16,550 research outputs found

    Translationally invariant nonlinear Schrodinger lattices

    Full text link
    Persistence of stationary and traveling single-humped localized solutions in the spatial discretizations of the nonlinear Schrodinger (NLS) equation is addressed. The discrete NLS equation with the most general cubic polynomial function is considered. Constraints on the nonlinear function are found from the condition that the second-order difference equation for stationary solutions can be reduced to the first-order difference map. The discrete NLS equation with such an exceptional nonlinear function is shown to have a conserved momentum but admits no standard Hamiltonian structure. It is proved that the reduction to the first-order difference map gives a sufficient condition for existence of translationally invariant single-humped stationary solutions and a necessary condition for existence of single-humped traveling solutions. Other constraints on the nonlinear function are found from the condition that the differential advance-delay equation for traveling solutions admits a reduction to an integrable normal form given by a third-order differential equation. This reduction also gives a necessary condition for existence of single-humped traveling solutions. The nonlinear function which admits both reductions defines a two-parameter family of discrete NLS equations which generalizes the integrable Ablowitz--Ladik lattice.Comment: 24 pages, 4 figure

    Sufficient Conditions for Polynomial Asymptotic Behaviour of the Stochastic Pantograph Equation

    Get PDF
    This paper studies the asymptotic growth and decay properties of solutions of the stochastic pantograph equation with multiplicative noise. We give sufficient conditions on the parameters for solutions to grow at a polynomial rate in pp-th mean and in the almost sure sense. Under stronger conditions the solutions decay to zero with a polynomial rate in pp-th mean and in the almost sure sense. When polynomial bounds cannot be achieved, we show for a different set of parameters that exponential growth bounds of solutions in pp-th mean and an almost sure sense can be obtained. Analogous results are established for pantograph equations with several delays, and for general finite dimensional equations.Comment: 29 pages, to appear Electronic Journal of Qualitative Theory of Differential Equations, Proc. 10th Coll. Qualitative Theory of Diff. Equ. (July 1--4, 2015, Szeged, Hungary

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Hopf bifurcations in time-delay systems with band-limited feedback

    Full text link
    We investigate the steady-state solution and its bifurcations in time-delay systems with band-limited feedback. This is a first step in a rigorous study concerning the effects of AC-coupled components in nonlinear devices with time-delayed feedback. We show that the steady state is globally stable for small feedback gain and that local stability is lost, generically, through a Hopf bifurcation for larger feedback gain. We provide simple criteria that determine whether the Hopf bifurcation is supercritical or subcritical based on the knowledge of the first three terms in the Taylor-expansion of the nonlinearity. Furthermore, the presence of double-Hopf bifurcations of the steady state is shown, which indicates possible quasiperiodic and chaotic dynamics in these systems. As a result of this investigation, we find that AC-coupling introduces fundamental differences to systems of Ikeda-type [Ikeda et al., Physica D 29 (1987) 223-235] already at the level of steady-state bifurcations, e.g. bifurcations exist in which limit cycles are created with periods other than the fundamental ``period-2'' mode found in Ikeda-type systems.Comment: 32 pages, 5 figures, accepted for publication in Physica D: Nonlinear Phenomen

    Localization theorems for nonlinear eigenvalue problems

    Full text link
    Let T : \Omega \rightarrow \bbC^{n \times n} be a matrix-valued function that is analytic on some simply-connected domain \Omega \subset \bbC. A point λ∈Ω\lambda \in \Omega is an eigenvalue if the matrix T(λ)T(\lambda) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.Comment: Submitted to SIMAX. 22 pages, 11 figure

    Normal form for travelling kinks in discrete Klein-Gordon lattices

    Full text link
    We study travelling kinks in the spatial discretizations of the nonlinear Klein--Gordon equation, which include the discrete Ï•4\phi^4 lattice and the discrete sine--Gordon lattice. The differential advance-delay equation for travelling kinks is reduced to the normal form, a scalar fourth-order differential equation, near the quadruple zero eigenvalue. We show numerically non-existence of monotonic kinks (heteroclinic orbits between adjacent equilibrium points) in the fourth-order equation. Making generic assumptions on the reduced fourth-order equation, we prove the persistence of bounded solutions (heteroclinic connections between periodic solutions near adjacent equilibrium points) in the full differential advanced-delay equation with the technique of center manifold reduction. Existence and persistence of multiple kinks in the discrete sine--Gordon equation are discussed in connection to recent numerical results of \cite{ACR03} and results of our normal form analysis
    • …
    corecore