1,591 research outputs found

    Variational approach to second-order impulsive dynamic equations on time scales

    Get PDF
    The aim of this paper is to employ variational techniques and critical point theory to prove some conditions for the existence of solutions to nonlinear impulsive dynamic equation with homogeneous Dirichlet boundary conditions. Also we will be interested in the solutions of the impulsive nonlinear problem with linear derivative dependence satisfying an impulsive condition.Comment: 17 page

    Three Lectures: Nemd, Spam, and Shockwaves

    Full text link
    We discuss three related subjects well suited to graduate research. The first, Nonequilibrium molecular dynamics or "NEMD", makes possible the simulation of atomistic systems driven by external fields, subject to dynamic constraints, and thermostated so as to yield stationary nonequilibrium states. The second subject, Smooth Particle Applied Mechanics or "SPAM", provides a particle method, resembling molecular dynamics, but designed to solve continuum problems. The numerical work is simplified because the SPAM particles obey ordinary, rather than partial, differential equations. The interpolation method used with SPAM is a powerful interpretive tool converting point particle variables to twice-differentiable field variables. This interpolation method is vital to the study and understanding of the third research topic we discuss, strong shockwaves in dense fluids. Such shockwaves exhibit stationary far-from-equilibrium states obtained with purely reversible Hamiltonian mechanics. The SPAM interpolation method, applied to this molecular dynamics problem, clearly demonstrates both the tensor character of kinetic temperature and the time-delayed response of stress and heat flux to the strain rate and temperature gradients. The dynamic Lyapunov instability of the shockwave problem can be analyzed in a variety of ways, both with and without symmetry in time. These three subjects suggest many topics suitable for graduate research in nonlinear nonequilibrium problems.Comment: 40 pages, with 21 figures, as presented at the Granada Seminar on the Foundations of Nonequilibrium Statistical Physics, 13-17 September, as three lecture

    On Minimum-time Paths of Bounded Curvature with Position-dependent Constraints

    Get PDF
    We consider the problem of a particle traveling from an initial configuration to a final configuration (given by a point in the plane along with a prescribed velocity vector) in minimum time with non-homogeneous velocity and with constraints on the minimum turning radius of the particle over multiple regions of the state space. Necessary conditions for optimality of these paths are derived to characterize the nature of optimal paths, both when the particle is inside a region and when it crosses boundaries between neighboring regions. These conditions are used to characterize families of optimal and nonoptimal paths. Among the optimality conditions, we derive a "refraction" law at the boundary of the regions that generalizes the so-called Snell's law of refraction in optics to the case of paths with bounded curvature. Tools employed to deduce our results include recent principles of optimality for hybrid systems. The results are validated numerically.Comment: Expanded version of paper in Automatic

    Optimal Control of a Rigid Body using Geometrically Exact Computations on SE(3)

    Full text link
    Optimal control problems are formulated and efficient computational procedures are proposed for combined orbital and rotational maneuvers of a rigid body in three dimensions. The rigid body is assumed to act under the influence of forces and moments that arise from a potential and from control forces and moments. The key features of this paper are its use of computational procedures that are guaranteed to preserve the geometry of the optimal solutions. The theoretical basis for the computational procedures is summarized, and examples of optimal spacecraft maneuvers are presented.Comment: IEEE Conference on Decision and Control, 2006. 6 pages, 19 figure
    corecore