20,023 research outputs found

    Intima-Media Thickness: Setting a Standard for a Completely Automated Method of Ultrasound Measurement

    Get PDF
    The intima - media thickness (IMT) of the common carotid artery is a widely used clinical marker of severe cardiovascular diseases. IMT is usually manually measured on longitudinal B-Mode ultrasound images. Many computer-based techniques for IMT measurement have been proposed to overcome the limits of manual segmentation. Most of these, however, require a certain degree of user interaction. In this paper we describe a new completely automated layers extraction (CALEXia) technique for the segmentation and IMT measurement of carotid wall in ultrasound images. CALEXia is based on an integrated approach consisting of feature extraction, line fitting, and classification that enables the automated tracing of the carotid adventitial walls. IMT is then measured by relying on a fuzzy K-means classifier. We tested CALEXia on a database of 200 images. We compared CALEXia performances to those of a previously developed methodology that was based on signal analysis (CULEXsa). Three trained operators manually segmented the images and the average profiles were considered as the ground truth. The average error from CALEXia for lumen - intima (LI) and media - adventitia (MA) interface tracings were 1.46 ± 1.51 pixel (0.091 ± 0.093 mm) and 0.40 ± 0.87 pixel (0.025 ± 0.055 mm), respectively. The corresponding errors for CULEXsa were 0.55 ± 0.51 pixels (0.035 ± 0.032 mm) and 0.59 ± 0.46 pixels (0.037 ± 0.029 mm). The IMT measurement error was equal to 0.87 ± 0.56 pixel (0.054 ± 0.035 mm) for CALEXia and 0.12 ± 0.14 pixel (0.01 ± 0.01 mm) for CULEXsa. Thus, CALEXia showed limited performance in segmenting the LI interface, but outperformed CULEXsa in the MA interface and in the number of images correctly processed (10 for CALEXia and 16 for CULEXsa). Based on two complementary strategies, we anticipate fusing them for further IMT improvement

    Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods

    Get PDF
    Automated and high performance carotid intima-media thickness (IMT) measurement is gaining increasing importance in clinical practice to assess the cardiovascular risk of patients. In this paper, we compare four fully automated IMT measurement techniques (CALEX, CAMES, CARES and CAUDLES) and one semi-automated technique (FOAM). We present our experience using these algorithms, whose lumen-intima and media-adventitia border estimation use different methods that can be: (a) edge-based; (b) training-based; (c) feature-based; or (d) directional Edge-Flow based. Our database (DB) consisted of 665 images that represented a multi-ethnic group and was acquired using four OEM scanners. The performance evaluation protocol adopted error measures, reproducibility measures, and Figure of Merit (FoM). FOAM showed the best performance, with an IMT bias equal to 0.025 ± 0.225 mm, and a FoM equal to 96.6%. Among the four automated methods, CARES showed the best results with a bias of 0.032 ± 0.279 mm, and a FoM to 95.6%, which was statistically comparable to that of FOAM performance in terms of accuracy and reproducibility. This is the first time that completely automated and user-driven techniques have been compared on a multi-ethnic dataset, acquired using multiple original equipment manufacturer (OEM) machines with different gain settings, representing normal and pathologic case

    Segmentation of skin lesions in 2D and 3D ultrasound images using a spatially coherent generalized Rayleigh mixture model

    Get PDF
    This paper addresses the problem of jointly estimating the statistical distribution and segmenting lesions in multiple-tissue high-frequency skin ultrasound images. The distribution of multiple-tissue images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled by enforcing local dependence between the mixture components. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to a tissue. More precisely, a hybrid Metropolis-within-Gibbs sampler is used to draw samples that are asymptotically distributed according to the posterior distribution of the Bayesian model. The Bayesian estimators of the model parameters are then computed from the generated samples. Simulation results are conducted on synthetic data to illustrate the performance of the proposed estimation strategy. The method is then successfully applied to the segmentation of in vivo skin tumors in high-frequency 2-D and 3-D ultrasound images

    Fast reconstruction of 3D blood flows from Doppler ultrasound images and reduced models

    Full text link
    This paper deals with the problem of building fast and reliable 3D reconstruction methods for blood flows for which partial information is given by Doppler ultrasound measurements. This task is of interest in medicine since it could enrich the available information used in the diagnosis of certain diseases which is currently based essentially on the measurements coming from ultrasound devices. The fast reconstruction of the full flow can be performed with state estimation methods that have been introduced in recent years and that involve reduced order models. One simple and efficient strategy is the so-called Parametrized Background Data-Weak approach (PBDW). It is a linear mapping that consists in a least squares fit between the measurement data and a linear reduced model to which a certain correction term is added. However, in the original approach, the reduced model is built a priori and independently of the reconstruction task (typically with a proper orthogonal decomposition or a greedy algorithm). In this paper, we investigate the construction of other reduced spaces which are built to be better adapted to the reconstruction task and which result in mappings that are sometimes nonlinear. We compare the performance of the different algorithms on numerical experiments involving synthetic Doppler measurements. The results illustrate the superiority of the proposed alternatives to the classical linear PBDW approach
    corecore