this approach was not used to 

address the memory problem that we were facing. 

3.4.2 Method 2: Using More than one Address to Hold the Contents of a Row of an 

Adjacency Matrix 

The maximum number of addressable locations in the Pilchard reconfigurable 

platform is 256. The input data bus of the Pilchard supported 64 bits of data transfer. A 

work around solution had to be thought of to address this data width problem as the 

adjacency matrices are square in nature. Hence an adjacency matrix of size greater than 

64 would have data width greater than 64. Rather than use the address lines for 

addressing, the data input lines were used both for addressing and data input. The first 10 

bits of the input data bus was used for addressing and the last 32 bits were used for data 

transfer. The rest of the bits were unused. Figure 3.18 gives an accurate idea of the 

addressing and data transfer process. 

4342144 344 21444 3444 21
gAddresbitsUnusedinputData sin__

0,.......8,9,10..........29,31,32,.......59,60,61,62,63  

For example, a row of an adjacency matrix of size 128 would be broken up into 4 

segments each of 32 bits, before transferring it to the onboard Xilinx Virtex RAM. In the 

example, the 128 bit wide vector is split into four contiguous segments of 32 bits each. 

To access a row of the adjacency matrix, one would have to address a number of 

address location, depending on the problem size. For example, to access the contents of a 

single row of a graph of size 128, we would require 4 address reads. For a graph of size 

256, one would require 8 address reads.  
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3.4.2.1 Advantages and Disadvantages of Using this Approach  

By using this approach, the overhead of reconstructing the matrix is removed. 

Each row of the adjacency matrix is stored as a separate entity and so no time is wasted in 

trying to reconstruct the contents of a row of the adjacency matrix.  

While this does not pose a problem in respect of an implementation point of view, 

accessing a row requires multiple reads, again an overhead considering the frequency 

with which rows of the adjacency matrix are addressed. Hence this approach was dropped 

in favor of an approach discussed in the next section. 

3.4.3 Using a State Machine to Re-construct the Entire Adjacency Matrix  

We observed that methods 1 and 2, proved inefficient and possessed large 

overheads, as far as the final implementation of the branching algorithm was concerned. 

Methods (1) and (2) exposed the chink in the armory of the branching algorithm. We 

needed the data corresponding to a row in a single shot rather than in spurts.  

Data had to be arranged such that each row of the graph occupied exactly one row 

of the RAM. This way, there would be no overhead on the Branching algorithm on chip, 

as there would be only one memory access corresponding to the adjacency list 

corresponding to a vertex. So method (2) was modified to facilitate the re-construction of 

the matrix before the actual branching implementation commenced. 

Shown in figure 3.21 is the devided algorithm to use more than one address to 

store the contents of one row. The only overhead in this approach would be that of the 

initial concatenation process. This however can be safely neglected, as it is very small. 

The algorithm for method (3) is discussed in figure 3.22 
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10101101010110101010101010110101    01011011011011101101101101110111 

10101101010110101010101010110101    01011011011011101101101101110111 

 

 

 

10110101011010101110111011011010    11010111011010101101010101010111 

10101101010110101010101010110101    01011011011011101101101101110111 

 

 

 
 
 

 

Figure 3.21 Using more than one address to store the contents of one row 

 

(31 downto 0):addr=1 

(63 downto 32) :addr=2 

(95 downto 64) :addr=3 

(127 downto 96) :addr=4 

(95 downto 64) :addr=n-1 

(127 downto 96) :addr=n 
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The following algorithm lists the steps involved in writing an adjacency matrix of size 

256 into the Xilinx Virtex RAM on the Pilchard. 

1. Break each row of the adjacency matrix into 32 bit chunks 

2. Using the write64 C routine of the Pilchard Interface, write the entire contents of a 

row of the matrix, in 8 steps. For example, the first 32 bit chunk would be written to 

the 1st address, the 2nd 32 bit chunk to the 2nd address and so on. 

3. After the entire matrix has been written in this fashion, use the “addr” line of the 

Pilchard to initiate the concatenation process 

4. The concatenation process now starts.  

5. After the state machine completes the entire process of concatenation, a 

“finish_load” signal is made high to signal the fact that the concatenation process is 

now complete and that the branching process can commence.  

 

Figure 3.22 Algorithm used for the RAM concatenation process 
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3.5 Reading the Final Output 

 In problems of sizes greater than 64, the final output, namely the cover vector is 

of size equal to the problem size. However, the output data line of the Pilchard platform 

supports just 64 bits. Hence, we have to read the final output in spurts of 64 bits. To do 

this, the final output has to be stored in some kind of a buffer or RAM in order that we 

read the bits in order.  

For this purpose, an output RAM was created to store the cover vector before 

reading it out. Shown in table 3.7 is the breakup of the number of RAM blocks used for 

different problem sizes.  
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Table 3.7 Number of RAM blocks used for different problem sizes 

 

Problem 
Size 

Adjacency 
matrix 
sizeφ 

Total No. 
of RAM 
blocks 

required 
128 129 x 128 21 
256 257 x 256 81 
512 513 x 512 321 
1024 1025x1024 1281 
2048 2049x2048 5121 
4096 4097x4096 20481 

 

 

 

φ - Size of adjacency matrix is 129 x129 because the value of k too is fed into the initial 

input matrix 
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Chapter 4 

Results 

4.1 Test Vector Generation 

 For the purpose of debugging, test benches had to be built to simulate and debug 

in case of erroneous results. Unlike other test benches, which are written from scratch, in 

the branching implementation, automatic test bench generation became a necessity 

simply because of the huge amount of data involved. Scripts written in MATLAB were 

used to generate test benches from the original adjacency matrix.  

Some of the important signals or variables in the branching process are mentioned 

below. 

1. order_vector – Stores the order in which the  vertices are added to the cover.  

2. stack_indicator – Serves to maintain the order in which the branching takes place. 

When the branching implementation steps to the backtracking process, it is 

imperative that we process all possible branches and do not miss any part of the 

search space. The stack indicator directs the implementation to the path it should 

take next, in an event of a solution not being found. 

3. mask vector – Represents the cover of the process at any instant of time. 
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Table 4.1 Number of slices occupied by graphs of different sizes 

Graph Size Number of Slices occupied Percentage Area Occupation

16 410 /12288 3 

64 1287/12288 10 

128 2613/12288 21 

256 5898/12288 48 

 

4.2 Hardware Implementation – Area Results 

Shown in table 4.1 is the number of slices occupied by graphs of different 

sizes. Also shown in figure 4.1 is the area distribution for graphs of different sizes 

using a stack implemented with the following two methods: 

1. Stack implemented using transistors on chip 

2. Stack implemented using the Xilinx Virtex RAM 

The Dual-Port Block Memory module for the Virtex 1000E part is composed of 

single or multiple 4Kilo-bits blocks called Select-RAM+™. The dual port memory has 

two independent ports that enable shared access to a single memory location. 

Simultaneous reads from the same memory location may occur, but all other 

simultaneous, reading-from, and writing to the same memory location will result in  
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Comparison of areas with different stack implementations
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Figure 4.1 Percentage area occupancy with different stack implementation 

correct data being written into the memory, but invalid data being read. The Virtex 1000E 

possesses 96 RAM blocks. It is interesting to note that the problem scales promisingly 

using a stack implemented with the Xilinx Virtex RAM. The data for the graphs of sizes 

128 and 256 for the stack on chip implementation are not shown in figure 4.1 as they 

exceed the area of the chip. Hence these values were not shown in the figure 

4.3 Hardware Implementation – Circuit Speed Results 

 In order that we obtain sufficient speeds of operation, critical paths in the design 

have to be broken to generate increased speeds of operation. Shown in table 4.2 are the 

speeds of operation with the stack implemented on chip.  

It can be observed from table 4.2 that the 64 bit branching implementation with 

the stack implemented on chip fails to meet the timing requirements. Although the 

expected critical path in the design, namely the signal that computes the neighbor count 

of each vertex has been pipelined to increase the speed of the operations, the 64-bit  
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Table 4.2 Circuit speed of operation with stack implemented on chip 

Graph 

Size 

Percentage Area 

Occupation 

Attempted Frequency 

(MHz) 

Tool Generated 

Frequency 

(MHz) 

Failure/ 

Success

16 5 33 35 Success

32 16 20 22 Success

64 75 6 In the order of a few 

KHz 

Failure 

128 Would have run 

out of space 

---- --- --- 

256 Would have run 

out of space 

--- --- --- 
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implementation which fails miserably to meet even the lowest the timing constraint of 6 

MHz. This timing failure can be attributed to the fact that the place and route process is 

severely impeded by the sheer volume of the design that it has to route.  

However, in case of the implementation, with the stack being implemented on the 

Virtex RAM, the problem scales appreciably to allow for higher speeds of operation. 

In direct contrast to the above seen results, the circuit implemented with the stack 

on the Virtex Block RAM, scales appreciably with good speeds of operation. Shown in 

table 4.3 are the speeds of operation for this approach. 

4.4 Comparison of Software and Hardware Execution Time 

 The hardware and software branching implementations were executed and tested 

on randomly generated graphs. The hardware specifications of the machines on which the 

software implementation of branching was executed are shown in table 4.4 

Shown in table 4.5 are the software and hardware execution times for random 

graphs. Speedups of several orders of magnitude have been obtained with the hardware 

implementation over the software implementation. The speedups obtained with the test 

graphs, range from a minimum of 59 to a maximum of 127. The minimum speedups were 

obtained on sparse graphs, which have relatively lesser edges. Lesser edges reduce the 

search space that the branching process has to cover and hence the lesser speedups. 

Shown in figure 4.2 is a plot of the speedups obtained with the hardware 

branching implementation. The average speedup with the tested graphs was found to be 

93 
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Table 4.3 Circuit speed of operation with stack implemented on the Virtex 

RAM 

Graph Size Percentage Area 

Occupation 

Frequency (MHz) Failure/ 

Success 

16 3 40 Success 

64 10 33 Success 

128 21 33 Success 

256 48 25 Success 

512 25-35 on the latest Virtex2 

Pro 

25(expected) Expected success 

1024 Close to 75 on the latest 

Virtex2Pro 

12.5(expected) Expected success 
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Table 4.4 Hardware specifications of the software platform 

Machine 

hardware 

Sun4u Pentium III 

OS version 5.8 Mandrake Linux 2.4 

Processor type Sparcv9 @ 450 MHz, 

Dual processors 

Pentium III @ 

800 MHz 

Memory 2048 Mbytes 2048 Mbytes 
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Table 4.5  Comparison of hardware and software execution times 

Graph  

Size 

Cover  

Size 

Software  

Runtime- 

Sun SparcV9 

@ 450 Mhz 

(seconds) 

Software  

Runtime- 

Pentium III  

@ 800 MHz

(seconds) 

FPGA 

Runtime 

(seconds) 

Instance 

Type 

Speedup 

in  

comparison to 

the Sun Sparc 

machines 

256 248 1.959389 0.702033 .016131 Yes 121 

256 247 2.154869 0.923886 .023092 Yes 93 

256 246 3.624747 1.324847 .034942 Yes 103 

256 245 16.612613 6.685848 .187441 Yes 88 

256 244 1294 seconds 502 14.758701 Yes 88 

256 243 2949 1119 32.134554 No 92 

256 242 2183 seconds 886 24.889479 No 90 

256 245 4.674909 1.824063 .051410 Yes 91 

256 244 3748 seconds 1535 44.217833 No 85 

256 243 3845 seconds 1218 34.311693 No 88 

256 225 175.631178 72.568051 2.630510 No 66 

256 200 34.138157 12.647959 .323884 No 105 

256 100 .759341 0.315154 .006982 No 108 

256 160 4.540354 1.795218 .042833 No 106 
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Table 4.5 (Contd.) 

256 150 1.479390 0.602138 .014585 No 101 

256 25 .706478 0.286341 .011974 Yes 59 

256 24 .666915 0.259659 .009888 No 67 

256 40 .365398 0.156231 .002860 No 127 

 

. 

 

Figure 4.2 Speedup plot 
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Chapter 5 

Future Work 

What has been discussed and implemented in this work is just the tip of the 

iceberg. There is more to work on (as always). The Vertex Cover problem is just a 

prototype implementation that we have targeted as a part of an ongoing effort to target 

hard problems that require considerable amount of software computing power. Many 

CAD problems are NP-complete and hence we have at our disposal an entire suite of 

problems to tackle.  

An immediate requirement for the vertex cover problem is to scale up to larger 

sized graphs. The maximum sized graph that has been implemented here is just 256, still 

a relatively small. What would be desirable is to interconnect the reconfigurable nodes 

with Netsolve. This way, any problem that takes more than a pre-determined amount of 

time to execute on hardware could be transferred to the reconfigurable platform.  

There are several other issues to be dealt with too. The whole notion of 

developing a high performance reconfigurable network involves issues such as efficient 

load balancing, scheduling, modeling and analysis of high performance reconfigurable 

systems. The field of high performance reconfigurable systems is still a vastly unexplored 

area with ample scope for research. The final objective is to utilize the inherent 
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computing power of reconfigurable networks by building an array of efficient systems 

that permit the easy and efficient flow of information between hardware and software. 

The work that has been shown here is merely a first step in this direction. 
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PILCHARD.VHD 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity pilchard is 
port  

( 
PADS_exchecker_reset: in std_logic; 
PADS_dimm_ck: in std_logic; 
PADS_dimm_cke: in std_logic_vector(1 downto 0); 
PADS_dimm_ras: in std_logic; 
PADS_dimm_cas: in std_logic; 
PADS_dimm_we: in std_logic; 
PADS_dimm_s: std_logic_vector(3 downto 0); 
PADS_dimm_a: in std_logic_vector(13 downto 0); 
PADS_dimm_ba: in std_logic_vector(1 downto 0); 
PADS_dimm_rege: in std_logic; 
PADS_dimm_d: inout std_logic_vector(63 downto 0); 
PADS_dimm_cb: inout std_logic_vector(7 downto 0); 
PADS_dimm_dqmb: in std_logic_vector(7 downto 0); 
PADS_dimm_scl: in std_logic; 
PADS_dimm_sda: inout std_logic; 
PADS_dimm_sa: in std_logic_vector(2 downto 0); 
PADS_dimm_wp: in std_logic; 
PADS_io_conn: inout std_logic_vector(27 downto 0)  
); 

end pilchard; 
 
architecture syn of pilchard is 
 
component INV 
port 

( 
O: out std_logic; 
I: in std_logic 
); 

end component; 
 
component BUF 
port 

( 
I: in std_logic; 
O: out std_logic  
); 
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end component; 
 
component BUFG 
port  

( 
I: in std_logic; 
O: out std_logic 
); 

end component; 
 
component CLKDLLHF is 
port 

( 
CLKIN: in std_logic; 
CLKFB: in std_logic; 
RST: in std_logic; 
CLK0: out std_logic; 
CLK180: out std_logic; 
CLKDV: out std_logic; 
LOCKED: out std_logic 
); 

end component; 
 
component FDC is 
port 

( 
C: in std_logic; 
CLR: in std_logic; 
D: in std_logic; 
Q: out std_logic 
); 

end component; 
 
component IBUF 
port 

( 
I: in std_logic; 
O: out std_logic 
); 

end component; 
 
component IBUFG 
port 
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( 
I: in std_logic; 
O: out std_logic 
); 

end component; 
 
component IOB_FDC is 
port 

( 
C: in std_logic; 
CLR: in std_logic; 
D: in std_logic; 
Q: out std_logic 
); 

end component; 
 
component IOBUF 
port 

( 
I: in std_logic; 
O: out std_logic; 
T: in std_logic; 
IO: inout std_logic 
); 

end component; 
 
component OBUF 
port 

( 
I: in std_logic; 
O: out std_logic 
); 

end component; 
 
component STARTUP_VIRTEX 
port 

( 
GSR: in std_logic; 
GTS: in std_logic; 
CLK: in std_logic 
); 

end component; 
 
component pcore 
port 
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( 
clk: in std_logic; 
clkdiv: in std_logic; 
rst: in std_logic; 
read: in std_logic; 
write: in std_logic; 
addr: in std_logic_vector(13 downto 0); 
din: in std_logic_vector(63 downto 0); 
dout: out std_logic_vector(63 downto 0); 
dmask: in std_logic_vector(63 downto 0); 
extin: in std_logic_vector(25 downto 0); 
extout: out std_logic_vector(25 downto 0); 
extctrl: out std_logic_vector(25 downto 0) 
); 

end component; 
 
signal clkdllhf_clk0: std_logic; 
signal clkdllhf_clkdiv: std_logic; 
signal dimm_ck_bufg: std_logic; 
signal dimm_s_ibuf: std_logic; 
signal dimm_ras_ibuf: std_logic; 
signal dimm_cas_ibuf: std_logic; 
signal dimm_we_ibuf: std_logic; 
signal dimm_s_ibuf_d: std_logic; 
signal dimm_ras_ibuf_d: std_logic; 
signal dimm_cas_ibuf_d: std_logic; 
signal dimm_we_ibuf_d: std_logic; 
signal dimm_d_iobuf_i: std_logic_vector(63 downto 0); 
signal dimm_d_iobuf_o: std_logic_vector(63 downto 0); 
signal dimm_d_iobuf_t: std_logic_vector(63 downto 0); 
signal dimm_a_ibuf: std_logic_vector(14 downto 0); 
signal dimm_dqmb_ibuf: std_logic_vector(7 downto 0); 
signal io_conn_iobuf_i: std_logic_vector(27 downto 0); 
signal io_conn_iobuf_o: std_logic_vector(27 downto 0); 
signal io_conn_iobuf_t: std_logic_vector(27 downto 0); 
signal s,ras,cas,we : std_logic; 
signal VDD: std_logic; 
signal GND: std_logic; 
signal CLK: std_logic; 
signal CLKDIV: std_logic; 
signal RESET: std_logic; 
signal READ: std_logic; 
signal WRITE: std_logic; 
signal READ_p: std_logic; 
signal WRITE_p: std_logic; 



 78

signal READ_n: std_logic; 
signal READ_buf: std_logic; 
signal WRITE_buf: std_logic; 
signal READ_d: std_logic; 
signal WRITE_d: std_logic; 
signal READ_d_n: std_logic; 
signal READ_d_n_buf: std_logic; 
signal pcore_addr_raw: std_logic_vector(13 downto 0); 
signal pcore_addr: std_logic_vector(13 downto 0); 
signal pcore_din: std_logic_vector(63 downto 0); 
signal pcore_dout: std_logic_vector(63 downto 0); 
signal pcore_dmask: std_logic_vector(63 downto 0); 
signal pcore_extin: std_logic_vector(25 downto 0); 
signal pcore_extout: std_logic_vector(25 downto 0); 
signal pcore_extctrl: std_logic_vector(25 downto 0); 
signal pcore_dqmb: std_logic_vector(7 downto 0); 
 
-- CLKDIV frequency control, default is 2 
-- uncomment the following lines so as to redefined the clock rate 
-- given by clkdiv 
--attribute CLKDV_DIVIDE: string; 
--attribute CLKDV_DIVIDE of U_clkdllhf: label is "3"; -- 1.5, 2, 2.5, 3, 4, 5, 8, or 16 ----
--(default value is 2) 
 
begin 
 
VDD <= '1'; 
GND <= '0'; 
 
U_ck_bufg: IBUFG port map 

( 
I => PADS_dimm_ck, 
O => dimm_ck_bufg 
); 

 
U_reset_ibuf: IBUF port map 

( 
I => PADS_exchecker_reset, 
O => RESET 
); 

 
U_clkdllhf: CLKDLLHF port map 

( 
CLKIN => dimm_ck_bufg, 
CLKFB => CLK, 
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RST => RESET, 
CLK0 => clkdllhf_clk0, 
CLK180 => open, 
CLKDV => clkdllhf_clkdiv, 
LOCKED => open 
); 
 

U_clkdllhf_clk0_bufg: BUFG port map 
( 
I => clkdllhf_clk0, 
O => CLK 
); 

 
U_clkdllhf_clkdiv_bufg: BUFG port map 

( 
I => clkdllhf_clkdiv, 
O => CLKDIV 
); 

 
U_startup: STARTUP_VIRTEX port map 

( 
GSR => RESET, 
GTS => GND, 
CLK => CLK 
); 

 
U_dimm_s_ibuf: IBUF port map 

( 
I => PADS_dimm_s(0), 
O => dimm_s_ibuf 
); 

 
U_dimm_ras_ibuf: IBUF port map 

( 
I => PADS_dimm_ras, 
O => dimm_ras_ibuf 
); 

 
U_dimm_cas_ibuf: IBUF port map 

( 
I => PADS_dimm_cas, 
O => dimm_cas_ibuf 
); 

 
U_dimm_we_ibuf: IBUF port map 
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( 
I => PADS_dimm_we, 
O => dimm_we_ibuf 
); 

 
G_dimm_d: for i in integer range 0 to 63 generate 
 

U_dimm_d_iobuf: IOBUF port map 
( 
I => dimm_d_iobuf_i(i), 
O => dimm_d_iobuf_o(i), 
T => dimm_d_iobuf_t(i), 
IO => PADS_dimm_d(i) 
); 

 
U_dimm_d_iobuf_o: IOB_FDC port map 

( 
C => CLK, 
CLR => RESET, 
D => dimm_d_iobuf_o(i), 
Q => pcore_din(i) 
); 
 

U_dimm_d_iobuf_i: IOB_FDC port map 
( 
C => CLK, 
CLR => RESET, 
D => pcore_dout(i), 
Q => dimm_d_iobuf_i(i) 
); 

 
U_dimm_d_iobuf_t: IOB_FDC port map 

( 
C => CLK, 
CLR => RESET, 
D => READ_d_n_buf, 
Q => dimm_d_iobuf_t(i) 
); 

end generate; 
 
G_dimm_a: for i in integer range 0 to 13 generate 
 
U_dimm_a_ibuf: IBUF port map 
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( 
I => PADS_dimm_a(i), 
O => dimm_a_ibuf(i) 
); 

 
U_dimm_a_ibuf_o: IOB_FDC port map 

( 
C => CLK, 
CLR => RESET, 
D => dimm_a_ibuf(i), 
Q => pcore_addr_raw(i) 
); 

end generate; 
 
pcore_addr(3 downto 0) <= pcore_addr_raw(3 downto 0); 
 
addr_correct: for i in integer range 4 to 7 generate 
ADDR_INV: INV port map ( 
O => pcore_addr(i), 
I => pcore_addr_raw(i) ); 
end generate; 
pcore_addr(13 downto 8) <= pcore_addr_raw(13 downto 8); 
 
G_dimm_dqmb: for i in integer range 0 to 7 generate 
 
U_dimm_dqmb_ibuf: IBUF port map ( 
I => PADS_dimm_dqmb(i), 
O => dimm_dqmb_ibuf(i) ); 
 
U_dimm_dqmb_ibuf_o: IOB_FDC port map ( 
C => CLK, 
CLR => RESET, 
D => dimm_dqmb_ibuf(i), 
Q => pcore_dqmb(i) ); 
 
end generate; 
 
pcore_dmask(7 downto 0) <= (others => (not pcore_dqmb(0))); 
pcore_dmask(15 downto 8) <= (others => (not pcore_dqmb(1))); 
pcore_dmask(23 downto 16) <= (others => (not pcore_dqmb(2))); 
pcore_dmask(31 downto 24) <= (others => (not pcore_dqmb(3))); 
pcore_dmask(39 downto 32) <= (others => (not pcore_dqmb(4))); 
pcore_dmask(47 downto 40) <= (others => (not pcore_dqmb(5))); 
pcore_dmask(55 downto 48) <= (others => (not pcore_dqmb(6))); 
pcore_dmask(63 downto 56) <= (others => (not pcore_dqmb(7))); 
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G_io_conn: for i in integer range 2 to 27 generate 
 
U_io_conn_iobuf: IOBUF port map ( 
I => io_conn_iobuf_i(i), 
O => io_conn_iobuf_o(i), 
T => io_conn_iobuf_t(i), 
IO => PADS_io_conn(i) ); 
 
U_io_conn_iobuf_o: IOB_FDC port map ( 
C => CLK, 
CLR => RESET, 
D => io_conn_iobuf_o(i), 
Q => pcore_extin(i - 2) ); 
 
U_io_conn_iobuf_i: IOB_FDC port map ( 
C => CLK, 
CLR => RESET, 
D => pcore_extout(i - 2), 
Q => io_conn_iobuf_i(i) ); 
 
U_io_conn_iobuf_t: IOB_FDC port map ( 
C => CLK, 
CLR => RESET, 
D => pcore_extctrl(i - 2), 
Q => io_conn_iobuf_t(i) ); 
 
end generate; 
 
U_io_conn_0_iobuf: IOBUF port map ( 
I => dimm_ck_bufg, 
O => open, 
T => GND, 
IO => PADS_io_conn(0) ); 
 
U_io_conn_1_iobuf: IOBUF port map ( 
I => GND, 
O => open, 
T => VDD, 
IO => PADS_io_conn(1) ); 
 
READ_p <= 
(not dimm_s_ibuf) and 
(dimm_ras_ibuf) and 
(not dimm_cas_ibuf) and 
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(dimm_we_ibuf); 
 
U_read: FDC port map ( 
C => CLK, 
CLR => RESET, 
D => READ_p, 
Q => READ ); 
 
U_buf_read: BUF port map ( 
I => READ, 
O => READ_buf ); 
 
U_read_d: FDC port map ( 
C => CLK, 
CLR => RESET, 
D => READ, 
Q => READ_d ); 
 
WRITE_p <= 
(not dimm_s_ibuf) and 
(dimm_ras_ibuf) and 
(not dimm_cas_ibuf) and 
(not dimm_we_ibuf); 
 
U_write: FDC port map ( 
C => CLK, 
CLR => RESET, 
D => WRITE_p, 
Q => WRITE ); 
 
U_buf_write: BUF port map ( 
I => WRITE, 
O => WRITE_buf ); 
 
U_write_d: FDC port map ( 
C => CLK, 
CLR => RESET, 
D => WRITE, 
Q => WRITE_d ); 
 
READ_n <= not READ; 
 
U_read_d_n: FDC port map ( 
C => CLK, 
CLR => RESET, 
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D => READ_n, 
Q => READ_d_n ); 
 
U_buf_read_d_n: BUF port map ( 
I => READ_d_n, 
O => READ_d_n_buf ); 
 
-- User logic should be placed inside pcore 
U_pcore: pcore port map ( 
clk => CLK, 
clkdiv => CLKDIV, 
rst => RESET, 
read => READ, 
write => WRITE, 
addr => pcore_addr, 
din => pcore_din, 
dout => pcore_dout, 
dmask => pcore_dmask, 
extin => pcore_extin, 
extout => pcore_extout, 
extctrl => pcore_extctrl ); 
 
end syn; 
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PCORE.VHD 
 
-- pcore interface 
-- author: Mahesh Dorai 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity pcore is 
 
port 
 

( 
clk: in std_logic; 
clkdiv: in std_logic; 
rst: in std_logic; 
read: in std_logic; 
write: in std_logic; 
addr: in std_logic_vector(13 downto 0); 
din: in std_logic_vector(63 downto 0); 
dout: out std_logic_vector(63 downto 0); 
dmask: in std_logic_vector(63 downto 0); 
extin: in std_logic_vector(25 downto 0); 
extout: out std_logic_vector(25 downto 0); 
extctrl: out std_logic_vector(25 downto 0) 
); 

 
end pcore; 
 
 
architecture syn of pcore is 
 
COMPONENT dpram2100_32 
port 

( 
addra: IN std_logic_VECTOR(11 downto 0); 
addrb: IN std_logic_VECTOR(11 downto 0); 
clka: IN std_logic; 
clkb: IN std_logic; 
dina: IN std_logic_VECTOR(31 downto 0); 
dinb: IN std_logic_VECTOR(31 downto 0); 
douta: OUT std_logic_VECTOR(31 downto 0); 
doutb: OUT std_logic_VECTOR(31 downto 0); 
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wea: IN std_logic; 
web: IN std_logic 
); 

end COMPONENT; 
COMPONENT dpram512_256 
port 
 

( 
addra: IN std_logic_VECTOR(8 downto 0); 
addrb: IN std_logic_VECTOR(8 downto 0); 
clka: IN std_logic; 
clkb: IN std_logic; 
dina: IN std_logic_VECTOR(255 downto 0); 
dinb: IN std_logic_VECTOR(255 downto 0); 
douta: OUT std_logic_VECTOR(255 downto 0); 
doutb: OUT std_logic_VECTOR(255 downto 0); 
wea: IN std_logic; 
web: IN std_logic 
); 

end COMPONENT; 
 
component dpram16_64 
port 

( 
addra: IN std_logic_VECTOR(4 downto 0); 
addrb: IN std_logic_VECTOR(4 downto 0); 
clka: IN std_logic; 
clkb: IN std_logic; 
dina: IN std_logic_VECTOR(63 downto 0); 
dinb: IN std_logic_VECTOR(63 downto 0); 
douta: OUT std_logic_VECTOR(63 downto 0); 
doutb: OUT std_logic_VECTOR(63 downto 0); 
wea: IN std_logic; 
web: IN std_logic 
); 

END component; 
 
component ram_load 
port 
 

( 
clk : in std_logic; 
rst : in std_logic; 
row_cont: in std_logic_vector(31 downto 0); 
start_ini : in std_logic; 
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addr_a : out std_logic_vector(11 downto 0); 
addr_b : out std_logic_vector(8 downto 0); 
concat_out: out std_logic_vector(255 downto 0); 
finish_load : out std_logic; 
we_2 : out std_logic 
); 

end component; 
 
component ram_cntl 
port 

( 
clk : in std_logic; 
rst : in std_logic; 
adj_list: in std_logic_vector(255 downto 0); 
start_gen : in std_logic; 
addr : out std_logic_vector(8 downto 0); 
mask : out std_logic_vector(255 downto 0); 
finish : out std_logic 
); 

end component; 
 
 
--************ SIGNAL DECLARATIONS START HERE********************** 
signal clkb : std_logic; 
signal doutb_1 : std_logic_vector(31 downto 0); 
signal start_debug: std_logic; 
signal addr_1 : std_logic_vector(11 downto 0); 
signal addr_2 : std_logic_vector(8 downto 0); 
signal fin_out : std_logic_vector(255 downto 0); 
signal finish : std_logic; 
signal finish_load : std_logic; 
signal tmp_finish_load : std_logic; 
signal web_2 : std_logic; 
signal bram_dout: std_logic_vector(31 downto 0); 
signal dinb_2 : std_logic_vector(31 downto 0); 
signal web_1 : std_logic; 
signal douta_2 : std_logic_vector(255 downto 0); 
signal addrb : std_logic_vector(8 downto 0); 
signal dinb : std_logic_vector(255 downto 0); 
signal tmp_doutb: std_logic_vector(255 downto 0); 
signal web : std_logic; 
signal start : std_logic; -- From pcore to the Processing Core 
signal out_dina : std_logic_vector(63 downto 0); 
signal out_douta: std_logic_vector(63 downto 0); 
signal out_wea : std_logic; 
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signal out_addrb: std_logic_vector(4 downto 0); 
signal out_dinb : std_logic_vector(63 downto 0); 
signal out_doutb: std_logic_vector(63 downto 0); 
signal out_web : std_logic; 
signal state_write : std_logic_vector(2 downto 0); 
signal mask : std_logic_vector(255 downto 0); 
signal tmp_start_debug: std_logic; 
 
--************ SIGNAL DECLARATIONS END HERE ********************* 
 
--******** PORT MAPPING OF ALL COMPONENTS START HERE ********** 
begin 
 
dpram2100_32_1 : dpram2100_32 
port map 

( 
addra => din(11 downto 0), 
clka => clk, 
dina => din(63 downto 32), 
douta => bram_dout, 
wea => write, 
addrb => addr_1, 
clkb => clkb, 
dinb => dinb_2, 
doutb => doutb_1, 
web => web_1 
); 
 
 
dpram512_256_1 : dpram512_256 
port map 

( 
addra => addr_2, 
clka => clkb, 
dina => fin_out, 
douta => douta_2, 
wea => web_2, 
addrb => addrb, 
clkb => clkb, 
dinb => dinb, 
doutb => tmp_doutb, 
web => web 
); 
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dpram16_64_1 : dpram16_64 
port map 

( 
addra => addr(4 downto 0), 
clka => clk, 
dina => out_dina, 
douta => out_douta, 
wea => out_wea, 
addrb => out_addrb, 
clkb => clkb, 
dinb => out_dinb, 
doutb => out_doutb, 
web => out_web 
); 
 
ram_load1 : ram_load 
port map 

( 
clk => clkb, 
rst => rst, 
row_cont => doutb_1, 
start_ini => start, 
addr_a => addr_1, 
addr_b => addr_2, 
concat_out => fin_out, 
finish_load => finish_load, 
we_2 => web_2 
); 
 
ram_cntl1 : ram_cntl 
port map 

( 
clk => clkb, 
rst => rst, 
adj_list => tmp_doutb, 
start_gen => tmp_finish_load, 
addr => addrb, 
mask => mask, 
finish => finish 
); 

 
--****** PORT MAPPING OF ALL COMPONENTS ENDS HERE ************ 
process(clk,rst) 
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variable ini_counter : integer range 0 to 7; 
begin 
 
if (rst = '1') then 

start <= '0'; 
web <= '0'; 
out_wea <= '0'; 
ini_counter := 0; 

 
elsif (clk'event and clk ='1') then 

if write ='1' and addr(7 downto 0)="11111111" and start='0' then 
start <='1'; 
ini_counter :=0; 

 
elsif start='1' and ini_counter/=7 then 

ini_counter:= ini_counter+1; 
else 

start <='0'; 
ini_counter :=0; 

end if; 
end if; 
end process; 
 
 
process(clkb,rst) 
begin 
 
if (rst = '1') then 
 

state_write <= (others => '0'); 
out_dinb <= (others => '0'); 
out_web <= '0'; 
out_addrb <= "00001"; 

 
elsif (clkb'event and clkb ='1') then 

 
if (finish = '1' and state_write = "000") then 

 
out_addrb <= "00001"; 
out_web <= '1'; 
out_dinb <= mask(63 downto 0); 
state_write <= "001"; 

 
elsif (state_write = "001") then 
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out_addrb <= "00010"; 
out_web <= '1'; 
out_dinb <= mask(127 downto 64); 
state_write <= "010"; 

 
elsif (state_write = "010") then 

 
out_addrb <= "00011"; 
out_web <= '1'; 
out_dinb <= mask(191 downto 128); 
state_write <= "011"; 

 
elsif (state_write = "011") then 

 
out_addrb <= "00100"; 
out_web <= '1'; 
out_dinb <= mask(255 downto 192); 
state_write <= "100"; 

 
elsif (state_write = "100") then 

 
out_addrb <= "00101"; 
out_web <= '1'; 
out_dinb <= mask(63 downto 0); 
state_write <= "101"; 

 
elsif (state_write = "101") then 

out_web <= '0'; 
if addr(7 downto 0)="11111110" then 

state_write <= "110"; 
else 

state_write <= state_write; 
end if; 

 
elsif (state_write = "110") then 

out_addrb <= "00001"; 
out_web <= '1'; 
out_dinb <= (others => '0'); 
state_write <= "111"; 

 
elsif (state_write = "111") then 

out_addrb <= (others => '1'); 
out_web <= '0'; 
state_write <= "000"; 
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else 
out_web <= '0'; 

end if;  
end if; 
 
end process; 
 
dout <= out_douta ; 
tmp_finish_load <= '1' when (finish_load = '1') else '0'; 
--define the core clock 
clkb <= clkdiv; 
dinb_2 <= (others => '0'); 
dinb <= (others => '0'); 
out_dina <= (others => '0'); 
web_1 <= '0'; 
 
 
end syn; 
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RAM_CNTL.VHD 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity ram_load is 
port  

( 
clk : in std_logic; 
rst : in std_logic; 
row_cont: in std_logic_vector(31 downto 0); 
start_ini : in std_logic; 
addr_a : out std_logic_vector(11 downto 0); 
addr_b : out std_logic_vector(8 downto 0); 
concat_out: out std_logic_vector(255 downto 0); 
finish_load : out std_logic; 
we_2 : out std_logic 
); 
end ram_load; 
 
architecture rtl_a of ram_load is 
 
signal state : std_logic_vector(4 downto 0); 
signal tmp_dina : std_logic_vector(255 downto 0); 
signal tmp_finish: std_logic; 
signal tmp_we_2: std_logic; 
signal addr_count: integer range 0 to 258; 
signal idx_a : std_logic_vector(11 downto 0); 
signal idx_b : std_logic_vector(8 downto 0); 
 
begin 
 
process(clk,rst) 
variable load_counter : integer range 0 to 7; 
for several clock cycles 
begin 
 
if (rst = '1') then 

 
state <= (others => '0'); 
idx_a <= (others => '0');  
idx_b <= (others => '0'); 
tmp_dina <= (others => '0'); 
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addr_count <= 0; 
tmp_finish <= '0'; 
tmp_we_2 <= '0'; 
load_counter := 0; 

 
elsif (clk = '1' and clk' event) then 
 
if (start_ini = '1' and state = "00000") then 

idx_a <= (others => '0'); 
idx_b <= (others => '0'); 
tmp_we_2 <= '1'; 
tmp_finish <= '0'; 
state <= "00001"; 
load_counter := 0; 

 
elsif (state = "00001") then 

tmp_we_2 <= '1'; 
state <= "00010"; 

 
elsif (state = "00010") then 

tmp_dina(31 downto 0) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "00011"; 

 
elsif (state = "00011") then 

tmp_we_2 <= '1'; 
state <= "00100"; 

 
elsif (state = "00100") then 
 
tmp_dina(63 downto 32) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "00101"; 
 
elsif (state = "00101") then 
 
tmp_we_2 <= '1'; 
state <= "00110"; 
 
elsif (state = "00110") then 

tmp_dina(95 downto 64) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "00111"; 

 
elsif (state = "00111") then 
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tmp_we_2 <= '1'; 
state <= "01000"; 

 
elsif (state = "01000") then 

tmp_dina(127 downto 96) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "01001"; 

 
elsif (state = "01001") then 

tmp_we_2 <= '1'; 
state <= "01010"; 

 
elsif (state = "01010") then 

tmp_dina(159 downto 128) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "01011"; 

 
elsif (state = "01011") then 

tmp_we_2 <= '1'; 
state <= "01100"; 

 
elsif (state = "01100") then 

tmp_dina(191 downto 160) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "01101"; 

 
elsif (state = "01101") then 

tmp_we_2 <= '1'; 
state <= "01110"; 

 
elsif (state = "01110") then 

tmp_dina(223 downto 192) <= row_cont;  
idx_a <= idx_a + "000000000001"; 
state <= "01111"; 

 
elsif (state = "01111") then 

tmp_we_2 <= '1'; 
state <= "10000"; 

 
elsif (state = "10000") then 

tmp_dina(255 downto 224) <= row_cont;  
addr_count <= addr_count + 1; 
state <= "10001"; 

 
elsif (state = "10001") then 
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if (addr_count = 257) then 
state <= "10010"; 
idx_a <= "000000000010"; 
tmp_finish <= '1'; 
tmp_we_2 <= '0'; 

else 
state <= "00001"; 
idx_a <= idx_a + "000000000001"; 
idx_b <= idx_b + "00000001"; 

end if; 
 
elsif (state = "10010") then 

if tmp_finish = '1' and load_counter/=7 then 
load_counter:= load_counter+1; 
state <= state; 

else 
tmp_finish <='0'; 
load_counter :=0; 
state <= (others => '0'); 

end if; 
 
else 

tmp_finish <= '0'; 
end if; 
end if; 
 
end process; 
 
addr_a <= idx_a; 
addr_b <= idx_b; 
concat_out <= tmp_dina; 
finish_load <= tmp_finish; 
we_2 <= tmp_we_2; 
end rtl_a; 
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library ieee; 
use ieee.std_logic_1164.all; 
package memory is 
          type INT_ARR is array(0 to 255) of integer range 0 to 255; 
end memory; 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
use work.memory.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity ram_cntl is 
port ( 
clk : in std_logic; 
rst : in std_logic; 
adj_list: in std_logic_vector(255 downto 0); 
start_gen : in std_logic; 
addr : out std_logic_vector(8 downto 0); 
mask : out std_logic_vector(255 downto 0); 
finish : out std_logic 
--we : out std_logic 
); 
end ram_cntl; 
 
architecture rtl of ram_cntl is 
 
signal k : std_logic_vector(255 downto 0); 
signal k_int : integer range 0 to 255; 
signal graph_size : integer range 1 to 255; 
signal idx : std_logic_vector(8 downto 0); 
signal state : std_logic_vector(4 downto 0); 
signal state_edge : std_logic_vector(2 downto 0); 
signal state_select : std_logic_vector(3 downto 0); 
signal cover : std_logic_vector(255 downto 0); 
signal new_vect : std_logic_vector(255 downto 0); 
signal i,j,l,m : integer range 0 to 255; 
signal stack_addra : std_logic_VECTOR(7 downto 0); 
signal stack_addrb : std_logic_VECTOR(7 downto 0); 
signal tmp_dinb : std_logic_VECTOR(255 downto 0); 
signal stack_douta : std_logic_VECTOR(255 downto 0); 
signal tmp_doutb : std_logic_VECTOR(255 downto 0); 
signal stack_wea : std_logic; 
signal tmp_web : std_logic; 
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signal k_new : integer range 0 to 255; 
signal k_edit : integer range 0 to 255; 
signal status : integer range 0 to 255; 
signal tmp_status : integer range 0 to 255; 
signal edge_addr_count : integer range 0 to 255; 
signal select_addr_count: integer range 0 to 255; 
signal base : std_logic_vector(8 downto 0); 
signal tmp_selected : integer range 0 to 255; 
signal order_vec : INT_ARR; 
signal tmp_finish : std_logic; 
signal ones_ct_1 : std_logic_vector(4 downto 0); 
signal ones_ct_2 : std_logic_vector(4 downto 0); 
signal ones_ct_3 : std_logic_vector(4 downto 0); 
signal ones_ct_4 : std_logic_vector(4 downto 0); 
signal ones_ct_5 : std_logic_vector(4 downto 0); 
signal ones_ct_6 : std_logic_vector(4 downto 0); 
signal ones_ct_7 : std_logic_vector(4 downto 0); 
signal ones_ct_8 : std_logic_vector(4 downto 0); 
signal ones_ct_9 : std_logic_vector(4 downto 0); 
signal ones_ct_10 : std_logic_vector(4 downto 0); 
signal ones_ct_11 : std_logic_vector(4 downto 0); 
signal ones_ct_12 : std_logic_vector(4 downto 0); 
signal ones_ct_13 : std_logic_vector(4 downto 0); 
signal ones_ct_14 : std_logic_vector(4 downto 0); 
signal ones_ct_15 : std_logic_vector(4 downto 0); 
signal ones_ct_16 : std_logic_vector(4 downto 0); 
signal tmp_ones_ct_1 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_2 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_3 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_4 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_5 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_6 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_7 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_8 : std_logic_vector(5 downto 0); 
signal tmp_ones_ct_9 : std_logic_vector(6 downto 0); 
signal tmp_ones_ct_10 : std_logic_vector(6 downto 0); 
signal tmp_ones_ct_11 : std_logic_vector(6 downto 0); 
signal tmp_ones_ct_12 : std_logic_vector(6 downto 0); 
signal tmp_ones_ct_13 : std_logic_vector(7 downto 0); 
signal tmp_ones_ct_14 : std_logic_vector(7 downto 0); 
signal tmp_ones_ct_15 : std_logic_vector(8 downto 0); 
signal cover_status : std_logic; 
signal mulx_cover : std_logic_vector(255 downto 0); 
signal mix : std_logic_vector(1 downto 0); 
signal mix_vector : std_logic_vector(255 downto 0); 
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signal tmp_cover : std_logic_vector(255 downto 0); 
signal stack_ind : std_logic_vector(255 downto 0); 
signal scan_left : std_logic_vector(255 downto 0); 
signal pre_tmp_status : integer range 0 to 255; 
signal tmp_stack_addra : std_logic_vector(7 downto 0); 
 
component adder_sum1 
port ( 
bit_vector_1 : in std_logic_vector(15 downto 0); 
god_sum : out std_logic_vector(4 downto 0) 
); 
end component; 
 
component stage_mix 
port ( 
mix_st : in std_logic_vector(1 downto 0); 
mix_status : in std_logic; 
mix_adj_list : in std_logic_vector(255 downto 0); 
mix_cover : in std_logic_vector(255 downto 0); 
mix_vector : out std_logic_vector(255 downto 0) 
); 
end component; 
 
component stack 
port ( 
addra: IN std_logic_VECTOR(7 downto 0); 
addrb: IN std_logic_VECTOR(7 downto 0); 
clka: IN std_logic; 
clkb: IN std_logic; 
dina: IN std_logic_VECTOR(255 downto 0); 
dinb: IN std_logic_VECTOR(255 downto 0); 
douta: OUT std_logic_VECTOR(255 downto 0); 
doutb: OUT std_logic_VECTOR(255 downto 0); 
wea: IN std_logic; 
web: IN std_logic); 
end component; 
 
begin 
process(clk,rst) 
variable curr_state : std_logic_vector(4 downto 0); 
variable ram_counter : integer range 0 to 31; --counter to key start high for several clock -
--cycles 
begin 
 
if (rst = '1') then 



 100

 
state <= "11010"; 
curr_state := (others => '0'); 
state_edge <= (others => '0'); 
state_select <= (others => '0'); 
idx <= (others => '1'); 

cover <= (others => '0'); 
new_vect <= (others => '0'); 
order_vec <= (others => 0); 
k_new <= 0; 
k_edit <= 0; 
graph_size <= 0; 
status <= 0; 
tmp_status <= 0; 
edge_addr_count <= 0; 
tmp_finish <= '0'; 
select_addr_count <= 0; 
edge_addr_count <= 0; 
base <= (others => '0'); 
tmp_selected <= 0; 
i <= 0; 
j <= 0; 
k <= (others => '0'); 
cover_status <= '0'; 
mulx_cover <= (others => '0'); 
mix <= (others => '0'); 
tmp_cover <= (others => '0'); 
stack_ind <= (others => '1'); 
scan_left <= (others => '1'); 
k_int <= 0; 
l <= 0; 
pre_tmp_status <= 0; 
stack_addra <= (others => '0'); 
stack_addrb <= (others => '1'); 
tmp_dinb <= (others => '0'); 
stack_wea <= '0'; 
tmp_web <= '0'; 
tmp_stack_addra <= (others => '0'); 
tmp_ones_ct_1 <= (others => '0'); 
tmp_ones_ct_2 <= (others => '0'); 
tmp_ones_ct_3 <= (others => '0'); 
tmp_ones_ct_4 <= (others => '0'); 
tmp_ones_ct_5 <= (others => '0'); 
tmp_ones_ct_6 <= (others => '0'); 
tmp_ones_ct_7 <= (others => '0'); 
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tmp_ones_ct_8 <= (others => '0'); 
tmp_ones_ct_9 <= (others => '0'); 
tmp_ones_ct_10 <= (others => '0'); 
tmp_ones_ct_11 <= (others => '0'); 
tmp_ones_ct_12 <= (others => '0'); 
tmp_ones_ct_13 <= (others => '0'); 
tmp_ones_ct_14 <= (others => '0'); 
tmp_ones_ct_15 <= (others => '0'); 
m <= 1; 
ram_counter := 0; 

 
elsif (clk = '1' and clk' event) then 
 
if (state = "11010") then 

 
state <= (others => '0'); 
curr_state := (others => '0'); 
state_edge <= (others => '0'); 
state_select <= (others => '0'); 
idx <= (others => '1');  
cover <= (others => '0'); 
new_vect <= (others => '0'); 
order_vec <= (others => 0); 
k_new <= 0; 
k_edit <= 0; 
graph_size <= 0; 
status <= 0; 
tmp_status <= 0; 
edge_addr_count <= 0; 
tmp_finish <= '0'; 
select_addr_count <= 0; 
edge_addr_count <= 0; 
base <= (others => '0'); 
tmp_selected <= 0; 
--hit <= '0'; 
i <= 0; 
j <= 0; 
k <= (others => '0'); 
cover_status <= '0'; 
mulx_cover <= (others => '0'); 
mix <= (others => '0'); 
tmp_cover <= (others => '0'); 
stack_ind <= (others => '1'); 
scan_left <= (others => '1'); 
k_int <= 0; 
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l <= 0; 
pre_tmp_status <= 0; 
stack_addra <= (others => '0'); 
stack_addrb <= (others => '1'); 
tmp_dinb <= (others => '0'); 
stack_wea <= '0'; 
tmp_web <= '0'; 
tmp_stack_addra <= (others => '0'); 
tmp_ones_ct_1 <= (others => '0'); 
tmp_ones_ct_2 <= (others => '0'); 
tmp_ones_ct_3 <= (others => '0'); 
tmp_ones_ct_4 <= (others => '0'); 
tmp_ones_ct_5 <= (others => '0'); 
tmp_ones_ct_6 <= (others => '0'); 
tmp_ones_ct_7 <= (others => '0'); 
tmp_ones_ct_8 <= (others => '0'); 
tmp_ones_ct_9 <= (others => '0'); 
tmp_ones_ct_10 <= (others => '0'); 
tmp_ones_ct_11 <= (others => '0'); 
tmp_ones_ct_12 <= (others => '0'); 
tmp_ones_ct_13 <= (others => '0'); 
tmp_ones_ct_14 <= (others => '0'); 
tmp_ones_ct_15 <= (others => '0'); 
m <= 1; 
ram_counter := 0; 

 
elsif (start_gen = '1' and state = "00000") then 
idx <= (others => '0'); 
state <= "00001"; 

 
elsif (state = "00001") then 

k <= adj_list; 
state <= "00010"; 

 
elsif (state = "00010") then 

k <= adj_list; 
k_int <= conv_integer(adj_list(7 downto 0)); --This almost gave me a scare 
k_edit <= conv_integer(adj_list(7 downto 0)); 
graph_size <= conv_integer(adj_list(15 downto 8)); 
state <= "00011"; 

 
elsif (state = "00011") then 

if(i = k_edit) then 
state <= "00111"; 
select_addr_count <= 0; 
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mix <= "00"; 
i <= 1; 
pre_tmp_status <= tmp_status; 
stack_wea <= '0'; 

else 
i <= i + 1; 
mix <= "01"; 
state <= "11011"; 
state_select <= "0001"; 
curr_state := state; 
--state <= "11000"; 
mulx_cover <= cover; 
idx <= "000000001"; 
base <= (others => '0'); 
select_addr_count <= 0; 
tmp_selected <= 0; 
cover_status <= cover(select_addr_count); 
stack_addra <= 
conv_std_logic_vector(status,8); 
stack_wea <= '1'; 

end if; 
 
elsif (state = "00100") then 

cover(tmp_selected) <= '1'; 
select_addr_count <= 0; 

order_vec(status) <= tmp_selected; 
stack_ind(status) <= '0'; 
status <= status + 1; 
tmp_status <= status; 
pre_tmp_status <= status; 
state <= "00101"; 

 
elsif (state = "00101") then 

mix <= "10"; 
state_edge <= "001"; 
curr_state := state; 
state <= "11011"; 
mulx_cover <= cover; 
idx <= "000000001"; 
edge_addr_count <= 0; 
cover_status <= cover(edge_addr_count); 

 
elsif (state = "00110") then 

state <= "00011"; 
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elsif (state = "00111") then 
 
if (stack_ind(k_int-i) = '0') then 

 
tmp_status <= k_int-i; 
stack_addra <= 
conv_std_logic_vector((k_int-i),8); 
pre_tmp_status <= k_int-i; 
state <= "01000"; 
i <= 1; 

else 
 
i <= i + 1; 
state <= "00111"; 

end if; 
 
elsif (state = "01000") then 

tmp_stack_addra <= stack_addra; 
l <= k_int - tmp_status; 
if (tmp_status < pre_tmp_status) then 

 
pre_tmp_status <= tmp_status; 
stack_ind <= (others => '0'); 

else 
pre_tmp_status <= pre_tmp_status; 

end if; 
k_new <= k_int - tmp_status; 
k_edit <= k_int - tmp_status; 
state <= "01001"; 
idx <=conv_std_logic_vector(order_vec(tmp_status),9) + 1; 
 

elsif (state = "01001") then 
tmp_cover <= stack_douta; 
state <= "01010"; 
 

elsif (state = "01010") then 
 
if (m = l) then 

state <= "01011"; 
stack_ind(tmp_status+m) <= '0'; 
m <= 1; 
l <= 0; 
tmp_cover(order_vec(tmp_status)) <='0';  
order_vec(tmp_status) <= 0; 

else 
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stack_ind(tmp_status+m) <= '0'; 
m <= m + 1; 

end if; 
 
elsif (state = "01011") then 

stack_ind(k_int) <= '1'; 
mulx_cover <= tmp_cover; 
mix <= "11"; 
state <= "01100"; 

 
elsif (state = "01100") then 

cover <= tmp_cover or mix_vector; 
tmp_ones_ct_1 <= ('0' & ones_ct_1) + ('0' &ones_ct_2); 
tmp_ones_ct_2 <= ('0' & ones_ct_3) + ('0' &ones_ct_4); 
tmp_ones_ct_3 <= ('0' & ones_ct_5) + ('0' &ones_ct_6); 
tmp_ones_ct_4 <= ('0' & ones_ct_7) + ('0' &ones_ct_8); 
tmp_ones_ct_5 <= ('0' & ones_ct_9) + ('0' &ones_ct_10); 
tmp_ones_ct_6 <= ('0' & ones_ct_11) + ('0' &ones_ct_12); 
tmp_ones_ct_7 <= ('0' & ones_ct_13) + ('0' &ones_ct_14); 
tmp_ones_ct_8 <= ('0' & ones_ct_15) + ('0' &ones_ct_16); 
stack_wea <= '1'; 
state <= "01101"; 
elsif (state = "01101") then 

 
tmp_ones_ct_9 <= ('0' & tmp_ones_ct_1) + ('0' &tmp_ones_ct_2); 
tmp_ones_ct_10 <= ('0' & tmp_ones_ct_3) + ('0' 
&tmp_ones_ct_4); 
tmp_ones_ct_11 <= ('0' & tmp_ones_ct_5) + ('0' 
&tmp_ones_ct_6); 
tmp_ones_ct_12 <= ('0' & tmp_ones_ct_7) + ('0' 
&tmp_ones_ct_8); 
state <= "01110"; 

 
elsif (state = "01110") then 

tmp_ones_ct_13 <= ('0' & tmp_ones_ct_9) + ('0' &tmp_ones_ct_10); 
tmp_ones_ct_14 <= ('0' & tmp_ones_ct_11) + ('0' &tmp_ones_ct_12); 
state <= "11000"; 

 
elsif (state = "11000") then 

 
tmp_ones_ct_15 <= ('0' & tmp_ones_ct_13) + ('0' &tmp_ones_ct_14); 
state <= "01111"; 
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elsif (state = "01111") then 

 

if ((l = tmp_ones_ct_15) or (l =k_int-tmp_status)) then 
state <= "10000"; 
stack_wea <= '0'; 
l <= 0; 

else 
stack_ind(tmp_status+l) <= '1'; 
stack_addra <= tmp_stack_addra + 
conv_std_logic_vector(l,7); 
l <= l + 1; 
state <= state; 

end if; 
 
elsif (state = "10000") then 

 
if (tmp_ones_ct_15 > k_new) then 

state <= "10001"; 
elsif (tmp_ones_ct_15 = k_new) then 

state <= "11011"; 
state_edge <= "001"; 
curr_state := state; 
mix <= "10"; 
mulx_cover <= cover; 
idx <= "000000001"; 
edge_addr_count <= 0; 
cover_status <= cover(edge_addr_count); 

elsif (tmp_ones_ct_15 < k_new) then 
k_edit <= k_edit -conv_integer(tmp_ones_ct_15); 
state <= "10010"; 
j <= 0; 
status <=tmp_status+conv_integer(tmp_ones_ct_15); 

end if; 
 
elsif (state = "10001") then 

 
if (stack_ind = 
"11111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111") then 

 
tmp_finish <= '1'; 
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state <= "11001"; 
mulx_cover <= (others => '1'); 
else 
state <= "00111"; 
end if; 
 

elsif (state = "10010") then 
 
mix <= "10"; 
state_edge <= "001"; 
state <= "11011";  
curr_state := state; 
mulx_cover <= cover; 
idx <= "000000001"; 
edge_addr_count <= 0; 
cover_status <= cover(edge_addr_count); 

 
elsif (state = "10011") then 

if(j = k_edit) then 
state <= "10111"; 
select_addr_count <= 0; 
mix <= "00"; 
stack_wea <= '0'; 

else 
j <= j + 1; 
state_select <= "0001"; 
state <= "11011";-- Temporary escape plan 
curr_state := state; 
mix <= "01"; 
mulx_cover <= cover; 
idx <= "000000001"; 
base <= (others => '0'); 
select_addr_count <= 0; 
tmp_selected <= 0; 
cover_status <= cover(select_addr_count); 
stack_addra <=conv_std_logic_vector(status,8); 
stack_wea <= '1'; 

end if; 
 
elsif (state = "10100") then 

cover(tmp_selected) <= '1'; 
base <= (others => '0');  
select_addr_count <= 0;  
order_vec(status) <= tmp_selected; 
status <= status + 1; 
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tmp_status <= status; 
state <= "10101"; 
 
elsif (state = "10101") then 

mix <= "10"; 
state_edge <= "001"; 
state <= "11011"; 
curr_state := state; 
mulx_cover <= cover; 
idx <= "000000001"; 
edge_addr_count <= 0; 
cover_status <= cover(edge_addr_count); 

 
elsif (state = "10110") then 

state <= "10011"; 
 
elsif (state = "10111") then 

state <= "00111"; 
 
elsif (state = "11001") then 

if tmp_finish ='1' and ram_counter/=31 then 
ram_counter:= ram_counter + 1; 

else 
tmp_finish <= '0'; 
ram_counter := 0; 
state <= "11010"; 

end if; 
 
--/*/*/*/*/*/*/*/*/Edgeless function check starts here /*/*/*/*/*/*/*/*/ 
elsif (state_edge = "001") then 

edge_addr_count <= 0; 
state_edge <= "010"; 

 
elsif (state_edge = "010") then 

 
if (edge_addr_count = graph_size) then 

 
state_edge <= "101"; 
edge_addr_count <= 0; 

 
else 

 
state_edge <= "011"; 

 
end if; 
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elsif (state_edge = "011") then 

 
if (mix_vector /= 
"11111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111") then 

state_edge <= "101"; 
else 

idx <= idx + 1; 
edge_addr_count <= edge_addr_count + 1; 
state_edge <= "100"; 
 

end if; 
 
elsif (state_edge = "100") then 

cover_status <= mulx_cover(edge_addr_count); 
state_edge <= "010"; 

 
elsif (state_edge = "101") then 

 
if (mix_vector = 
"11111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111") then 

tmp_finish <= '1'; 
state_edge <= (others => '0'); 
state <= "11001";-- Temporary escape plan 
mix <= "00"; 
 

else  
state <= curr_state + "00001"; 
state_edge <= (others => '0'); 
mix <= "00"; 
edge_addr_count <= 0; 

 end if; 
--/*/*/*//*/*/*/*/*/*Edgeless function check ends here/*/*/*/*/*/*/*/*/*/*/*/*/*/ 
 
 
--/*/*/*/*/*SELECT vertices function starts here/*/*/*/*/*/**/*/*/*/*/*/*/*/*/ 
 
elsif (state_select = "0001") then 
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base <= (others => '0'); 
state_select <= "0010"; 

 
elsif ( state_select = "0010") then 

 
tmp_ones_ct_1 <= ('0' & ones_ct_1) + ('0' &ones_ct_2); 
tmp_ones_ct_2 <= ('0' & ones_ct_3) + ('0' &ones_ct_4); 
tmp_ones_ct_3 <= ('0' & ones_ct_5) + ('0' &ones_ct_6); 
tmp_ones_ct_4 <= ('0' & ones_ct_7) + ('0' &ones_ct_8); 
tmp_ones_ct_5 <= ('0' & ones_ct_9) + ('0' &ones_ct_10); 
tmp_ones_ct_6 <= ('0' & ones_ct_11) + ('0' &ones_ct_12); 
tmp_ones_ct_7 <= ('0' & ones_ct_13) + ('0' &ones_ct_14); 
tmp_ones_ct_8 <= ('0' & ones_ct_15) + ('0' &ones_ct_16); 
state_select <= "0011"; 

 
elsif (state_select = "0011") then 

tmp_ones_ct_9 <= ('0' & tmp_ones_ct_1) + ('0' &tmp_ones_ct_2); 
tmp_ones_ct_10 <= ('0' & tmp_ones_ct_3) + ('0' 
&tmp_ones_ct_4); 
tmp_ones_ct_11 <= ('0' & tmp_ones_ct_5) + ('0' 
&tmp_ones_ct_6); 
tmp_ones_ct_12 <= ('0' & tmp_ones_ct_7) + ('0' 
&tmp_ones_ct_8); 
state_select <= "0100"; 

 
elsif (state_select = "0100") then 

tmp_ones_ct_13 <= ('0' & tmp_ones_ct_9) + ('0' &tmp_ones_ct_10); 
tmp_ones_ct_14 <= ('0' & tmp_ones_ct_11) + ('0' &tmp_ones_ct_12); 
state_select <= "0101"; 

 
elsif (state_select = "0101") then 

 
tmp_ones_ct_15 <= ('0' & tmp_ones_ct_13) + ('0' & 
tmp_ones_ct_14); 
state_select <= "0110"; 

 
elsif (state_select = "0110") then 

 
if (select_addr_count = graph_size) then 

 
state_select <= "1000"; 

else 
 
if (tmp_ones_ct_15 > base) then 
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tmp_selected <= select_addr_count; 
base <= tmp_ones_ct_15; 

else 
tmp_selected <= tmp_selected; 

end if; 
state_select <= "0111"; 
idx <= idx + 1; 
select_addr_count <= select_addr_count +1; 

end if; 
 
elsif (state_select = "0111") then 

cover_status <= mulx_cover(select_addr_count); 
state_select <= "0010"; 

 
elsif (state_select = "1000") then 

 
if (tmp_ones_ct_15 > base) then 

tmp_selected <= select_addr_count; 
base <= tmp_ones_ct_15; 

else 
tmp_selected <= tmp_selected; 

end if; 
state <= curr_state + "00001"; 
state_select <= (others => '0'); 
 
 

--/*/*/*/*/*/*/*SELECT vertices function ends here/*/*/*/*/*/*/*/*/ 
 

 
end if; 

 
end if; 
 
end process; 
 
-- PORT MAPPING FOR THE INDIVIDUAL COMPONENTS STARTS HERE 
 
UUT_MIX : stage_mix port map (mix_st => mix, mix_status =>cover_status, 
mix_adj_list  => adj_list,mix_cover => mulx_cover,mix_vector => mix_vector); 
UUT_SUM1: adder_sum1 port map (bit_vector_1 => mix_vector(15 downto 0),god_sum 
=> ones_ct_1); 
UUT_SUM2: adder_sum1 port map (bit_vector_1 => mix_vector(31 downto 16), 
god_sum => ones_ct_2); 
UUT_SUM3: adder_sum1 port map (bit_vector_1 => mix_vector(47 downto 32), 
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god_sum => ones_ct_3); 
UUT_SUM4: adder_sum1 port map (bit_vector_1 => mix_vector(63 downto 48), 
god_sum => ones_ct_4); 
UUT_SUM5: adder_sum1 port map (bit_vector_1 => mix_vector(79 downto 64), 
god_sum => ones_ct_5); 
UUT_SUM6: adder_sum1 port map (bit_vector_1 => mix_vector(95 downto 80), 
god_sum => ones_ct_6); 
UUT_SUM7: adder_sum1 port map (bit_vector_1 => mix_vector(111 downto 96), 
god_sum => ones_ct_7); 
UUT_SUM8: adder_sum1 port map (bit_vector_1 => mix_vector(127 downto 112), 
god_sum => ones_ct_8); 
UUT_SUM9: adder_sum1 port map (bit_vector_1 => mix_vector(143 downto 128), 
god_sum => ones_ct_9); 
UUT_SUM10: adder_sum1 port map (bit_vector_1 => mix_vector(159 downto 144), 
god_sum => ones_ct_10); 
UUT_SUM11: adder_sum1 port map (bit_vector_1 => mix_vector(175 downto 160), 
god_sum => ones_ct_11); 
UUT_SUM12: adder_sum1 port map (bit_vector_1 => mix_vector(191 downto 176), 
god_sum => ones_ct_12); 
UUT_SUM13: adder_sum1 port map (bit_vector_1 => mix_vector(207 downto 192), 
god_sum => ones_ct_13); 
UUT_SUM14: adder_sum1 port map (bit_vector_1 => mix_vector(223 downto 208), 
god_sum => ones_ct_14); 
UUT_SUM15: adder_sum1 port map (bit_vector_1 => mix_vector(239 downto 224), 
god_sum => ones_ct_15); 
UUT_SUM16: adder_sum1 port map (bit_vector_1 => mix_vector(255 downto 240), 
god_sum => ones_ct_16); 
 
UUT_STACK: stack port map 
(addra=>stack_addra,addrb=>stack_addrb,clka=>clk,clkb=>clk,dina=>cover,dinb=>tmp
_dinb,douta=>stack_douta,doutb=>tmp_doutb,wea=>stack_wea,web=>tmp_web); 
 
-- PORT MAPPING FOR THE INDIVIDUAL COMPONENTS ENDS HERE 
 
addr <= idx; 
finish <= tmp_finish; 
mask <= mulx_cover; 
 
end rtl; 
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MASK_GEN.VHD 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity stage_mix is 
port 

( 
mix_st : in std_logic_vector(1 downto 0); 
mix_status : in std_logic; 
mix_adj_list : in std_logic_vector(255 downto 0); 
mix_cover : in std_logic_vector(255 downto 0); 
mix_vector : out std_logic_vector(255 downto 0) 
); 

end stage_mix; 
 
architecture stage_mix_a of stage_mix is 
begin 
process(mix_st,mix_status,mix_adj_list,mix_cover) 
begin 
case mix_st is 

 
when "01" => -- Select vertex 

for i in 0 to 255 loop 
if (mix_status = '0') then 

if((mix_adj_list(i) = '1') and(mix_cover(i) = '0')) then 
mix_vector(i) <= '1'; 

else 
mix_vector(i) <= '0'; 

end if; 
else 

mix_vector(i) <= '0'; 
end if; 

end loop; 
 

 
when "10" => -- Edgeless 
for i in 0 to 255 loop 

if (mix_status = '0') then 
if((mix_adj_list(i) = '1') and(mix_cover(i) = '0')) then 

mix_vector(i) <= '0'; 
else 
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mix_vector(i) <= '1'; 
end if; 
 

else 
mix_vector(i) <= '1'; 

end if; 
end loop; 

 
when "11" => -- Neighbour count 
for i in 0 to 255 loop 

if((mix_adj_list(i) = '1') and (mix_cover(i) ='0')) then 
mix_vector(i) <= '1'; 

else 
mix_vector(i) <= '0'; 

end if; 
end loop; 

 
when others => 

mix_vector <= (others => '0'); 
 

end case; 
end process; 
end stage_mix_a; 
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ADDER_TREE.VHD 

 
 

library ieee,synopsys,dware,DW01; 
use ieee.std_logic_1164.all; 
use synopsys.attributes.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
use DWARE.DWpackages.all; 
use DW01.DW01_components.all; 
entity adder_sum1 is 
port 

( 
bit_vector_1 : in std_logic_vector(15 downto 0); 
god_sum : out std_logic_vector(4 downto 0) 
); 

end adder_sum1; 
 
architecture adder_sum1_a of adder_sum1 is 
signal tmp_2,tmp_5,tmp_8,tmp_11,tmp_12,tmp_13,tmp_14,tmp_15: std_logic; 
signal tmp_0, tmp_1, tmp_3, tmp_4, tmp_6, tmp_7, tmp_9, tmp_10, sum_1, 
sum_2,sum_3,sum_4: std_logic_vector(1 downto 0); 
signal tmp_sum_1,tmp_sum_2,tmp_sum_3,tmp_sum_4,sum_5,sum_6 
: std_logic_vector(2 downto 0); 
signal tmp_sum_5,tmp_sum_6,sum_7 : std_logic_vector(3 downto 0); 
signal tmp_sum_7,tmp : std_logic_vector(4 downto 0); 
 
begin 
U1: DW01_add 
generic map (width => 2) 
port map ( A => tmp_0, B => tmp_1,CI => tmp_2, SUM =>sum_1); 
 
U2: DW01_add 
generic map (width => 2) 
port map ( A => tmp_3, B => tmp_4,CI => tmp_5, SUM =>sum_2); 
 
U3: DW01_add 
generic map (width => 2) 
port map ( A => tmp_6, B => tmp_7,CI => tmp_8, SUM =>sum_3); 
 
U4: DW01_add 
generic map (width => 2) 
port map ( A => tmp_9, B => tmp_10,CI => tmp_11, SUM =>sum_4); 
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U5: DW01_add 
generic map (width => 3) 
port map ( A => tmp_sum_1, B => tmp_sum_2, CI =>tmp_12,SUM => sum_5); 
 
U6: DW01_add 
generic map (width => 3) 
port map ( A => tmp_sum_3, B => tmp_sum_4, CI =>tmp_13,SUM => sum_6); 
 
U7: DW01_add 
generic map (width => 4) 
port map ( A => tmp_sum_5, B => tmp_sum_6, CI =>tmp_14,SUM => sum_7); 
 
U8: DW01_add 
generic map (width => 5) 
port map ( A => tmp_sum_7, B => tmp,CI => tmp_15, SUM =>god_sum); 
 
process(bit_vector_1) 
begin 
end process; 
tmp_0 <='0' & bit_vector_1(0); 
tmp_1 <='0' & bit_vector_1(1); 
tmp_3 <='0' & bit_vector_1(3); 
tmp_4 <='0' & bit_vector_1(4); 
tmp_6 <='0' & bit_vector_1(6); 
tmp_7 <='0' & bit_vector_1(7); 
tmp_9 <='0' & bit_vector_1(9); 
tmp_10 <='0' & bit_vector_1(10); 
tmp_2 <= bit_vector_1(2); 
tmp_5 <= bit_vector_1(5); 
tmp_8 <= bit_vector_1(8); 
tmp_11 <= bit_vector_1(11); 
tmp_12 <= bit_vector_1(12); 
tmp_13 <= bit_vector_1(13); 
tmp_14 <= bit_vector_1(14); 
tmp_15 <= bit_vector_1(15); 
tmp_sum_1 <= '0' & sum_1; 
tmp_sum_2 <= '0' & sum_2; 
tmp_sum_3 <= '0' & sum_3; 
tmp_sum_4 <= '0' & sum_4; 
tmp_sum_5 <= '0' & sum_5; 
tmp_sum_6 <= '0' & sum_6; 
tmp_sum_7 <= '0' & sum_7; 
tmp <= (others => '0'); 
end adder_sum1_a;
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