58,548 research outputs found

    Molecular dynamics simulations of aqueous urea solutions: Study of dimer stability and solution structure, and calculation of the total nitrogen radial distribution function GN(r

    Get PDF
    Molecular dynamics simulations have been performed in order to study the structure of two molal urea solutions in D2O. Several initial dimer configurations were considered for an adequate sampling of phase space. Eventually all of them appeared to be unstable, when system size and periodic boundary conditions are chosen properly, even after a very careful equilibration. The total nitrogen scattering function GN(r), calculated from these simulations, is in good agreement with neutron scattering experiments when both intra- and intermolecular correlations are considered and the experimental truncation ripples are introduced by a Fourier transform of GN(r) back and forth. The simple pair potential model that we used gives results in good agreement with experiments and with a much more involved potential model, recently described in the literature [J. Chem. Phys. 95, 8419 (1991)]

    From wave function to crystal morphology: application to urea and alpha-glycine

    Get PDF
    In this paper the relation between the molecular electron density distribution and the crystal growth morphology is investigated. Accurate charge densities derived from ab initio quantum chemical calculations were partitioned into multipole moments, to calculate the electrostatic contribution to the intermolecular interaction energy. For urea and alpha-glycine the F-faces or connected nets were determined according to the Hartman-Perdok PBC theory. From attachment energy and critical Ising temperature calculations, theoretical growth forms were constructed using different atom-atom potential models. These were compared to the Donnay-Harker model, equilibrium form and experimental growth forms. In the case of alpha-glycine, the theoretical growth forms are in good agreement with crystals grown from aqueous solution. Crystals obtained by sublimation seem to show some faces which are not F-faces sensu stricto

    'Nothing worthwile ever happens, except maybe some acts of consolation'. Literature according to Herman Brusselmans

    Get PDF

    Woord vooraf

    Get PDF

    Landelijke interactieve beleidsvorming: lessen voor de praktijk

    Get PDF
    Dit artikel is een voorpublicatie van het boek “Burgers als Beleidsadviseurs” dat zomer 2006 verschijnt bij de uitgeverij van het Instituut voor Publiek en Politiek. Het boek behandelt acht projecten van interactieve beleidsvorming bij drie departementen (VROM, LNV en V&W) en trekt lessen uit deze analyse voor de beleidspraktijk. De schrijvers van dit boek introduceren in deze voorpublicatie alvast hun eerste bevindingen

    Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Get PDF
    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 µm, 6.2 µm, 8.3 µm and 10.2 µm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 µm) to lower resolutions (6.2 µm, 8.3 µm and 10.2 µm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data
    corecore