5 research outputs found

    Topology-Aware Exploration of Energy-Based Models Equilibrium: Toric QC-LDPC Codes and Hyperbolic MET QC-LDPC Codes

    Full text link
    This paper presents a method for achieving equilibrium in the ISING Hamiltonian when confronted with unevenly distributed charges on an irregular grid. Employing (Multi-Edge) QC-LDPC codes and the Boltzmann machine, our approach involves dimensionally expanding the system, substituting charges with circulants, and representing distances through circulant shifts. This results in a systematic mapping of the charge system onto a space, transforming the irregular grid into a uniform configuration, applicable to Torical and Circular Hyperboloid Topologies. The paper covers fundamental definitions and notations related to QC-LDPC Codes, Multi-Edge QC-LDPC codes, and the Boltzmann machine. It explores the marginalization problem in code on the graph probabilistic models for evaluating the partition function, encompassing exact and approximate estimation techniques. Rigorous proof is provided for the attainability of equilibrium states for the Boltzmann machine under Torical and Circular Hyperboloid, paving the way for the application of our methodology. Practical applications of our approach are investigated in Finite Geometry QC-LDPC Codes, specifically in Material Science. The paper further explores its effectiveness in the realm of Natural Language Processing Transformer Deep Neural Networks, examining Generalized Repeat Accumulate Codes, Spatially-Coupled and Cage-Graph QC-LDPC Codes. The versatile and impactful nature of our topology-aware hardware-efficient quasi-cycle codes equilibrium method is showcased across diverse scientific domains without the use of specific section delineations.Comment: 16 pages, 29 figures. arXiv admin note: text overlap with arXiv:2307.1577

    Mobile app recommendations using deep learning and big data

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMRecommender systems were first introduced to solve information overload problems in enterprises. Over the last decades, recommender systems have found applications in several major websites related to e-commerce, music and video streaming, travel and movie sites, social media and mobile app stores. Several methods have been proposed over the years to build recommender systems. The most popular approaches are based on collaborative filtering techniques, which leverage the similarities between consumer tastes. But the current state of the art in recommender systems is deep-learning methods, which can leverage not only item consumption data but also content, context, and user attributes. Mobile app stores generate data with Big Data properties from app consumption data, behavioral, geographic, demographic, social network and user-generated content data, which includes reviews, comments and search queries. In this dissertation, we propose a deep-learning architecture for recommender systems in mobile app stores that leverage most of these data sources. We analyze three issues related to the impact of the data sources, the impact of embedding layer pretraining and the efficiency of using Kernel methods to improve app scoring at a Big Data scale. An experiment is conducted on a Portuguese Android app store. Results suggest that models can be improved by combining structured and unstructured data. The results also suggest that embedding layer pretraining is essential to obtain good results. Some evidence is provided showing that Kernel-based methods might not be efficient when deployed in Big Data contexts

    Introduction to fast Super-Paramagnetic Clustering

    Get PDF
    We map stock market interactions to spin models to recover their hierarchical structure using a simulated annealing based Super-Paramagnetic Clustering (SPC) algorithm. This is directly compared to a modified implementation of a maximum likelihood approach to fast-Super-Paramagnetic Clustering (f-SPC). The methods are first applied standard toy test-case problems, and then to a dataset of 447 stocks traded on the New York Stock Exchange (NYSE) over 1249 days. The signal to noise ratio of stock market correlation matrices is briefly considered. Our result recover approximately clusters representative of standard economic sectors and mixed clusters whose dynamics shine light on the adaptive nature of financial markets and raise concerns relating to the effectiveness of industry based static financial market classification in the world of real-time data-analytics. A key result is that we show that the standard maximum likelihood methods are confirmed to converge to solutions within a Super-Paramagnetic (SP) phase. We use insights arising from this to discuss the implications of using a Maximum Entropy Principle (MEP) as opposed to the Maximum Likelihood Principle (MLP) as an optimization device for this class of problems

    Structured Dialogue State Management for Task-Oriented Dialogue Systems

    Get PDF
    Human-machine conversational agents have developed at a rapid pace in recent years, bolstered through the application of advanced technologies such as deep learning. Today, dialogue systems are useful in assisting users in various activities, especially task-oriented dialogue systems in specific dialogue domains. However, they continue to be limited in many ways. Arguably the biggest challenge lies in the complexity of natural language and interpersonal communication, and the lack of human context and knowledge available to these systems. This leads to the question of whether dialogue systems, and in particular task-oriented dialogue systems, can be enhanced to leverage various language properties. This work focuses on the semantic structural properties of language in task-oriented dialogue systems. These structural properties are manifest by variable dependencies in dialogue domains; and the study of and accounting for these variables and their interdependencies is the main objective of this research. Contemporary task-oriented dialogue systems are typically developed with a multiple component architecture, where each component is responsible for a specific process in the conversational interaction. It is commonly accepted that the ability to understand user input in a conversational context, a responsibility generally assigned to the dialogue state tracking component, contributes a huge part to the overall performance of dialogue systems. The output of the dialogue state tracking component, so-called dialogue states, are a representation of the aspects of a dialogue relevant to the completion of a task up to that point, and should also capture the task structural properties of natural language. Here, in a dialogue context dialogue state variables are expressed through dialogue slots and slot values, hence the dialogue state variable dependencies are expressed as the dependencies between dialogue slots and their values. Incorporating slot dependencies in the dialogue state tracking process is herein hypothesised to enhance the accuracy of postulated dialogue states, and subsequently potentially improve the performance of task-oriented dialogue systems. Given this overall goal and approach to the improvement of dialogue systems, the work in this dissertation can be broken down into two related contributions: (i) a study of structural properties in dialogue states; and (ii) the investigation of novel modelling approaches to capture slot dependencies in dialogue domains. The analysis of language\u27s structural properties was conducted with a corpus-based study to investigate whether variable dependencies, i.e., slot dependencies when using dialogue system terminology, exist in dialogue domains, and if yes, to what extent do these dependencies affect the dialogue state tracking process. A number of public dialogue corpora were chosen for analysis with a collection of statistical methods being applied to their analysis. Deep learning architectures have been shown in various works to be an effective method to model conversations and different types of machine learning challenges. In this research, in order to account for slot dependencies, a number of deep learning-based models were experimented with for the dialogue state tracking task. In particular, a multi-task learning system was developed to study the leveraging of common features and shared knowledge in the training of dialogue state tracking subtasks such as tracking different slots, hence investigating the associations between these slots. Beyond that, a structured prediction method, based on energy-based learning, was also applied to account for explicit dialogue slot dependencies. The study results show promising directions for solving the dialogue state tracking challenge for task-oriented dialogue systems. By accounting for slot dependencies in dialogue domains, dialogue states were produced more accurately when benchmarked against comparative modelling methods that do not take advantage of the same principle. Furthermore, the structured prediction method is applicable to various state-of-the-art modelling approaches for further study. In the long term, the study of dialogue state slot dependencies can potentially be expanded to a wider range of conversational aspects such as personality, preferences, and modalities, as well as user intents
    corecore