23,331 research outputs found

    A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines

    Full text link
    Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP) mean-field approximation of widely-connected systems with weak interactions coming from spin-glass theory. While the TAP approach has been extensively studied for fully-visible binary spin systems, our construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin systems with bounded support. In our numerical experiments, we demonstrate the effective deterministic training of our proposed models and are able to show interesting features of unsupervised learning which could not be directly observed with sampling. Additionally, we demonstrate how to utilize our TAP-based framework for leveraging trained RBMs as joint priors in denoising problems

    Attention in a family of Boltzmann machines emerging from modern Hopfield networks

    Full text link
    Hopfield networks and Boltzmann machines (BMs) are fundamental energy-based neural network models. Recent studies on modern Hopfield networks have broaden the class of energy functions and led to a unified perspective on general Hopfield networks including an attention module. In this letter, we consider the BM counterparts of modern Hopfield networks using the associated energy functions, and study their salient properties from a trainability perspective. In particular, the energy function corresponding to the attention module naturally introduces a novel BM, which we refer to as attentional BM (AttnBM). We verify that AttnBM has a tractable likelihood function and gradient for a special case and is easy to train. Moreover, we reveal the hidden connections between AttnBM and some single-layer models, namely the Gaussian--Bernoulli restricted BM and denoising autoencoder with softmax units. We also investigate BMs introduced by other energy functions, and in particular, observe that the energy function of dense associative memory models gives BMs belonging to Exponential Family Harmoniums.Comment: 12 pages, 1 figur

    Metric-Free Natural Gradient for Joint-Training of Boltzmann Machines

    Full text link
    This paper introduces the Metric-Free Natural Gradient (MFNG) algorithm for training Boltzmann Machines. Similar in spirit to the Hessian-Free method of Martens [8], our algorithm belongs to the family of truncated Newton methods and exploits an efficient matrix-vector product to avoid explicitely storing the natural gradient metric LL. This metric is shown to be the expected second derivative of the log-partition function (under the model distribution), or equivalently, the variance of the vector of partial derivatives of the energy function. We evaluate our method on the task of joint-training a 3-layer Deep Boltzmann Machine and show that MFNG does indeed have faster per-epoch convergence compared to Stochastic Maximum Likelihood with centering, though wall-clock performance is currently not competitive
    corecore