9,828 research outputs found

    Boolean Circuit Complexity of Regular Languages

    Full text link
    In this paper we define a new descriptional complexity measure for Deterministic Finite Automata, BC-complexity, as an alternative to the state complexity. We prove that for two DFAs with the same number of states BC-complexity can differ exponentially. In some cases minimization of DFA can lead to an exponential increase in BC-complexity, on the other hand BC-complexity of DFAs with a large state space which are obtained by some standard constructions (determinization of NFA, language operations), is reasonably small. But our main result is the analogue of the "Shannon effect" for finite automata: almost all DFAs with a fixed number of states have BC-complexity that is close to the maximum.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Logical Languages Accepted by Transformer Encoders with Hard Attention

    Full text link
    We contribute to the study of formal languages that can be recognized by transformer encoders. We focus on two self-attention mechanisms: (1) UHAT (Unique Hard Attention Transformers) and (2) AHAT (Average Hard Attention Transformers). UHAT encoders are known to recognize only languages inside the circuit complexity class AC0{\sf AC}^0, i.e., accepted by a family of poly-sized and depth-bounded boolean circuits with unbounded fan-ins. On the other hand, AHAT encoders can recognize languages outside AC0{\sf AC}^0), but their expressive power still lies within the bigger circuit complexity class TC0{\sf TC}^0, i.e., AC0{\sf AC}^0-circuits extended by majority gates. We first show a negative result that there is an AC0{\sf AC}^0-language that cannot be recognized by an UHAT encoder. On the positive side, we show that UHAT encoders can recognize a rich fragment of AC0{\sf AC}^0-languages, namely, all languages definable in first-order logic with arbitrary unary numerical predicates. This logic, includes, for example, all regular languages from AC0{\sf AC}^0. We then show that AHAT encoders can recognize all languages of our logic even when we enrich it with counting terms. We apply these results to derive new results on the expressive power of UHAT and AHAT up to permutation of letters (a.k.a. Parikh images)

    Regular languages in NC1

    Get PDF
    We give several characterizations, in terms of formal logic, semigroup theory, and operations on languages, of the regular languages in the circuit complexity class AC0, thus answering a question of Chandra, Fortune, and Lipton. As a by-product, we are able to determine effectively whether a given regular language is in AC0 and to solve in part an open problem originally posed by McNaughton. Using recent lower-bound results of Razborov and Smolensky, we obtain similar characterizations of the family of regular languages recognized by constant-depth circuit families that include unbounded fan-in mod p addition gates for a fixed prime p along with unbounded fan-in boolean gates. We also obtain logical characterizations for the class of all languages recognized by nonuniform circuit families in which mod m gates (where m is not necessarily prime) are permitted. Comparison of this characterization with our previous results provides evidence for a conjecture concerning the regular languages in this class. A proof of this conjecture would show that computing the bit sum modulo p, where p is a prime not dividing m, is not AC0-reducible to addition mod m, and thus that MAJORITY is not AC0-reducible to addition mod m.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30017/1/0000385.pd

    The descriptive complexity approach to LOGCFL

    Full text link
    Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.Comment: 10 pages, 1 figur

    Monadic Second-Order Logic with Arbitrary Monadic Predicates

    Full text link
    We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate. We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates, and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.Comment: Conference version: MFCS'14, Mathematical Foundations of Computer Science Journal version: ToCL'17, Transactions on Computational Logi
    corecore