1,894 research outputs found

    Measuring voting power in convex policy spaces

    Full text link
    Classical power index analysis considers the individual's ability to influence the aggregated group decision by changing its own vote, where all decisions and votes are assumed to be binary. In many practical applications we have more options than either "yes" or "no". Here we generalize three important power indices to continuous convex policy spaces. This allows the analysis of a collection of economic problems like e.g. tax rates or spending that otherwise would not be covered in binary models.Comment: 31 pages, 9 table

    Derivative of functions over lattices as a basis for the notion of interaction between attributes

    Full text link
    The paper proposes a general notion of interaction between attributes, which can be applied to many fields in decision making and data analysis. It generalizes the notion of interaction defined for criteria modelled by capacities, by considering functions defined on lattices. For a given problem, the lattice contains for each attribute the partially ordered set of remarkable points or levels. The interaction is based on the notion of derivative of a function defined on a lattice, and appears as a generalization of the Shapley value or other probabilistic values

    Cooperation through social influence

    Get PDF
    We consider a simple and altruistic multiagent system in which the agents are eager to perform a collective task but where their real engagement depends on the willingness to perform the task of other influential agents. We model this scenario by an influence game, a cooperative simple game in which a team (or coalition) of players succeeds if it is able to convince enough agents to participate in the task (to vote in favor of a decision). We take the linear threshold model as the influence model. We show first the expressiveness of influence games showing that they capture the class of simple games. Then we characterize the computational complexity of various problems on influence games, including measures (length and width), values (Shapley-Shubik and Banzhaf) and properties (of teams and players). Finally, we analyze those problems for some particular extremal cases, with respect to the propagation of influence, showing tighter complexity characterizations.Peer ReviewedPostprint (author’s final draft

    On anonymous and weighted voting systems

    Get PDF
    Many bodies around the world make their decisions through voting systems in which voters have several options and the collective result also has several options. Many of these voting systems are anonymous, i.e., all voters have an identical role in voting. Anonymous simple voting games, a binary vote for voters and a binary collective decision, can be represented by an easy weighted game, i.e., by means of a quota and an identical weight for the voters. Widely used voting systems of this type are the majority and the unanimity decision rules. In this article, we analyze the case in which voters have two or more voting options and the collective result of the vote has also two or more options. We prove that anonymity implies being representable through a weighted game if and only if the voting options for voters are binary. As a consequence of this result, several significant enumerations are obtained.This research was partially supported by funds from the Spanish Ministry of Science and Innovation grant PID2019-I04987GB-I00. We are grateful to the associate editor and two anonymous referees whose interesting comments allowed us to improve the paper.Peer ReviewedPostprint (author's final draft

    A note on the growth of the dimension in complete simple games

    Get PDF

    Mixture Selection, Mechanism Design, and Signaling

    Full text link
    We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function gg from the nn-dimensional hypercube to the bounded interval [−1,1][-1,1], and an n×mn \times m matrix AA with bounded entries, maximize g(Ax)g(Ax) over xx in the mm-dimensional simplex. This problem arises naturally when one seeks to design a lottery over items for sale in an auction, or craft the posterior beliefs for agents in a Bayesian game through the provision of information (a.k.a. signaling). We present an approximation algorithm for this problem when gg simultaneously satisfies two smoothness properties: Lipschitz continuity with respect to the L∞L^\infty norm, and noise stability. The latter notion, which we define and cater to our setting, controls the degree to which low-probability errors in the inputs of gg can impact its output. When gg is both O(1)O(1)-Lipschitz continuous and O(1)O(1)-stable, we obtain an (additive) PTAS for mixture selection. We also show that neither assumption suffices by itself for an additive PTAS, and both assumptions together do not suffice for an additive FPTAS. We apply our algorithm to different game-theoretic applications from mechanism design and optimal signaling. We make progress on a number of open problems suggested in prior work by easily reducing them to mixture selection: we resolve an important special case of the small-menu lottery design problem posed by Dughmi, Han, and Nisan; we resolve the problem of revenue-maximizing signaling in Bayesian second-price auctions posed by Emek et al. and Miltersen and Sheffet; we design a quasipolynomial-time approximation scheme for the optimal signaling problem in normal form games suggested by Dughmi; and we design an approximation algorithm for the optimal signaling problem in the voting model of Alonso and C\^{a}mara
    • …
    corecore