165 research outputs found

    On a Catalogue of Metrics for Evaluating Commercial Cloud Services

    Full text link
    Given the continually increasing amount of commercial Cloud services in the market, evaluation of different services plays a significant role in cost-benefit analysis or decision making for choosing Cloud Computing. In particular, employing suitable metrics is essential in evaluation implementations. However, to the best of our knowledge, there is not any systematic discussion about metrics for evaluating Cloud services. By using the method of Systematic Literature Review (SLR), we have collected the de facto metrics adopted in the existing Cloud services evaluation work. The collected metrics were arranged following different Cloud service features to be evaluated, which essentially constructed an evaluation metrics catalogue, as shown in this paper. This metrics catalogue can be used to facilitate the future practice and research in the area of Cloud services evaluation. Moreover, considering metrics selection is a prerequisite of benchmark selection in evaluation implementations, this work also supplements the existing research in benchmarking the commercial Cloud services.Comment: 10 pages, Proceedings of the 13th ACM/IEEE International Conference on Grid Computing (Grid 2012), pp. 164-173, Beijing, China, September 20-23, 201

    DoKnowMe: Towards a Domain Knowledgedriven Methodology for Performance Evaluation

    Get PDF
    Software engineering considers performance evaluation to be one of the key portions of software quality assurance. Unfortunately, there seems to be a lack of standard methodologies for performance evaluation even in the scope of experimental computer science. Inspired by the concept of “instantiation” in object-oriented programming, we distinguish the generic performance evaluation logic from the distributed and ad-hoc relevant studies, and develop an abstract evaluation methodology (by analogy of “class”) we name Domain Knowledge-driven Methodology (DoKnowMe). By replacing five predefined domain-specific knowledge artefacts, DoKnowMe can be instantiated into specific methodologies (by analogy of “object”) to guide evaluators in performance evaluation of different software and even computing systems. We also propose a generic validation framework with four indicators (i.e. usefulness, feasibility, effectiveness and repeatability), and use it to validate DoKnowMe in the Cloud services evaluation domain. Given the positive and promising validation result, we plan to integrate more common evaluation strategies to improve DoKnowMe and further focus on the performance evaluation of Cloud autoscaler systems

    Cloud brokering : nouveaux services de valeur ajoutée et politique de prix

    Get PDF
    Cloud brokering is a service paradigm that provides interoperability and portability of applications across multiple Cloud providers. The attractiveness of Cloud brokering relies on the new services and extended computing facilities that enhance or complement those already offered by isolated Cloud providers. These services provide new value to Small and Medium-sized Businesses (SMBs) and large enterprises and make Cloud providers more competitive. Nowadays, at the infrastructure level, Cloud brokers act as an intermediary between the end-users and the Cloud providers. A Cloud broker provides a single point for service consumption in order to avoid vendor lock-in, increase application resilience, provide a unified billing, and simplify governance, procurement and settlement processes across multiple Cloud providers. In the future, Cloud brokers will provide advanced valueadded services and will use attractive pricing models to capture potential Cloud consumers. The aim of this thesis is to propose advanced value-added services and a pricing model for Cloud brokers.Le « Cloud brokering » est un paradigme de service qui fournit interopérabilité et portabilité des applications à travers plusieurs fournisseurs de Cloud. Les nouveaux services et capacités étendues qui améliorent ou complètent celles déjà offertes par les fournisseurs de Cloud sont la caractéristique principale des « Cloud brokers ». Actuellement, d’un point de vue de l’infrastructure Cloud, les Cloud brokers jouent un rôle d’agents intermédiaires entre les utilisateurs et les fournisseurs, agissant ainsi comme un point commun pour la consommation des services Cloud. Parmi les avantages les plus notables liés à ce point d’accès commun on trouve : l’augmentation de la résilience en allouant l’infrastructure chez de multiples fournisseurs ; la délivrance d’une facturation unifiée ; la simplification des processus de gouvernance ; l’approvisionnement et le règlement à travers de multiples fournisseurs. Dans le futur, les Cloud brokers fourniront des services avancés de valeur ajoutée et vendront des services Cloud en utilisant d’attractives politiques de prix. Le but de cette thèse est de proposer deux services avancés de valeur ajoutée et une politique de prix pour les Cloud broker

    Development,Validation, and Integration of AI-Driven Computer Vision System and Digital-twin System for Traffic Safety Dignostics

    Get PDF
    The use of data and deep learning algorithms in transportation research have become increasingly popular in recent years. Many studies rely on real-world data. Collecting accurate traffic data is crucial for analyzing traffic safety. Still, traditional traffic data collection methods that rely on loop detectors and radar sensors are limited to collect macro-level data, and it may fail to monitor complex driver behaviors like lane changing and interactions between road users. With the development of new technologies like in-vehicle cameras, Unmanned Aerial Vehicle (UAV), and surveillance cameras, vehicle trajectory data can be collected from the recorded videos for more comprehensive and microscopic traffic safety analysis. This research presents the development, validation, and integration of three AI-driven computer vision systems for vehicle trajectory extraction and traffic safety research: 1) A.R.C.I.S, an automated framework for safety diagnosis utilizing multi-object detection and tracking algorithm for UAV videos. 2)N.M.E.D.S., A new framework with the ability to detect and predict the key points of vehicles and provide more precise vehicle occupying locations for traffic safety analysis. 3)D.V.E.D.S applied deep learning models to extract information related to drivers\u27 visual environment from the Google Street View (GSV) images. Based on the drone video collected and processed by A.R.C.I.S at various locations, CitySim: a new drone recorded vehicle trajectory dataset that aim to facilitate safety research was introduced. CitySim has vehicle interaction trajectories extracted from 1140- minutes of video recordings, which provide a large-scale naturalistic vehicle trajectory that covers a variety of locations, including basic freeway segments, freeway weaving segments, expressway segments, signalized intersections, stop-controlled intersections, and unique intersections without sign/signal control. The advantage of CitySim over other datasets is that it contains more critical safety events in quantity and severity and provides supporting scenarios for safety-oriented research. In addition, CitySim provides digital twin features, including the 3D base maps and signal timings, which enables a more comprehensive testing environment for safety research, such as autonomous vehicle safety. Based on these digital twin features provided by CitySim, we proposed a Digital Twin framework for CV and pedestrian in-the-loop simulation, which is based on Carla-Sumo Co-simulation and Cave automatic virtual environment (CAVE). The proposed framework is expected to guide the future Digital Twin research, and the architecture we build can serve as the testbed for further research and development

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    META-NET Strategic Research Agenda for Multilingual Europe 2020

    Get PDF
    In everyday communication, Europe’s citizens, business partners and politicians are inevitably confronted with language barriers. Language technology has the potential to overcome these barriers and to provide innovative interfaces to technologies and knowledge. This document presents a Strategic Research Agenda for Multilingual Europe 2020. The agenda was prepared by META-NET, a European Network of Excellence. META-NET consists of 60 research centres in 34 countries, who cooperate with stakeholders from economy, government agencies, research organisations, non-governmental organisations, language communities and European universities. META-NET’s vision is high-quality language technology for all European languages. “The research carried out in the area of language technology is of utmost importance for the consolidation of Portuguese as a language of global communication in the information society.” — Dr. Pedro Passos Coelho (Prime-Minister of Portugal) “It is imperative that language technologies for Slovene are developed systematically if we want Slovene to flourish also in the future digital world.” — Dr. Danilo Türk (President of the Republic of Slovenia) “For such small languages like Latvian keeping up with the ever increasing pace of time and technological development is crucial. The only way to ensure future existence of our language is to provide its users with equal opportunities as the users of larger languages enjoy. Therefore being on the forefront of modern technologies is our opportunity.” — Valdis Dombrovskis (Prime Minister of Latvia) “Europe’s inherent multilingualism and our scientific expertise are the perfect prerequisites for significantly advancing the challenge that language technology poses. META-NET opens up new opportunities for the development of ubiquitous multilingual technologies.” — Prof. Dr. Annette Schavan (German Minister of Education and Research

    Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021

    Get PDF
    As almost all human activities have been moved online due to the pandemic, novel robust and efficient approaches and further research have been in higher demand in the field of computer science and telecommunication. Therefore, this (reprint) book contains 13 high-quality papers presenting advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity
    • …
    corecore