2,171 research outputs found

    Witnesses for Boolean Matrix Multiplication and for Transitive Closure

    Get PDF
    AbstractThe subcubic (O(nω) for ω < 3) algorithms to multiply Boolean matrices do not provide the witnesses; namely, they compute C = A · B but if Cij = 1 they do not find an index k (a witness) such that Aik = Bkj = 1. We design a deterministic algorithm for computing the matrix of witnesses which runs in O(nω + ϵ) time for any positive e. We also design an algorithm that computes witnesses for the transitive closure in the same time needed to compute witnesses for Boolean matrix multiplication

    Context-Free Path Querying by Matrix Multiplication

    Full text link
    Graph data models are widely used in many areas, for example, bioinformatics, graph databases. In these areas, it is often required to process queries for large graphs. Some of the most common graph queries are navigational queries. The result of query evaluation is a set of implicit relations between nodes of the graph, i.e. paths in the graph. A natural way to specify these relations is by specifying paths using formal grammars over the alphabet of edge labels. An answer to a context-free path query in this approach is usually a set of triples (A, m, n) such that there is a path from the node m to the node n, whose labeling is derived from a non-terminal A of the given context-free grammar. This type of queries is evaluated using the relational query semantics. Another example of path query semantics is the single-path query semantics which requires presenting a single path from the node m to the node n, whose labeling is derived from a non-terminal A for all triples (A, m, n) evaluated using the relational query semantics. There is a number of algorithms for query evaluation which use these semantics but all of them perform poorly on large graphs. One of the most common technique for efficient big data processing is the use of a graphics processing unit (GPU) to perform computations, but these algorithms do not allow to use this technique efficiently. In this paper, we show how the context-free path query evaluation using these query semantics can be reduced to the calculation of the matrix transitive closure. Also, we propose an algorithm for context-free path query evaluation which uses relational query semantics and is based on matrix operations that make it possible to speed up computations by using a GPU.Comment: 9 pages, 11 figures, 2 table

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an n×nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    Certified Context-Free Parsing: A formalisation of Valiant's Algorithm in Agda

    Get PDF
    Valiant (1975) has developed an algorithm for recognition of context free languages. As of today, it remains the algorithm with the best asymptotic complexity for this purpose. In this paper, we present an algebraic specification, implementation, and proof of correctness of a generalisation of Valiant's algorithm. The generalisation can be used for recognition, parsing or generic calculation of the transitive closure of upper triangular matrices. The proof is certified by the Agda proof assistant. The certification is representative of state-of-the-art methods for specification and proofs in proof assistants based on type-theory. As such, this paper can be read as a tutorial for the Agda system

    Efficient parallel computation on multiprocessors with optical interconnection networks

    Get PDF
    This dissertation studies optical interconnection networks, their architecture, address schemes, and computation and communication capabilities. We focus on a simple but powerful optical interconnection network model - the Linear Array with Reconfigurable pipelined Bus System (LARPBS). We extend the LARPBS model to a simplified higher dimensional LAPRBS and provide a set of basic computation operations. We then study the following two groups of parallel computation problems on both one dimensional LARPBS\u27s as well as multi-dimensional LARPBS\u27s: parallel comparison problems, including sorting, merging, and selection; Boolean matrix multiplication, transitive closure and their applications to connected component problems. We implement an optimal sorting algorithm on an n-processor LARPBS. With this optimal sorting algorithm at disposal, we study the sorting problem for higher dimensional LARPBS\u27s and obtain the following results: • An optimal basic Columnsort algorithm on a 2D LARPBS. • Two optimal two-way merge sort algorithms on a 2D LARPBS. • An optimal multi-way merge sorting algorithm on a 2D LARPBS. • An optimal generalized column sort algorithm on a 2D LARPBS. • An optimal generalized column sort algorithm on a 3D LARPBS. • An optimal 5-phase sorting algorithm on a 3D LARPBS. Results for selection problems are as follows: • A constant time maximum-finding algorithm on an LARPBS. • An optimal maximum-finding algorithm on an LARPBS. • An O((log log n)2) time parallel selection algorithm on an LARPBS. • An O(k(log log n)2) time parallel multi-selection algorithm on an LARPBS. While studying the computation and communication properties of the LARPBS model, we find Boolean matrix multiplication and its applications to the graph are another set of problem that can be solved efficiently on the LARPBS. Following is a list of results we have obtained in this area. • A constant time Boolean matrix multiplication algorithm. • An O(log n)-time transitive closure algorithm. • An O(log n)-time connected components algorithm. • An O(log n)-time strongly connected components algorithm. The results provided in this dissertation show the strong computation and communication power of optical interconnection networks
    corecore