7,418 research outputs found

    CONFIGR: A Vision-Based Model for Long-Range Figure Completion

    Full text link
    CONFIGR (CONtour FIgure GRound) is a computational model based on principles of biological vision that completes sparse and noisy image figures. Within an integrated vision/recognition system, CONFIGR posits an initial recognition stage which identifies figure pixels from spatially local input information. The resulting, and typically incomplete, figure is fed back to the “early vision” stage for long-range completion via filling-in. The reconstructed image is then re-presented to the recognition system for global functions such as object recognition. In the CONFIGR algorithm, the smallest independent image unit is the visible pixel, whose size defines a computational spatial scale. Once pixel size is fixed, the entire algorithm is fully determined, with no additional parameter choices. Multi-scale simulations illustrate the vision/recognition system. Open-source CONFIGR code is available online, but all examples can be derived analytically, and the design principles applied at each step are transparent. The model balances filling-in as figure against complementary filling-in as ground, which blocks spurious figure completions. Lobe computations occur on a subpixel spatial scale. Originally designed to fill-in missing contours in an incomplete image such as a dashed line, the same CONFIGR system connects and segments sparse dots, and unifies occluded objects from pieces locally identified as figure in the initial recognition stage. The model self-scales its completion distances, filling-in across gaps of any length, where unimpeded, while limiting connections among dense image-figure pixel groups that already have intrinsic form. Long-range image completion promises to play an important role in adaptive processors that reconstruct images from highly compressed video and still camera images.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-0216); National Science Foundation (SBE-0354378); Office of Naval Research (N000014-01-1-0624

    BOUNDARY DETECTION ALGORITHMS IN WIRELESS SENSOR NETWORKS: A SURVEY

    Get PDF
    Wireless sensor networks (WSNs) comprise a large number of sensor nodes, which are spread out within a region and communicate using wireless links. In some WSN applications, recognizing boundary nodes is important for topology discovery, geographic routing and tracking. In this paper, we study the problem of recognizing the boundary nodes of a WSN. We firstly identify the factors that influence the design of algorithms for boundary detection. Then, we classify the existing work in boundary detection, which is vital for target tracking to detect when the targets enter or leave the sensor field

    Depth Enhancement and Surface Reconstruction with RGB/D Sequence

    Get PDF
    Surface reconstruction and 3D modeling is a challenging task, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. It is fundamental to many applications such as robot navigation, animation and scene understanding, industrial control and medical diagnosis. In this dissertation, I take advantage of the consumer depth sensors for surface reconstruction. Considering its limited performance on capturing detailed surface geometry, a depth enhancement approach is proposed in the first place to recovery small and rich geometric details with captured depth and color sequence. In addition to enhancing its spatial resolution, I present a hybrid camera to improve the temporal resolution of consumer depth sensor and propose an optimization framework to capture high speed motion and generate high speed depth streams. Given the partial scans from the depth sensor, we also develop a novel fusion approach to build up complete and watertight human models with a template guided registration method. Finally, the problem of surface reconstruction for non-Lambertian objects, on which the current depth sensor fails, is addressed by exploiting multi-view images captured with a hand-held color camera and we propose a visual hull based approach to recovery the 3D model

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision
    corecore