2,787 research outputs found

    Efficient Parallel Path Checking for Linear-Time Temporal Logic With Past and Bounds

    Full text link
    Path checking, the special case of the model checking problem where the model under consideration is a single path, plays an important role in monitoring, testing, and verification. We prove that for linear-time temporal logic (LTL), path checking can be efficiently parallelized. In addition to the core logic, we consider the extensions of LTL with bounded-future (BLTL) and past-time (LTL+Past) operators. Even though both extensions improve the succinctness of the logic exponentially, path checking remains efficiently parallelizable: Our algorithm for LTL, LTL+Past, and BLTL+Past is in AC^1(logDCFL) \subseteq NC

    Automata-theoretic and bounded model checking for linear temporal logic

    Get PDF
    In this work we study methods for model checking the temporal logic LTL. The focus is on the automata-theoretic approach to model checking and bounded model checking. We begin by examining automata-theoretic methods to model check LTL safety properties. The model checking problem can be reduced to checking whether the language of a finite state automaton on finite words is empty. We describe an efficient algorithm for generating small finite state automata for so called non-pathological safety properties. The presented implementation is the first tool able to decide whether a formula is non-pathological. The experimental results show that treating safety properties can benefit model checking at very little cost. In addition, we find supporting evidence for the view that minimising the automaton representing the property does not always lead to a small product state space. A deterministic property automaton can result in a smaller product state space even though it might have a larger number states. Next we investigate modular analysis. Modular analysis is a state space reduction method for modular Petri nets. The method can be used to construct a reduced state space called the synchronisation graph. We devise an on-the-fly automata-theoretic method for model checking the behaviour of a modular Petri net from the synchronisation graph. The solution is based on reducing the model checking problem to an instance of verification with testers. We analyse the tester verification problem and present an efficient on-the-fly algorithm, the first complete solution to tester verification problem, based on generalised nested depth-first search. We have also studied propositional encodings for bounded model checking LTL. A new simple linear sized encoding is developed and experimentally evaluated. The implementation in the NuSMV2 model checker is competitive with previously presented encodings. We show how to generalise the LTL encoding to a more succint logic: LTL with past operators. The generalised encoding compares favourably with previous encodings for LTL with past operators. Links between bounded model checking and the automata-theoretic approach are also explored.reviewe

    Constraint LTL Satisfiability Checking without Automata

    Get PDF
    This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with Both future and past operators and atomic formulae belonging to constraint system D (CLTLB(D) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and uninterpreted functions combined with D. Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton A_{\phi}. The technique is effective, and it has been implemented in our Zot formal verification tool.Comment: 39 page

    Counterexample-Preserving Reduction for Symbolic Model Checking

    Get PDF
    The cost of LTL model checking is highly sensitive to the length of the formula under verification. We observe that, under some specific conditions, the input LTL formula can be reduced to an easier-to-handle one before model checking. In our reduction, these two formulae need not to be logically equivalent, but they share the same counterexample set w.r.t the model. In the case that the model is symbolically represented, the condition enabling such reduction can be detected with a lightweight effort (e.g., with SAT-solving). In this paper, we tentatively name such technique "Counterexample-Preserving Reduction" (CePRe for short), and finally the proposed technquie is experimentally evaluated by adapting NuSMV

    Linear Encodings of Bounded LTL Model Checking

    Full text link
    We consider the problem of bounded model checking (BMC) for linear temporal logic (LTL). We present several efficient encodings that have size linear in the bound. Furthermore, we show how the encodings can be extended to LTL with past operators (PLTL). The generalised encoding is still of linear size, but cannot detect minimal length counterexamples. By using the virtual unrolling technique minimal length counterexamples can be captured, however, the size of the encoding is quadratic in the specification. We also extend virtual unrolling to Buchi automata, enabling them to accept minimal length counterexamples. Our BMC encodings can be made incremental in order to benefit from incremental SAT technology. With fairly small modifications the incremental encoding can be further enhanced with a termination check, allowing us to prove properties with BMC. Experiments clearly show that our new encodings improve performance of BMC considerably, particularly in the case of the incremental encoding, and that they are very competitive for finding bugs. An analysis of the liveness-to-safety transformation reveals many similarities to the BMC encodings in this paper. Using the liveness-to-safety translation with BDD-based invariant checking results in an efficient method to find shortest counterexamples that complements the BMC-based approach.Comment: Final version for Logical Methods in Computer Science CAV 2005 special issu

    An LTL Semantics of Business Workflows with Recovery

    Full text link
    We describe a business workflow case study with abnormal behavior management (i.e. recovery) and demonstrate how temporal logics and model checking can provide a methodology to iteratively revise the design and obtain a correct-by construction system. To do so we define a formal semantics by giving a compilation of generic workflow patterns into LTL and we use the bound model checker Zot to prove specific properties and requirements validity. The working assumption is that such a lightweight approach would easily fit into processes that are already in place without the need for a radical change of procedures, tools and people's attitudes. The complexity of formalisms and invasiveness of methods have been demonstrated to be one of the major drawback and obstacle for deployment of formal engineering techniques into mundane projects

    Bounded Reachability for Temporal Logic over Constraint Systems

    Full text link
    We present CLTLB(D), an extension of PLTLB (PLTL with both past and future operators) augmented with atomic formulae built over a constraint system D. Even for decidable constraint systems, satisfiability and Model Checking problem of such logic can be undecidable. We introduce suitable restrictions and assumptions that are shown to make the satisfiability problem for the extended logic decidable. Moreover for a large class of constraint systems we propose an encoding that realize an effective decision procedure for the Bounded Reachability problem
    • …
    corecore