55,275 research outputs found

    Hamiltonian Structure for Classical Electrodynamics of a Point Particle

    Get PDF
    We prove that, contrary to the common belief, the classical Maxwell electrodynamics of a point-like particle may be formulated as an infinite-dimensional Hamiltonian system. We derive well defined quasi-Hamiltonian which possesses direct physical interpretation being equal to the total energy of the composed (field + particle) system. The phase space of this system is endowed with an interesting symplectic structure. We prove that this structure is strongly non-degenerated and, therefore, enables one to define consistent Poisson bracket for particle's and field degrees of freedom. We stress that this formulation is perfectly gauge-invariant.Comment: 36 pages, LATE

    Burgers' Flows as Markovian Diffusion Processes

    Full text link
    We analyze the unforced and deterministically forced Burgers equation in the framework of the (diffusive) interpolating dynamics that solves the so-called Schr\"{o}dinger boundary data problem for the random matter transport. This entails an exploration of the consistency conditions that allow to interpret dispersion of passive contaminants in the Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation tρ=(vρ)\partial_t\rho =-\nabla (\vec{v}\rho), where v=v(x,t)\vec{v}=\vec{v}(\vec{x},t) stands for the Burgers field and ρ\rho is the density of transported matter, is at variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterisation of the diffusive transport that is governed by Burgers velocity fields. The result extends both to the approximate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible medium. Also, in conjunction with the Born statistical postulate in quantum theory, it pertains to the probabilistic (diffusive) counterpart of the Schr\"{o}dinger picture quantum dynamics.Comment: Latex fil

    Fast shape reconstruction of perfectly conducting cracks by using a multi-frequency topological derivative strategy

    Full text link
    This paper concerns a fast, one-step iterative technique of imaging extended perfectly conducting cracks with Dirichlet boundary condition. In order to reconstruct the shape of cracks from scattered field data measured at the boundary, we introduce a topological derivative-based electromagnetic imaging function operated at several nonzero frequencies. The properties of the imaging function are carefully analyzed for the configurations of both symmetric and non-symmetric incident field directions. This analysis explains why the application of incident fields with symmetric direction operated at multiple frequencies guarantees a successful reconstruction. Various numerical simulations with noise-corrupted data are conducted to assess the performance, effectiveness, robustness, and limitations of the proposed technique.Comment: 17 pages, 27 figure

    Invisibility and Inverse Problems

    Full text link
    This survey of recent developments in cloaking and transformation optics is an expanded version of the lecture by Gunther Uhlmann at the 2008 Annual Meeting of the American Mathematical Society.Comment: 68 pages, 12 figures. To appear in the Bulletin of the AM
    corecore