2,663 research outputs found

    Strong Nash Equilibria in Games with the Lexicographical Improvement Property

    Get PDF
    We introduce a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the Lexicographical Improvement Property (LIP) and show that it implies the existence of a generalized strong ordinal potential function. We use this characterization to derive existence, efficiency and fairness properties of strong Nash equilibria. We then study a class of games that generalizes congestion games with bottleneck objectives that we call bottleneck congestion games. We show that these games possess the LIP and thus the above mentioned properties. For bottleneck congestion games in networks, we identify cases in which the potential function associated with the LIP leads to polynomial time algorithms computing a strong Nash equilibrium. Finally, we investigate the LIP for infinite games. We show that the LIP does not imply the existence of a generalized strong ordinal potential, thus, the existence of SNE does not follow. Assuming that the function associated with the LIP is continuous, however, we prove existence of SNE. As a consequence, we prove that bottleneck congestion games with infinite strategy spaces and continuous cost functions possess a strong Nash equilibrium

    Semi-distributed Traffic Engineering for Elastic Flows in Software Defined Networks

    Get PDF
    Software-Defined Networking (SDN) is becoming the reference paradigm to provide advanced Traffic Engineering (TE) solutions for future networks. However, taking all TE decisions at the controller, in a centralized fashion, may require long delays to react to network changes. With the most recent advancements in SDN programmability some decisions can (and should indeed) be offloaded to switches. In this paper we present a model to route elastic demands in a general network topology adopting a semi-distributed approach of the control plane to deal with path congestion. Specifically, we envision a Stackelberg approach where the SDN controller takes the role of Leader, choosing the most appropriate subset of routing paths for the selfish users (network switches), which behave as Followers, making local routing decisions based on path congestion. To overcome the complexity of the problem and meet the time requirements of real-life settings, we propose effective heuristic procedures which take into accurate account traffic dynamics, considering a stochastic scenario where both the number and size of flows change over time. We test our framework with a custom-developed simulator in different network topologies and instance sizes. Numerical results show how our model and heuristics achieve the desired balance between making global decisions and reacting rapidly to congestion events

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed
    • …
    corecore