5,751 research outputs found

    Global Solutions for Incompressible Viscoelastic Fluids

    Full text link
    We prove the existence of both local and global smooth solutions to the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial data. The results hold in both two and three dimensional spaces. The results and methods presented in this paper are also valid for a wide range of elastic complex fluids, such as magnetohydrodynamics, liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy problem for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial dat

    On 2D Viscoelasticity with Small Strain

    Full text link
    An exact two-dimensional rotation-strain model describing the motion of Hookean incompressible viscoelastic materials is constructed by the polar decomposition of the deformation tensor. The global existence of classical solutions is proved under the smallness assumptions only on the size of initial strain tensor. The proof of global existence utilizes the weak dissipative mechanism of motion, which is revealed by passing the partial dissipation to the whole system.Comment: Different contributions of strain and rotation of the deformation are studied for viscoelastic fluids of Oldroyd-B type in 2

    On the Mathematical and Geometrical Structure of the Determining Equations for Shear Waves in Nonlinear Isotropic Incompressible Elastodynamics

    Full text link
    Using the theory of 1+11+1 hyperbolic systems we put in perspective the mathematical and geometrical structure of the celebrated circularly polarized waves solutions for isotropic hyperelastic materials determined by Carroll in Acta Mechanica 3 (1967) 167--181. We show that a natural generalization of this class of solutions yields an infinite family of \emph{linear} solutions for the equations of isotropic elastodynamics. Moreover, we determine a huge class of hyperbolic partial differential equations having the same property of the shear wave system. Restricting the attention to the usual first order asymptotic approximation of the equations determining transverse waves we provide the complete integration of this system using generalized symmetries.Comment: 19 page

    On probabilistic aspects in the dynamic degradation of ductile materials

    Get PDF
    Dynamic loadings produce high stress waves leading to the spallation of ductile materials such as aluminum, copper, magnesium or tantalum. The main mechanism used herein to explain the change of the number of cavities with the stress rate is nucleation inhibition, as induced by the growth of already nucleated cavities. The dependence of the spall strength and critical time with the loading rate is investigated in the framework of a probabilistic model. The present approach, which explains previous experimental findings on the strain-rate dependence of the spall strength, is applied to analyze experimental data on tantalum.Comment: 28 pages, 13 figures, 3 table
    corecore