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Abstract

Dynamic loadings produce high stress waves leading to the spallation of ductile materials
such as aluminum, copper, magnesium or tantalum. The main mechanism used herein to
explain the change of the number of cavities with the stress rate is nucleation inhibition,
induced by the growth of already nucleated cavities. The dependence of the spall strength
and critical time with the loading rate is investigated in the framework of a probabilistic
model. The present approach, which explains previous experimental findings on the strain-
rate dependence of the spall strength, is applied to analyze experimental data on tantalum.

Key words: A Dynamic ductile damage, B Probabilistic model, C Tantalum

1 Introduction

The impact of a projectile on a target generates two shock waves propagating in
opposite directions. Meeting free surfaces, these shock waves reflect back as two
release waves, which generally meet together at a definite location, the spall plane.
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Their superposition produces a triaxial tensile ramp loading that often results, prior
to fracture, in the nucleation, growth, and coalescence of microvoids in most metals.
This phenomenon is known as “ductile spalling.”

Although discovered long ago and studied by many authors (see Meyers and Ai-
mone, 1983; Curran et al. 1987; Grady, 1988 for reviews), its modeling still raises
open questions. Since the pioneering works of Carroll and Holt (1972) and of Glen-
nie (1972), void growth has by far been the main concern. This led many authors
to derive elastic-viscoplastic-damage models using the overall porosity as damage
variable (see, e.g., Eftis and Nemes, 1991; Cortes 1992), often comparable to the
quasi-static class of Gurson-like models (Gurson, 1977; Tvergaard, 1999). In these
models, nucleation and coalescence are generally dealt with in an empirical fashion.
In the recent years, however, renewed attention has been paid to these processes.
The present paper aims at addressing the question of nucleation, coalescence being
put aside for future work (the interested reader may refer to some recent works on
this topic by Thomason (1999), Tonks et al. (2002), Bontaz-Carion et al. (2006)).

Some recent interrogations in relation to the definition of a dynamic representative
volume element (Roy, 2003; Dragon and Trumel, 2003) seem to indicate that the
overall porosity is not a sufficient parameter, and that the entire size distribution
should be accounted for. The long neglected question of micro-inertia is the sub-
ject of a continued effort (Ortiz and Molinari, 1992; Tong and Ravichandran, 1995;
Wang and Jiang, 1997; Molinari and Mercier, 2001; Wu at al., 2003; Roy, 2003).
Not only does it slow down the growth of individual voids, but also does it con-
fine each void within an evolving neighborhood bounded by an elastic relaxation
wave. Hence, dynamic void interactions are strongly linked to inter-void spacing,
itself driven by the nucleation process. The latter thus appears as a crucial mecha-
nism. This is all the more the case that Roy (2003), studying pure tantalum over a
large range of shock levels and durations, showed extreme size distributions to be
present in recovered samples, indicating that nucleation is a continuous process tak-
ing place up to coalescence. Figure 1 shows a tantalum sample recovered after an
impact at 270 m/s by a coffer flyer plate (Roy, 2003), and containing isolated voids
up to about 100 µm in diameter (Even larger voids can be observed at lower im-
pact velocities). A detailed account of the nucleation process is clearly beyond the
present state of knowledge, although much progress is being made using atomistic
tools (see in particular Rudd and Belak, 2002). However, the probabilistic approach
is an interesting alternative, as shown by Grady and Kipp (1979; 1980), Denoual
and Hild (2000) for dynamic fragmentation of brittle materials, and more recently
by Molinari and Wright (2005), Czarnota et al. (2006, 2008) for ductile spalling.
In both cases, the purely deterministic description of void growth is combined with
a stress-dependent probability of void nucleation, in the form of a Weibull-like
model. Czarnota et al. (2006, 2008) define a probability of nucleating new voids; in
addition, Denoual and Hild (2000) use a spatial distribution of crack nuclei among
which new cracks are activated. Void interactions are also treated in a different
fashion. Czarnota et al. (2006, 2008) use the overall porosity to describe the weak-
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Fig. 1. Example of a 5 mm thick tantalum sample damaged by a symmetric impact at
270 m/s by a CuC2 flyer plate (the shock wave traveled from top to bottom ); zone I:
uniaxially loaded, zone II: biaxially loaded, zone III: rapidly unloaded. Only the left half
of the target is shown. The right edge is close to the symmetry axis.

ening effect of already present voids, whereas Denoual and Hild (2000) consider
microcrack growth as a spatially bounded relaxation process which inhibits nucle-
ation in relaxed zones. In this respect, the degree of coupling is stronger in the last
approach.

It is intended here to assess the relevance of inhibition concepts for fragmentation
(Mott, 1947; Grady and Kipp, 1980; Denoual and Hild, 2000) to analyze ductile
spalling processes. Rather than precisely describing joint nucleation, growth pro-
cesses and their couplings, this paper aims at setting the fundamentals of the theory
to demonstrate its potentialities within the simplest possible theoretical framework.
Section 2 shows how the deterministic and probabilistic parts of the model are
interlinked, and puts the emphasis on inertial growth, which drives the inhibition
process. Section 2.3.2 presents an application to ramp loading, generally agreed
to be representative of the real loading in the spall plane in the lack of any phase
transition process, and ends up with a closed-form solution of the whole problem.
A very simple overall damage model is proposed in Section 3.1, and yields an an-
alytical expression for the spall stress, i.e., the maximum tensile stress the material
can sustain during the whole spalling process. Through a thorough examination of
the experimental data of Roy (2003), Nicollet et al. (2001), and Bontaz-Carion et
al. (2006) on pure tantalum, the model is identified and discussed in Section 4, and
applied tentatively to other materials in Section 5.

2 Nucleation and growth in ductile materials

2.1 Model outline

As introduced above, the physical process of nucleation and growth during early
stages of ductile spallation is complex. Wave propagation induces transient macro-
scopic stress fields. At a finer (mesoscopic) spatial scale, local fields experience
fluctuations due to the polycrystalline nature of the materials considered (Fig. 2(a)).
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Fig. 2. Simplifying assumptions of the nucleation model (nucleation conditions met at ar-
rows). a) Physical situation: applied tensile stress σm and nucleation level σnuc as con-
tinuous random fields. b) Simplification: uniform applied stress, and field of nucleation
thresholds split up into discrete sites of random locations and threshold values.

When the local hydrostatic stress σm(x, t) exceeds some local nucleation threshold
σnuc(x), cavities are nucleated and start to grow.

As shown by Roy and Villechaise (Roy, 2003), in pure tantalum nucleation sites are
primarily located at grain boundaries, especially triple points 2 . Growing cavities
in turn induce relaxation zones in which local stresses decrease, thus decreasing
the probability of nucleating voids in these zones, and out of which local stresses
remain unaltered. Hence, any volume element in which macroscopic stresses are
uniform prior to nucleation evolves into a volume containing growing perturbed
zones in an otherwise unperturbed uniformly loaded matrix.

According to Roy (2003), isolated voids remain spherical from very small to very
large sizes, implying that local fluctuations of material behaviour do not seem to
influence void growth. Hence, a first simplification will consist in neglecting the
effects of the polycrystalline nature of the material of the matrix, and therefore on
macroscopic stresses. We thus assume uniform loading, in a pristine matrix ma-
terial which contains a random spatial distribution of void nuclei at which the
elastic-plastic properties of matrix material strongly fluctuate around their bulk
value (Fig. 2(b)). Furthermore, the matrix is assumed perfectly plastic hereafter.
Neglecting temperature, viscosity and strain hardening is performed for the sake
of simplicity, and can be relaxed in more detailed (future) analyses. During further
evolutions, activated voids are the only local heterogeneities that will affect macro-
scopic stresses. In this context, a voided volume is viewed as a matrix loaded by
a uniform hydrostatic tensile stress σm, containing several (possibly overlapping)
perturbed zones.

Second, the joint effects of local stress fluctuations and of local weaknesses are
accounted for through a stress-dependent nucleation probability. It will be fur-

2 This picture is valid when the material is pure. When second-phase particles or pre-
cipitates are present, so-called heterogeneous nucleation processes take place. The present
paper focuses on the first mechanism.
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ther assumed that the inhibition phenomenon is total in strongly relaxed zones.
Hence, matrix stresses will be considered as the only driving force for nucleation
and growth.

Third, given the high level of triaxiality, as well as the spherical shape of the voids
observed by Roy (2003), macroscopic shear stresses will be neglected, such that
σij = σmδij . From now on, σm will simply be referred to as “the stress.”

Growth drives the extension of relaxation zones, and thus the inhibition process.
The growth model must therefore be carefully chosen. On the one hand, as stressed
by Ortiz and Molinari (1992), Wang and Jiang (1997), Roy (2003), Dragon and
Trumel (2003), Molinari and Wright (2005), Czarnota et al. (2006), inertial ef-
fects are overwhelmingly important. On the other hand, elasticity should not be
neglected, since it has a strong effect on early growth (Denoual and Diani, 2001;
Roy, 2003). Advantage will be taken here of a simplified approach proposed by
Roy (2003), from the work of Forrestal and Luk (1998). This approach shows that
growth cannot take place if the macroscopic stress is less than a cavitation thresh-
old, as shown by many authors in the quasi-static case (Mandel, 1966; Hou and
Abeyaratne, 1992; Denoual and Diani, 2001).

We now proceed to assemble the above-listed ingredients. In a pristine examination
volume V subjected to uniform stress σm(t), we assume the number N of active
nucleation sites, of associated random nucleation stress σnuc(x) where x is the site
location, to follow a Point-Poisson distribution of intensity ntot (the average volume
density of active sites). The probability of finding N active sites in V is

P (N, V ) =
(ntotV )N

N !
exp (−ntotV ) . (1)

In the above definition, a nucleation site at location x is said active at t (i.e., can
potentially initiate a void) if σm(τ) ≥ σnuc(x) for any past time 0 ≤ τ ≤ t. It
will effectively give birth to a void only if not inhibited (effects of inhibition are
dealt with in Sec. 2.3.1). Introduce then σmax(t) = max0≤τ≤t σm(τ), the maximum
hydrostatic stress reached up to time t. According to experimental findings (Roy,
2003), the density of nucleated cavities is stress-dependent. This prompts us to
further write P (N, V ) in the form of the so-called Weibull-Poisson law by taking
(Gulino and Phoenix, 1992; Jeulin, 1991; Denoual and Hild, 2002)

ntot(t) = n0

[
〈σmax(t)〉

σ0

]m
, (2)

where m is the Weibull modulus which characterizes the scatter in nucleation levels
(weak scatter corresponds to a high m value, and conversely), σ0 is a scale parame-
ter relative to a reference density n0, and 〈?〉 are Macauley brackets that denote the
positive part of ?. In Eqn. (1), the product ntotV thus represents the average number
of sites in V where σm has overcome the nucleation threshold. Equation (2) indi-
cates that the higher σmax(t), the more nucleation sites are active. It should be noted
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that a classical Weibull expression is retrieved within the weakest link framework,
see Appendix A.

Since Eqs. (1) and (2) describe the probability of activating N sites in a pristine
uniformly loaded volume V , they also hold (with V replaced by V ′) in the uni-
formly loaded part V ′ of a larger voided volume, by definition of σm, and by the
above assumption of total inhibition. The volume V ′ is found by subtracting from
V the volume of inhibited zones, thus accounting for possible overlaps between
individual inhibition zones that grow out of each activated site. Since inhibition is
related to stress relaxation, V ′ depends on the growth model, which is addressed
now.

2.2 A simplified growth model

- a -

σm

σ < σm σ = 0

- b -

σm

σ ≈ 0

σm

σ ≈ 0

- c -

aeqa bc b

Fig. 3. Equivalent hollow sphere model. a– Real elasto-plastic hollow sphere. b– Simpli-
fied representation of equivalent elastic energy. c– Schematic representation of overlapping
relaxed zones. See Sec. 3.1 for a discussion of Figs. (b) and (c).

Cavity nucleation can be understood as a bifurcation process in the sense of Hou
and Abeyaratne (1992). Once nucleated, any new cavity starts to grow. As shown
for example by Hopkins (1960), Hunter and Crozier (1968), Glennie (1972), or
Roy (2003), an isolated growing cavity of radius a(t) can be seen as an expanding
volume bounded by an elastic relaxation wave at radius b(t). This volume consists
in an outer elastic zone, and an inner elastic-plastic region, separated by an evolv-
ing elastic-plastic boundary of (“plastic”) radius c(t) (Fig. 3a). Both regions are
referred to as “the matrix” hereafter. Denoual and Diani (2001), Tonks et al. (2002)
showed that the early growth can be decomposed into three distinct phases. The first
one is essentially elastic, until the hydrostatic stress reaches a “cavitation thresh-
old” (see below). There, bulk elastic energy release induces a violent elastic-plastic
expansion of the cavity, until the third phase of stationary expansion is established.

Strong relaxation occurs inside the elastic-plastic zone. This is illustrated numeri-
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Fig. 4. Space-time diagram for a hollow sphere (initial outer radius: b = 12.5 µm, initial
inner radius a = 0.58 µm) submitted to a stress rate of 2 GPa/µs on the outer radius. The
material parameters are those of tantalum (Table 1). The plastic zone coincides with the
region in which the local pressure decreases, in spite of an overall pressure increase.

cally, by submitting a hollow tantalum sphere of initial outer and inner radii of 12.5
and 0.58 µm respectively (i.e., an initial porosity of 10−4) to a hydrostatic stress
ramp of 2 GPa.µs−1 applied on the outer boundary. Figure 4 shows the space-time
domain where the matrix is yielding (Fig. 4(a)), and that of varying σm (Fig. 4(b)).
It is seen that σm decreases inside the plastic zone although the applied stress keeps
increasing. Plastic zones can thus be seen as (and identified to) inhibition zones for
further void nucleation, and this is exploited in the next section. This shows that
unlike previous works (Wu et al. 2003; Molinari and Wright, 2005; Czarnota et al.
2006), it is not sufficient to establish a link between the macroscopic stress and the
cavity radius a, namely, the link between these quantities and c must be known as
well.

Roy et al. (2002, 2003) checked numerically that the cavitation stress is indepen-
dent of the macroscopic strain-rate, and that the transient regime is brief. Accord-
ingly, and since this allows for closed-form solutions, a purely stationary model is
used here, with a(t) = ȧ t, c(t) = ċ t, where ȧ and ċ are constant growth velocities.
The approach used (detailed in Appendix B) is adapted from the work of Forre-
stal and Luk (1988), itself derived from earlier works dealing with isolated cavity
growth under internal hydrostatic stress (Hopkins, 1960; Hunter and Crozier, 1968).

Thus, for an isolated cavity in an infinite medium subjected to a remote tensile
stress σm(t), an implicit equation links ċ and σm(t) to ȧ [Eqs. (B.14) and (B.15)].
A first-order expansion valid in the low stress rate regime (assuming ċ¿ cP and ȧ

¿ cP , where cP =
√
K/ρ0 is the so-called plastic velocity (Zeldovich and Raizer,

2002), K is the bulk modulus, and ρ0 is the reference density), then provides the
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additional proportionality relationship

ċ = β−1/3 ȧ, (3)

where β is defined by Eqn. (B.16) in terms of K, µ the shear modulus, and Y
the yield stress. For most materials β ¿ 1. In turn, a similar first-order expansion
provides relationship (B.18), namely,

ȧ = ȧ0〈σm/σcav − 1〉1/2 (4)

between the void growth velocity and the applied tensile stress, where σcav is the
cavitation threshold, and where ȧ0 is a characteristic void growth velocity in the
material. Both quantities depend only on K, µ and Y , with ȧ0 depending on ρ0
as well (see Appendix B for explicit expressions of these quantities). Combining
Eqs. (3), (4) yields

ċ = k cP 〈σm/σcav − 1〉1/2 (5)

where k ≡ β−1/3ȧ0/cP is a numerical coefficient (k cP being a characteristic
growth velocity of the plastic region). For Al, Cu and Ta, k varies between 0.3
and 0.5.

Equation (5) constitutes a particular instance of the more general class of threshold-
like expressions

ċ = k cP 〈σm/σcav − 1〉α, (6)

where α ≥ 0 is a stress-sensitivity exponent, and where the nucleation stress σnuc
of Fig. 2 is identified to the cavitation threshold σcav. No significant growth of
the microvoid population should occur unless cavitation conditions are met. This
general expression covers the present case, as well as the “quasi-brittle” case for
which α = 0 (Denoual et al. 1997). In the case of monotonically increasing loading
σm(t), upon integrating (6) over time we obtain c(t) in the form

c(t) = C(t− tnuc), (t > tnuc) (7)

where C is some function and where tnuc is the nucleation time obtained as a solu-
tion to

σm(tnuc) = σcav. (8)

2.3 Elementary cell assembly

2.3.1 Dynamic inhibition model

So far, we described the behavior of isolated cavities only, in a deterministic way.
The collective behavior of the population of voids is now considered. Henceforth,
overlined quantities are used for macroscopic variables that represent statistical (or
more phenomenological) averages of their microscopic counterparts.
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The intrinsic probabilistic nature of the nucleation and growth process should be
embodied in some random variability of the local elastic and plastic properties
of the material Y , µ, K and ρ0. Equation (8) shows that under some prescribed
time-dependent loading, a random set {σcav} of cavitation or generic nucleation
thresholds (see Fig. 2) can be mapped to a random set {tnuc} of nucleation times.
Randomness in the process is thus introduced through the following crucial bold
assumption that emphasizes the part played by nucleation times: in Eqn. (7) the
nucleation time tnuc, which physically depends on the above material parameters
and on the local loading, will be considered as a random variable, whereas ma-
terial parameters, and parameters which define the field loading function, will be
considered as “averaged” ones whenever they enter the definition of the function C
itself.

Section 2.2 substantiates the identification between plastic regions and zones of
total nucleation inhibition. Accordingly, the inhibition volume Vinh associated to an
isolated cavity is taken hereafter proportional to the plastic radius c

Vinh = Vinh(t− tnuc) = S c3, (9)

where S is a shape parameter, and the functional time dependence of Vinh stems
from Eqn. (7).
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Fig. 5. Inhibition and horizon concepts.

New voids will nucleate from active nucleation sites (in the sense of Sec. 2.1) only
if they do not belong to any relaxed zone produced by previously nucleated growing
voids, as depicted in Fig. 5(a). Thus nnuc, the volume density of centers of nucleated
voids, is related to ntot defined in Eqn. (2) by

dnnuc
dt

= (1− Pinh)
dntot
dt

, (10)

with nnuc(0) = ntot(0) = 0. This equation, which implements inhibition effects
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in the model, involves the inhibition probability (identified with an overall volume
fraction of inhibited regions)

Pinh(t) = 1− exp
[
−V inh(t)ntot {σm(t)}

]
, (11)

where V inh, the mean volume of the inhibition zone, is defined by

V inh(t)ntot {σm(t)} =
∫ t

0
Vinh(t− τ)

dntot
dτ
{σm(τ)} dτ. (12)

Equations (11) and (12) (Denoual et al. 1997), which originate from the Poisson
hypothesis, Eqn. (1), are derived in Appendix C, which makes clear that Eqn. (11)
accounts for overlaps of inhibition zones (the derivation uses the horizon concept
described in Fig. 5(b), which constitutes another way to look at the inhibition pro-
cess). From the point of view of mathematical morphology, this model constitutes
an instance of a Boolean islands model (Jeulin and Jeulin, 1981; Serra, 1982). Also,
in the context of isothermal diffusive phase transformations, the three latter equa-
tions are central to the Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetic theory
of nucleation and growth (Komogorov, 1937; Johnson and Mehl, 1939; Avrami,
1941). Equations (11) or (12) are valid for any density ntot and any shape of inter-
action zones of volume Vinh. The present framework is thus adaptive to incorporate
many different inhibition phenomenologies. In particular, the same approach can be
used to analyze dynamic fragmentation of brittle materials (Grady and Kipp, 1979,
1980; Denoual and Hild, 2000; Denoual and Hild, 2002). In that case, inhibition is
induced by stress relaxation around propagating cracks, as was also the case for the
shell fragmentation problem studied by Mott (1947).

Bearing in mind the particular time-dependence of Vinh in Eqn. (9), it is observed
that the time-integration in Eqn. (12) is over the nucleation time. According to our
above hypothesis of considering the nucleation time as a random variable, Eqn. (12)
indicates that its associated probability density at time t imposed by the Weibull-
Poisson process (2) is (with τ ≥ 0)

P(tnuc = τ ; t) =
θ(t− τ)

ntot {σm(t)}

dntot
dτ
{σm(τ)} , (13)

where θ is the Heaviside step function.

Finally, an expression for the average void volume fraction f in the examination
volume is obtained as follows. Equation (3) implies, via a = β1/3 c, the following
proportionality relationship between the individual cavity volume Vcav ∝ a3 and
the corresponding inhibition volume Vinh ∝ c3

Vcav = β Vinh. (14)

Using Eqn. (12), the average cavity volume V cav follows as

V cav(t) = β V inh(t). (15)

10



Since the individual voids and inhibition zones are of same centers, they obey the
same statistics. The porosity f is thus

f(t) = 1− exp
[
−V cav(t)ntot {σm(t)}

]
, (16)

and simply relates to the inhibition probability by

f = 1− (1− Pinh)
β. (17)

This relation is illustrated by Fig. 3c, interpreting in the present context white zones
as voids of overall volume fraction f , and dotted zones as inhibited zones of overall
volume fraction Pinh.

2.3.2 Application to ramp loading

In general the number of nucleated cavities must be computed numerically. The
nucleation equation (10) involves the matrix stress in the non-inhibited zones, σm.
The link with the overall stress is given in Section 3.1. The computation is partic-
ularly simple for the particular case of ramp-stress loading σm = σ̇ t with constant
stress-rate σ̇ that yields a closed-form solution of practical interest for experimen-
tal analyses. Upon integrating Eqn. (6) over time, and introducing the nucleation
time tnuc ≡ σcav/σ̇ according to the first paragraph of Sec. 2.3.1, the individual
inhibition volume (9) reads

Vinh = S

[
k cP
α + 1

(
σ̇

σcav

)α

(t− tnuc)
α+1

]3
(18)

for t > tnuc, and zero otherwise. The corresponding cavity volume Vcav follows
from Eqn. (14).

At this stage, it proves useful to introduce a dimensionless flaw density ñ = n/nc,
time t̃ = t/tc, volume Ṽ = V/Vc and stress σ̃m = σm/σc. Two ways of defining
those dimensionless quantities are relevant here. Both are based on the condition

ncVc = 1 (t = tc) (19)

that expresses the fact that some characteristic volume Vc contains on average one
site at time tc.

Computing Pinh requires identifying Vc with the inhibition volume, whereby the
above condition reads

nciVci = 1, nci = ntot[σm(tci)], Vci = Vinh(tci), (20)

where the subscript ci denotes characteristic quantities associated to inhibition. A
characteristic stress is defined by σci = σ̇ tci. From Eqs. (2) and (20), the character-
istic parameters follow as

11



tci =

[
(α + 1)3σm

0 σ3αcav
n0 (kcP )3 S σ̇m+3α

] 1
m+3(α+1)

,

Vci =

[
k cP S1/3 σα+1

0

(α+ 1)n
(α+1)/m
0 σα

cav σ̇

] 3m
m+3(α+1)

, (21)

σci =

[
(α + 1)3σm

0 σ3αcavσ̇
3

n0 (kcP )3 S

] 1
m+3(α+1)

.

Upon carrying out the integration in Eqn. (12), Eqn. (11) reads

Pinh = 1− exp
[
−B

(
m, 3(α + 1)

)
t̃m+3(α+1)

]
, (22)

where B is a modified Euler function of the first kind

B(p, q) = p
∫ 1

0
tp−1(1− t)qdt =

Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 1)
, (23)

and the closed-form solution of Eqn. (10) yields

ñnuc
(
t̃
)
=

m B
(
m, 3(α + 1)

)− m

m+3(α+1)

m+ 3(α + 1)

× γ

(
m

m+ 3(α + 1)
, B
(
m, 3(α + 1)

)
t̃m+3(α+1)

)
, (24)

where γ is the incomplete gamma function

γ(p, x) =
∫ x

0
tp−1e−tdt (25)

so that γ(p, x → +∞) = Γ(p). Equation (24) is the exact solution to Mott’s prob-
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Fig. 6. Dimensionless nucleated density ñnuc, Eqn. (24), vs. dimensionless time t̃ for three
different Weibull moduli m when α = 1/2.

lem (1947) extended to 3D cases with an initial flaw density modeled by a power
law function. Figure 6 shows the change of the dimensionless density ñnuc with the
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dimensionless time t̃. At early times t̃ < 1, virtually no inhibition is observed, i.e.,
Pinh ≈ 0 and ñnuc ≈ ñtot. Conversely, at late times t̃ À 1, Pinh ≈ 1 and satura-
tion occurs. The higher the Weibull modulus m, the higher the density at saturation
(Fig. 7).
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Fig. 7. Dimensionless nucleated density at saturation, ñnuc(∞), vs. modulus m when
α = 1/2.

Computing f instead requires identifying Vc with the void volume, whereby the
characteristic parameters obey

nccVcc = 1, ncc = ntot[σm(tcc)], Vcc = Vcav(tcc), (26)

where the subscript ‘cc’ denotes characteristic quantities associated to cavities.
Similarly, the characteristic stress is defined by σcc = σ̇ tcc. Then, Eqs. (14) and
(26) provide

tcc = tciβ
−1

m+3(α+1) , Vcc = Vciβ
m

m+3(α+1) , σcc = σciβ
−1

m+3(α+1) , (27)

and the overall porosity f , Eqn. (16), takes the form

f = 1− exp
[
−B

(
m, 3(α + 1)

)
t̃m+3(α+1)

]
. (28)

Remark that Eqs. (27) follows from replacing k by kβ1/3 in Eqs. (21). The only
quantitative difference between Eqs. (28) and (22) resides in the definition of the
characteristic parameters (i.e., t̃ = t/tci for inhibition and t̃ = t/tcc for cavities).
These results are exploited below in the framework of a simplified constitutive
model.
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3 A simplified constitutive model

3.1 Homogenization approach for dynamic loadings

In usual homogenization approaches to the computation of the overall constitutive
law of disordered porous media, some void spatial distribution is prescribed in ad-
vance, all voids being by hypothesis in mutual long-range elastic interaction, and
the homogenization problem amounts to finding suitable approximation schemes
for these interactions. Such approaches quite generally provide estimates of stress
fluctuations in the matrix (due to pore elastic interactions), which can be considered
as evenly spread in the latter. In stark contrast with this situation, the dynamical im-
pact conditions considered here consist in loading a pristine matrix with a uniform
stress state σm in the first place, this initial state being perturbed afterwards by re-
laxation waves originating from nucleated growing voids. As a consequence, stress
fluctuations in the matrix are more localized (at least until significant overall relax-
ation is achieved through some “percolation” of the relaxed zones), and it should
be clear that standard homogenization techniques ought not be straightforwardly
transposed to this case.

The following alternative two-step approach is adopted instead, motivated by the
elastic decoupling of the voids in the first stages of the spall process. In a first step,
the elementary voided elastic-plastic cell of radius b, with void radius a, in which
the stress is heterogeneous but equal to σm on its boundary (Fig. 3a), is replaced by
an equivalent cell of radius b containing a fictitious void of radius aeq (region of null
stress), outside which the stress is uniform and equal to σm (Fig. 3b). The volume
fraction of fictitious void in the equivalent cell being written δ(c/b)3, where δ is an
unknown proportionality constant, it is proposed here to compute δ by requiring the
elastic energy densities in the real and fictitious systems to be equal. The equation
for δ thus reads

1

2
〈σ : C

−1 : σ〉cell =
[
1− δ(c/b)3

] 1
2

σ2m
K

, (29)

where 〈·〉cell denotes a volume average over the elementary cell and where C is the
usual (isotropic) tensor of elastic moduli built on K and µ. The lhs. of Eqn. (29),
which involves microscopic hydrostatic and shear stress components, can be com-
puted using the stress of the exact solution for the real elastic-plastic cell, derived in
Appendix B. Since this solution also provides a and b in terms of σm, the outcome
is an expression of δ as a function of σm. The associated fictitious void volume
Veq = Sa3eq = δVinh is then introduced (it is recalled that Vinh = Sc3).

Since fictitious voids obey the same point-Poissonian statistics as real ones, the
same token that was used to relate f to Pinh given the relationship between Vcav
and Vinh in Sec. 2.3.1, can be re-used here to relate Pinh to an overall fictitious
porosity feq given the above relationship between Vinh and Vcav. This second step
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provides the macroscopic relationship analogous to Eqn. (17)

1− feq = (1− Pinh)
δ. (30)

In the macroscopic equivalent system, the stress outside the fictitious voids is now
homogeneous everywhere, equal to σm (Fig. 3c). Hence the expression of the ma-
croscopic stress σm in terms of σm reads

σm = (1− feq)σm = (1− Pinh)
δσm, (31)

where Pinh and δ depend on σm. In this relation feq plays the part of an overall
damage variable D in the standard relation σm = (1 − D)σm of damage theory
(Lemaitre and Chaboche, 1990). To emphasize this connection the notation D =
feq is used from now on.

The computation of δ from the solution of Appendix B is quite involved. Besides,
Eqn. (29) is not free from arbitrariness since other energetic equivalences could be
proposed that explicitly involve an additional kinetic energy term as proposed by
Wang and Jiang (1994), Molinari and Mercier (2001). Bearing in mind the present
exploratory purpose, a pragmatic and simplified approach is preferred that consists
in considering only the limiting cases δ = 1, whereby D = Pinh, and δ = β
whereby D = f . These limits respectively provide upper and lower “pseudo-
bounds” (if not rigorous ones) to D. The former assumes that relaxation is total
in the plastic zone, and neglects elastic relaxation, such that the equivalent volume
is the plastic zone volume. The latter neglects any relaxation, such that the equiv-
alent volume is the void volume. The relevance of these “bounds” is established
below in Sec. 4.3 by comparison to experimental results.

For ramp loading, the constants required to write down in dimensionless form
the equations of type (31) that stem from each “bound” have been worked out in
Sec. 2.3.2. An example of the dimensionless macroscopic stress σm/σc as a func-
tion of the dimensionless time t̃, which reduces to the same master curve for both
“bounds”, is displayed in Fig. 8.

Completing the above approach in order to arrive at a full constitutive relation be-
tween σm and the macroscopic strain εm requires making additional assumptions,
and is not needed here.

3.2 Spall criterion and spall strength

The spall strength is the quantity of primary interest in dynamic ductile damage ex-
periments. It is defined as the maximum macroscopic stress σs sustained by the ma-
terial during the damage process. Given the relationship σm = σm(σm) between the
macroscopic stress σm and the microscopic stress σm in non-perturbed, uniformly
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Fig. 8. Dimensionless macroscopic stress provided by Eqn. (31), vs. dimensionless time
when m = 8 and α = 1/2.

loaded, regions of the matrix (see Section 2.2), the macroscopic spall strength σs

can be obtained as σs ≡ σm(σs), where σs is the microscopic spall stress solution
of

dσm
dσm

(σm = σs) = 0, (32)

The spall strength σs corresponds to the maximum stress in the plot of Fig. 8. For
the ramp load solution, Eqs. (22) and (31), the derivative in (32) is carried out using
t = σm/σ̇ and δ = 1 or β in the solution. It vanishes for a dimensionless critical
time for spall

t̃s =
{
[m+ 3(α + 1)]B

(
m, 3(α + 1)

)}−1/[m+3(α+1)]
(33)

and a corresponding macroscopic spall strength

σs = σc

{
[m+ 3(α + 1)]B

(
m, 3(α + 1)

)
e
}−1/[m+3(α+1)]

, (34)

where e = exp(1), t̃s = t/tcc, σc = σcc for the upper “bound”, and t̃s = t/tci,
σc = σci for the lower “bound”. At the spall point, the damage parameter is equal
for both “bounds” to

Ds = 1− exp{−1/[m+ 3(α + 1)]}. (35)

4 Analyses of experiments on tantalum

4.1 The material

Tantalum is a transition metal of great interest for studying dynamic ductile damage
mainly because of its high mass density (16660 kg/m3), good dynamic strength and
very high ductility in wide strain rate and temperature ranges. The samples used
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herein are machined from 5 mm thick cross-rolled and fully recrystallized plates.
Advanced elaboration process and heat treatment resulted in a very high purity
material (99.98 wt%). The main (embrittling) impurities are 15 wt ppm O, 15 wt
ppm C and less than 10 ppm N, with a homogeneous microstructure characterized
by equiaxed grains of typical size 90µm, and a weak residual texture. Either optical
microscopy, SEM or SIMS examinations did not reveal any localized heterogeneity
down to a ∼ 5 µm scale, namely, no second-phase hard particle nor impurity gra-
dient at grain boundaries. The lack of preferable nucleation sites has been revealed
by dynamic tensile tests on smooth and notched axisymmetric samples, where fail-
ure does occur in any case by ultimate thinning of the elongated ligament rather
than through inclusion-induced damage, for stress triaxialities ranging from 0.3 to
1 (Roy, 2003). This material is consequently an almost ideal polycrystal for study-
ing homogeneous ductile nucleation (Roy, 2003).

Mechanical properties of tantalum have been carefully determined from ultrasonic
measurements, quasi-static and dynamic uniaxial testing on both as received and
shocked material (Roy, 2003). During the release stage following the initial shock
compression, tantalum behaves roughly as an isotropic elastic perfectly plastic
medium (Roy, 2003; Juanicotena, 1998). This holds both at the macroscopic scale
during release wave interaction when no damage occurs and at a mesoscopic scale
around growing voids, where high strain rate gradients are roughly balanced by
thermal softening at large strain. The relevant properties of tantalum in the range
of stress and strain states of interest are summarized in Table 1. Twenty-two plate

Parameter Value

Compressibility modulus K 191 GPa

Shear modulus µ 69 GPa

Mass density ρ0 16660 kg/m3

Yield stress Y 700 MPa

Table 1
Tantalum material parameters.

impact experiments (Nicollet et al. 2001; Roy, 2003; Llorca and Roy, 2003; Bontaz-
Carion et al. 2006) were performed and/or analyzed for the present paper. Impact
velocity, flyer plate material and flyer plate thickness were selected as relevant pa-
rameters for varying both shock pressure and pulse duration, and are summarized
in Table 2. This essentially induces variations in the position of the plane of max-
imum tensile stress (the spall plane) and in the mean and maximum achievable
tensile stress state along this plane. The diagnostics used to study the condition for
damage and spall to occur are Doppler Laser Interferometry to record the velocity
of the target free surface (overall structural response of the sample plate) and qual-
itative and quantitative metallurgical analyses of the soft-recovered samples. The
most significant results derived from this microstructural examination have been
reported elsewhere (Roy, 2003; Llorca and Roy, 2003; Nicollet et al. 2001; Bontaz-
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Carion et al. 2006).

4.2 Data extraction
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Fig. 9. Example of a free-surface velocity record exhibiting a pull-back signal (Roy, 2003).

Time-resolved in situ measurements in the spall plane are not yet possible, and an
inverse methodology must be adopted. As a result, data extraction is performed
from free surface velocity records. In the spall plane, progressive damage induces
local relaxation waves whose macroscopic consequence is a so-called pullback sig-
nal (see Fig. 9). For first-order estimations of relevant data (spall plane location,
spall strength, critical time to fracture), a simple analytical elastic method is often
used (Romanchenko and Stepanov, 1980). This method reveals successful at low
shock pressure (lower than the material dynamic yield strength) or at high pressure
(when elastic behavior can be neglected regarding plastic hydrodynamic compo-
nent) (Meyers, 1994). This is definitely not the case for tantalum, whose dynamic
yield strength (or Hugoniot Elastic Limit) is known to be less than an order of
magnitude lower than its spall strength in the range of loading paths of interest.

Accurate data extraction requires an analysis of the complex wave pattern induced
by the plate impact. One- and two-dimensional numerical simulations have conse-
quently been performed using the Lagrangian explicit hydrocode Hesione (a pro-
prietary code of the Commissariat à l’Énergie Atomique). In order to extract the
thermomechanical fields in the region of interest (the spall plane) as accurately
as possible, a tabulated equation of state and a Preston-Tonks-Wallace (2003) vis-
coplastic constitutive law are used (Juanicotena, 1998).

Within the relatively low shock pressure range investigated here (low temperature
increase and weak plastic strain during shock and release at the macroscopic scale),
these relations do predict an essentially elastic perfectly plastic behavior during
unloading, consistent with the analytical parameters summarized in Table 1. These
relations, fitted from dedicated experimental databases on shock and uniaxial com-
pression behavior of this tantalum grade (Roy, 2003), yield very good correlation
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with experimental results used in this study regarding shock and release behav-
ior. A fracture criterion is added, leading to instantaneous mesh opening at a given
tensile stress threshold (spall strength), and fitted numerically for each simulated
experiment.

This numerical procedure is sufficient to extract the following data from free-
surface velocity records: the stress-rate in the matrix, the critical time and the spall
strength. In order for the extraction procedure to be as accurate as possible, two
features are particularly sought in matching numerical results and free-surface ve-
locity records, namely, the minimum velocity preceding pullback signal 3 and the
subsequent ringing velocity frequency, which suggests efficient prediction of both
spall plane position (which was compared with the experimental value for some
experiments), effective maximum tensile stress and associated critical time, in a far
more accurate way than using the simplified analytical method presented by Roy
(2003). In this fashion, critical time (spall criterion activation) and mean tensile
stress rate are derived from numerical stress history prediction at the spall plane
before fracture. The corresponding values are summarized in Table 2. Associated
error estimations are derived from numerical investigation of impact velocity uncer-
tainty, mesh size, and artificial viscosity sensitivity of the calculated spall strength
for some typical experiments. For some of these experiments, quantitative relevant
damage activation measures were also derived using metallurgical observation of
sample slices coupled with optical profilometry and image analysis (Roy, 2003) for
an estimation of the three dimension damage state. In particular, the volume den-
sity of nucleated voids could be measured in the vicinity of the spall plane. These
values are also given in Table 2.

4.3 Identification and validation

Figure 10 shows the change of volume density of nucleated voids ntot, Eqn. (2), as
a function of the shock pressure. This plot is restricted to data obtained from shots
A1–A5, A7, A9, A12 and B8 only. These shots involve only moderate pressures so
that void coalescence presumably remains limited. Moreover, in the impact config-
urations considered, the shock pressure is equal to the negative of σm, the maximum
stress in the matrix, which takes place in non-inhibited regions that exist whenever
coalescence is marginal. The assumption of a constant stress rate pulse (i.e., ramp
load) is applied to tantalum to determine the Weibull parameters of Eqn. (2). The
best power-law fit displayed in Fig. 10 provides an exponent m = 8, a moderate

3 We emphasize that a completely fractured plane at the macroscopic scale is not a neces-
sary condition for pullback-type free surface velocity evolution, as highlighted by Llorca
and Roy (2003) and Roy (2003). Primary internal energy release leading to pullback ve-
locity (early re-acceleration) has been experimentally shown to be initiated in the vicinity
of the spall plane at a given low incipient damage level. This is consistent with the basic
hypothesis of the spall criterion developed in part 3.
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Experimental Impact simulations
Target Imp. Imp. Impact Void density Shock Spall strength Stress rate Critical time

Shot thick. nature thick. vel. press.
mm mm m.s−1 number / mm3 GPa GPa GPa/µs µs

± 0.01 ± 0.01 ±2.0% ± 30 % ± 5 % ± 5% ± 12 % ± 17 %
A1 4.95 CuC2 3.00 252 256 5.5 N/A N/A N/A
A2 4.95 CuC2 1.00 271 60 5.8 N/A N/A N/A
A3 4.95 CuC2 2.00 270 N/A 5.87 5.32 17 0.36
A4 4.95 CuC2 2.00 270 75 5.87 N/A N/A N/A
A5 4.95 CuC2 4.00 268 301 5.88 5.37 11 0.48
A6 4.95 CuC2 3.00 269 N/A 5.9 5.32 15 0.34
A7 4.95 Ta 3.00 207 340 5.93 5.1 15 0.32
A8 4.95 Ta 3.00 303 N/A 8.9 6.6 42.8 0.15
A9 4.95 Ta 3.00 306 3660 9.01 6.6 49.7 0.12

A10 4.95 Ta 3.00 307 N/A 9.01 6.6 53.6 0.12
A11 4.95 Ta 3.00 415 N/A 12.5 7.5 81.1 0.08
A12 4.95 Ta 3.00 424 150000 12.7 N/A N/A N/A
B1 3.96 AU4G (Al 2017) 3.97 412 N/A 4.92 N/A 9.1 N/A
B2 3.92 AU4G (Al 2017) 3.49 481 N/A 5.86 5.35 17.3 0.38
B3 3.96 AU4G (Al 2017) 1.99 570 N/A 6.5 5.9 16.2 0.34
B4 3.94 AU4G (Al 2017) 3.01 551 N/A 6.89 6.15 26.9 0.24
B5 3.93 AU4G (Al 2017) 3.50 654 N/A 8.3 7.05 44.7 0.16
B6 3.96 AU4G (Al 2017) 4.01 528 N/A 8.55 7.1 47 0.15
B7 3.99 AU4G (Al 2017) 3.99 671 N/A 9.06 7.2 106.4 0.07
B8 3.95 AU4G (Al 2017) 0.49 1039 2250 9.06 7.2 106.4 0.07
B9 3.90 AU4G (Al 2017) 3.49 900 N/A 11.95 7.9 99.9 0.07

B10 3.96 AU4G (Al 2017) 3.48 1110 N/A 15.25 7.05 80 0.04

Table 2
Parameters of shock experiments. Shots A1–A12 (resp. B1–B10) are those of Roy (2003)
and Llorca and Roy (2003) (resp. Nicollet et al. (2001) and Bontaz-Carion et al. (2006)).
Third row: standard uncertainties. Sixth column: voids densities measured by image anal-
ysis on recovered samples. N/A indicates unavailable data.

value indicative of weak scatter in nucleation levels. A value of σ0 = 700 MPa for
the scaling stress equal to elastic limit is used, whence the density n0 = 7.9× 10−6

mm−3 is obtained. Upper and lower theoretical “bounds” for the critical time ver-
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Fig. 10. Volume density of pores ntot vs. shock pressure for tantalum. The solid symbols
are experimental points and the line is the best fit of Eqn. (2).

sus stress rate obtained from (33) with α = 1/2 and m = 8 are displayed in Fig. 11.
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Fig. 11. Critical time vs. stress rate. The solid symbols are experimental points and the
dashed lines are the “bounds” built from Eqn. (33) with α = 1/2, and m = 8 determined
from Fig. 10.

Almost all experimental points are seen to lie within these “bounds”. Besides the
overall trend is consistent with the slope of the latter. Likewise, upper and lower
theoretical bounds derived from (34) with α = 1/2 and m = 8 are compared to
experimental data in Fig. 12 in log-log scale, which illustrates the power-law in-
crease of the spall strength with the stress rate. Though the experimental points are
linearly correlated with a slope lower than that of the bounds, they lie between the
latter in the considered range of loadings, which is quite satisfactory. Thus, the rate
sensitivity of the spall strength can be described by the present model with no need
to incorporate a time-dependent constitutive equation of the matrix.
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Fig. 12. Spall strength vs. stress rate for tantalum. The solid symbols are experimental
points and the dashed lines are the bounds built from Eqs. (33) and (34) with α = 1/2, and
m = 8 determined from Fig. 10.
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5 Analyses of data on aluminum and magnesium

Kanel et al. (1996) performed experiments on aluminum and magnesium. In both
cases, the spall strength was shown to be approximated by a power-law of the strain
rate. In the present analysis, as in all the developments derived herein, the effect of
the temperature is ignored. Consequently, only experiments performed at ambient
are considered. By using σs = σ̇ ts = t̃sσ̇ tc ∝ σ̇ tc, any of Eqs. (21) or (27) for tc
vs. σ̇, and the proportionality σ̇ ∝ ε̇ (of elastic origin, and legitimate in non-relaxed
regions of uniform σm), the following strain-rate dependence is obtained for the
microscopic spall strength

σs ∝ ε̇η (36)

with
η =

3

m+ 3(α + 1)
(37)

where ε̇ denotes the average strain rate in the experiments. In this expression, the
only unknown is the modulus m, provided a value of α = 1/2 is chosen as in
the previous experiments on tantalum. For aluminum, a value η = 0.059 is found,
which would lead to a value of m = 46 and for magnesium, η = 0.072 so that
m = 37. These two (high) values of m are an indication of a small scatter in terms
of nucleation level when compared to tantalum (Table 3) for which a gradual and
scattered nucleation was observed.

Parameter Tantalum Aluminum Magnesium

α 0.5 0.5 0.5

Weibull modulus m 8 46 37

Table 3
Nucleation parameters for tantalum, aluminum and magnesium.

6 Conclusion and perspectives

We proposed a probabilistic model for nucleation and growth in ductile fracture,
using Poisson-Weibull statistical concepts, which are usually applied to brittle ma-
terials. We showed, through analyses of several sets of experimental data in spall
experiments, that these concepts are well-suited to describing ductile fracture as
well. In particular, we arrived at a simple explanation for the power-law dependence
of the spall strength vs. strain-rate observed by Kanel et al. (1996). The proposed
model makes use of a velocity-dependent extension of the concept of cavitation
stress in metals. Though it has been presented, for simplicity, in the framework
of ideal plasticity, expressions of cavitation thresholds that account for hardening
are available (Mandel, 1966; Bishop and Hill, 1945), and could be easily appealed

22



to. Investigations of the influence of hardening on the present nucleation theory,
as well as that of viscoplastic behavior, are left to future work. Also, next steps
should consist in implementing the full model in a finite-element hydrocode, and
in extending its range of validity to the coalescence regime.
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A Weibull distribution

The probability of finding at least one nucleation site (i.e., the “weakest link”) in a
uniformly loaded domain Ω is

P (N ≥ 1,Ω) = 1− P (N = 0,Ω) = 1− e−V n0(〈σm〉/σ0)
m

. (A.1)

When the domain is not uniformly loaded, we instead have

P (N ≥ 1,Ω) = 1− e−Veff n0(〈σM 〉/σ0)
m

, (A.2)
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where Veff denotes the effective volume (Davies, 1973)

Veff =
∫

Ω
d3x

[
σm(x)

σM

]m
with σM = max

Ω
σm(x). (A.3)

Equations (A.1) and (A.2) are the Weibull model (Weibull, 1939) written in the
context of ductile damage (see also Czarnota et al. 2006).

B Derivation of Eqns. (3) and (4)

B.1 Preliminaries

We detail here the steps leading to Eqns. (3) and (4), in the stationary growth
regime studied by Forrestal and Luk (1988). In this one-dimensional spherical ap-
proach, a cavity of radius a(t) grows at constant velocity ȧ in an infinite elasto-
plastic medium submitted to an initially uniform hydrostatic stress state σm(t).
This growth perturbs the stress field within a partially relaxed volume of radius
r = b(t) ≡ cL t, where cL =

√
(K + 4µ/3)/ρ0 is the velocity of longitudinal elas-

tic waves. The front b(t) separates the outer medium at rest in a state of uniform
stress, from the inner perturbed region expanding with the growing void. The inner
region is divided into an external elastic shell c(t) ≤ r ≤ b(t), and a shell at yield
which surrounds the cavity, a(t) ≤ r ≤ c(t).

In the steady-state growth regime where c(t) = ċ t, a self-similar solution for the
radial displacement u is sought for in the form u(r, t) = c(t) ũ(ξ). There, ξ(r, t) =
r/c(t) is the scaled radial coordinate, and ũ(ξ) is the scaled displacement. Moderate
stress is assumed so as to neglect: (i) density variations in the elastic shell, (ii)
nonlinear elasticity, and (iii) convection terms (Forrestal and Luk, 1988). Using
ξ̇ = −ξ ċ/c, the velocity and acceleration read

u̇=(ũ− ξ ũ ′) ċ, (B.1)
ü= ξ2ũ ′′ ċ 2/c. (B.2)

Equation (B.1) provides the scaled velocity ṽ(ξ) ≡ u̇(r, t)/ċ.

For further use, we introduce the scaled yield stress, shear modulus, applied hydro-
static stress, and density respectively as: y ≡ Y/K, g ≡ 2µ/K, σ̃(t) ≡ σm(t)/K,
ρ̃(ξ) ≡ ρ(r, t)/ρ0, where ρ0 is the reference material density. In usual metals,

y ¿ g . 1. (B.3)
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B.2 Elastic shell

Combining linear elasticity relationships and the momentum equation

∂rσr + (2/r)(σr − σθ) = ρü,

where σr and σθ are respectively the radial and hoop stresses, and introducing γL ≡
ċ/cL, yields the differential equation

(
1− γ2L ξ2

)
ũ ′′ +

(
2/ξ2

)
(ξ ũ ′ − ũ ) = 0. (B.4)

Its solution is of the form ũ(ξ) = C(1)ξ + C(2)(1 − 3γ2L ξ2)/ξ2, where the in-
tegration constants C (1,2) are found from boundary conditions. The first one is
ũ(ξ = 1/γL) = σm/(3KγL), and stems from the applied external boundary trac-
tion. The second one is ũ(ξ)/ξ − ũ ′(ξ)|ξ=1 = Y/(2µ), which expresses the yield
condition σθ − σr = Y (tensile case) at the elastic-plastic boundary. The solution
for ξ ∈ (1, 1/γL) is then

ũe =
σ̃

3
ξ +

Y

6µ

(1− γL ξ)2(1 + 2γL ξ)

(1− γ2L) ξ
2

. (B.5)

Denoting by ν the Poisson ratio, the corresponding radial stress reads

σ̃e
r = σ̃ −

2y

3

(1− γL ξ) [(1− 2ν)(1 + γL ξ) + (1 + ν)γ2L ξ2]

(1− 2ν) (1− γ2L) ξ
3

. (B.6)

B.3 Plastic shell

Mass conservation, namely, ∂tρ+ [∂r + (2/r)](u̇ ρ) = 0, provides

ṽ ′ + (2/ξ)ṽ = (ξ − ṽ) ρ̃ ′/ρ̃. (B.7)

Introduce now the plastic velocity cP =
√
K/ρ0, and (after γL) another scaling of

ċ as γP ≡ ċ/cP . The yield condition σθ − σr = Y , combined with linear elasticity
in the form Trσ = σr + 2σθ = 3K (ρ0/ρ− 1), gives

∂rσr = −K
(
ρ0/ρ

2
)
∂rρ. (B.8)

Using (B.8) in the momentum equation then provides

ξ ρ̃ ′ =
(
γ2P ξ2 ṽ ′ ρ̃− 2y

)
ρ̃2. (B.9)

Eliminating ρ̃′(ξ) from Eqns. (B.7) and (B.9) then yields
[
1− ξ γ2P ρ̃ 2 (ξ − ṽ)

]
ṽ ′ + 2 (1− y ρ̃) (ṽ/ξ) = −2y ρ̃. (B.10)
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Equations (B.9) and (B.10) constitute a system for ρ̃ and ṽ, should variations in
ρ be accounted for. Upon neglecting their higher-order influence in ṽ at moderate
stress, and assuming y ¿ 1, see (B.3), Eqn. (B.10) reduces to

(
1− γ2P ξ2

)
ṽ ′ + 2(ṽ/ξ) = −2y. (B.11)

Note that this equation also assumes that ṽ(ξ)¿ ξ, which is satisfied if the material
velocity is much lower than the velocity of the void boundary. However, finite-
element calculations of void expansion (Roy, 2003) indicate that this assumption
is expected to hold everywhere except near the void boundary where the velocity
gradient is highest. The difference induced by neglecting this term on the overall
behavior is small anyway (Forrestal and Luk, 1988; Roy, 2003), see Fig. B.1 below.

Continuity of the material velocity at the elastic-plastic interface provides the boun-
dary condition ṽ(1) = y/g. Then, the solution of Eqn. (B.11) in the interval ξ ∈
(a/c, 1) is

ṽp(ξ) =
y

γ2P ξ2

[
1− γ2P ξ2

1− γ2P
(1 + γ2P/g)− ξ

]

+
y

2γ3P ξ2
(1− γ2P ξ2) log

(1 + γP ξ)(1− γP )

(1− γP ξ)(1 + γP )
.

(B.12)

With αP ≡ ȧ/cP the scaled void growth velocity, the radial stress in the same inter-
val reads, upon integrating (B.8) and using (B.7) under the above approximations

σ̃p
r (ξ) =2y

(γP ξ − αP )(1 + γ2P/g)

(1− γ2P )αP ξ

+ y

[
log

γ2P ξ2(1− α2
P )

α2
P (1− γ2P ξ2)

−
1

γP ξ
log

(1 + γP ξ)(1− γP )

(1− γP ξ)(1 + γP )

+
1

αP

log
(1 + αP )(1− γP )

(1− αP )(1 + γP )

]
.

(B.13)

B.4 Complete and approximate solutions

The equations for the void growth velocity then consist in the relations αP =
γP ṽp(ξ = a/c) and σ̃e

r(1) = σ̃p
r (1). The first one reads

αP
α2
P/y + 1

1− α2
P

= γP
γ2P/g + 1

1− γ2P
+

1

2
log

(1 + αP )(1− γP )

(1− αP )(1 + γP )
, (B.14)
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Fig. B.1. Dimensionless velocity γP = ċ/cP of the plastic zone vs. dimensionless growth
velocity αP = ȧ/cP of a cavity in a compressible and incompressible medium (the value of
cP at finite compressibility is used for all curves). Material parameters of tantalum (Table
1), except for the bulk modulus in the incompressible case.

whereas, setting κ ≡ cL/cP = (1 + 2g/3)1/2, the second one yields

σ̃

y
=
2

3
+ 2

κ2 γ2P/g

1 + κ γP

+ 2
γ2P/g + 1

1− γ2P

(
γP

αP

− 1
)

+
1

αP

log
(1 + αP )(1− γP )

(1− αP )(1 + γP )
+ log

γ2P (1− α2
P )

α2
P (1− γ2P )

.

(B.15)

Seeking low-order expansions of Eqns. (B.14) and (B.15), ȧ is computed as a func-
tion of σm by first looking for a solution of Eqn. (B.14) in the perturbative form
γP =

∑
k≥1 Akα

k
P , where the unknowns Ak are determined order-by-order. To lead-

ing order in αP , the solution is

γP ' β−1/3 αP , β ≡
y(g + 3/2)

g(y + 3/2)
'

Y

2µ
+

2Y

3K
, (B.16)

where the approximated value of β stems from (B.3). Next, inserting the expansion
into Eqn. (B.15), assuming a relationship σ̃(αP ) = σ̃c +

∑
k≥1Bkα

k
P where σ̃c and

the Bk are unknowns, and again simplifying the coefficients with (B.3), yields

σ̃ =
2y

3
(1− log β) +

[
2−O

(
(yg2)1/3

)]
α2
P +O

(
α3
P

)
, (B.17)

where the orders of the neglected terms are indicated. Hence B2 = 2 in the incom-
pressible limit. We do not reproduce its full expression, quite involved but easily

30



retrieved with a symbolic calculator. The first term in the r.h.s. is the scaled cav-
itation stress, σ̃cav = σcav/K, first computed by Bishop, Hill and Mott 4 (1945),
and later on by Mandel (1966) for finite compressibility under the form σcav =
(2Y/3) {1 + logE/[3(1− ν)Y ]}, E being Young’s modulus.

Growth occurs only if σm > σcav. Hence from (B.17), for σm & σcav, the pore
growth velocity behaves as

ȧ ∼ ȧ0(σm/σcav − 1)1/2, (B.18)

where ȧ0 ≡ [σcav/(B2 ρ0)]
1/2 is a characteristic pore growth velocity of the material

with B2 ' 2. Using the full expressions of β and B2, we obtain for Al, Cu and Ta:
ȧ0 ' 289, 224 and 145 m/s respectively, and σcav ' 0.11, 0.89, and 2.75 GPa
respectively. For comparison purposes, we note that cP ' 5092, 3589, 3386 m/s for
these materials, respectively, so that ȧ0 is lower than cP by more than one order of
magnitude. Neglecting compressibility provides, with B2 = 2, values of ȧ0 lower
than the above ones by a relative error of about 5 × 10−3. Though it is strictly
valid for a constant applied stress (since ȧ = const. by hypothesis), Eqn. (B.18)
nonetheless provides the leading-order behavior for a time-varying stress, which
is the type of loading considered in Sec. 2.2 where use is made of this equation.
In practice, transient corrections mainly consist in damped oscillations around this
leading behavior, as was checked by finite-element calculations, and are neglected
in this work.

In the incompressible limit (where cL = cP = ∞) Eqn. (B.14) reduces to ȧ =
[Y/(2µ)]1/3ċ (this relation is encapsulated in the equations of Carroll and Holt
(1972) in the limit of vanishing initial porosity). Hence in general, it is expected
that ȧ¿ ċ ≤ cP . Combined with the above low-velocity solution, this suggests the
following approximation to (B.14)

α3
P = β γ3P/(1− γ2P ), (B.19)

which contains in particular the incompressible limit (where γP → 0). This approx-
imation, which preserves (B.17) up to the neglected terms, and which can be solved
analytically for γP , proves useful to compute numerically the stress in numerical
implementations of the model.

Figure B.1 compares Eqn. (B.14) with either stress- or velocity-driven finite-ele-
ment numerical results. These data points are reasonably well reproduced by the
solution of Eqn. (B.14), in spite of the underlying approximations. The solution to
Eqn. (B.19) is indistinguishable to the eye from the latter. Also shown are the linear
approximation (B.16) and the above incompressible (linear) solution.

4 However, their expression, written in terms of µ and Y , is that of the incompressible
case.
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It should be noted that the incompressible limiting value B2 = 2 markedly differs
from the value B2 = 3/2 which one easily deduces from Carroll and Holt’s (1972)
incompressible calculation in the limit of zero initial porosity, where convection is
accounted for. Though a detailed study of the influence of convective terms in the
compressible case lies beyond the scope of this paper, this difference indicates that
convection may be important in accurately determining the coefficient ȧ0 in (B.18),
the difference between the approaches concerning a numerical coefficient of order
one. Taking B2 = 3/2 instead of 2, Eqn. (B.17) is compatible with the work of
Molinari and Wright (2005) in the limit of stationary growth of incompressible
materials, and close to the result given by Tonks et al. (2002). Thus, the obtained
cavitation threshold, and the general form of this law hold in any case, which is a
sufficient conclusion for the present purpose.

C Inhibition probability

To define the probability that a point x at a time t be relaxed, it is preferable to invert
the problem by looking into the past of the considered site to know if a cavity is
able to inhibit its nucleation (this method, first proposed by Cahn (1996), was found
independently by two of the present authors (Denoual et al. 1997; Denoual, 1998).
Two zones are distinguished. First, a zone in which the nucleated cavities never
inhibit the considered site (see dashed part of Fig. 5(b) when τ < t). In the second
(complementary) zone, any nucleated cavity will inhibit x. This zone is referred to
as the horizon (Cahn, 1996; Denoual et al. 1997; Denoual, 1998).

The inhibition probability Pinh(t) is written as the product of the elementary prob-
abilities ∆P 6∃(τ)

1− Pinh(t) =
t∏

τ=0

∆P 6∃(τ) (C.1)

where ∆P 6∃(τ) is the probability of finding no new sites during a time increment
∆τ in a zone Vinh(t− τ). It suffices to apply Eqn. (1) with V = Vinh(t− τ) for an
intensity dntot

dτ
[σ(τ)] ∆τ , since it still is a Poisson process

∆P 6∃(τ) = exp

[
−
dntot
dτ

[σ(τ)] ∆τ Vinh(t− τ)

]
. (C.2)

The probability Pinh(t) becomes

1− Pinh(t) = exp

[
−

t∑

τ=0

dntot
dτ

[σ(τ)] ∆τ Vinh(t− τ)

]
. (C.3)

In the continuous limit ∆τ → 0, rewriting the sum as an integral eventually yields
Eqs. (11) and (12).
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