A query class is traditionally considered tractable if there exists a polynomial-time (PTIME) algorithm to answer its queries. When it comes to big data, however, PTIME al-gorithms often become infeasible in practice. A traditional and effective approach to coping with this is to preprocess data off-line, so that queries in the class can be subsequently evaluated on the data efficiently. This paper aims to pro-vide a formal foundation for this approach in terms of com-putational complexity. (1) We propose a set of Π-tractable queries, denoted by ΠT0Q, to characterize classes of queries that can be answered in parallel poly-logarithmic time (NC) after PTIME preprocessing. (2) We show that several natu-ral query classes are Π-tractable and are feasible on big data. (3) We also study a set ΠTQ of query classes that can be ef-fectively converted to Π-tractable queries by re-factorizing its data and queries for preprocessing. We introduce a form of NC reductions to characterize such conversions. (4) We show that a natural query class is complete for ΠTQ. (5) We also show that ΠT0Q ⊂ P unless P = NC, i.e., the set ΠT0Q of all Π-tractable queries is properly contained in the set P of all PTIME queries. Nonetheless, ΠTQ = P, i.e., all PTIME query classes can be made Π-tractable via proper re-factorizations. This work is a step towards understanding the tractability of queries in the context of big data. 1