1,575 research outputs found

    Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns

    Get PDF
    AbstractCuttlefish are cephalopod molluscs that achieve dynamic camouflage by rapidly extracting visual information from the background and neurally implementing an appropriate skin (or body) pattern. We investigated how cuttlefish body patterning responses are influenced by contrast and spatial scale by varying the contrast and the size of checkerboard backgrounds. We found that: (1) at high contrast levels, cuttlefish body patterning depended on check size; (2) for low contrast levels, body patterning was independent of “check” size; and (3) on the same check size, cuttlefish fine-tuned the contrast and fine structure of their body patterns, in response to small contrast changes in the background. Furthermore, we developed an objective, automated method of assessing cuttlefish camouflage patterns that quantitatively differentiated the three body patterns of uniform/stipple, mottle and disruptive. This study draws attention to the key roles played by background contrast and particle size in determining an effective camouflage pattern

    Body patterning and cognition in cephalopods - a literature review

    Get PDF
    Cephalopods are a valuable model for studying the evolution of cognition due to their distinctive brain structure, organisation, and connectivity patterns compared to vertebrates. The development of large brains and behavioural complexities are believed to be triggered by evolutionary pressures stemming from factors like heightened predation, more demanding foraging conditions, and intense mating competition. While the differences between corvid and mammals are less pronounced, the cephalopod brain is closer to the vertebrate brain in terms of encephalisation of ganglionic masses observed by nerve cell clusters. The cerebral ganglion in cephalopods is similar to the vertebrate forebrain and midbrain, while the vertical lobe is similar to the vertebrate cerebral cortex and hippocampus formation, which are involved in learning and memory. These brain regions function in a hierarchical system and are intimately connected with their eyes and optic lobes where visual inputs are processed, motor commands are transmitted to the lower motor centre. Chromatophores are skin elements and the physiological control of body patterning and are visually driven and light sensitive. This sets cephalopods apart from their molluscan families such as gastropods and bivalves. Recent studies have revealed that the opsins present in the skin are like those occurring in the retina. This infers that the connection between visual processing and body patterns is not exclusively innate. Expanding on Macphail's Null Hypothesis which posits no significant qualitative or quantitative differences in intelligence across vertebrates, this study seeks to explore the link between body patterning and cognitive abilities across cephalopod species. By comparing patterns of similarities and differences in cognitive abilities, this study aims to investigate whether body patterning can serve as an indicator of cognitive capacity. In conclusion, the study finds the presence of interindividual variations within species and disparities across different species in both body patterning and cognitive abilities. There are associations between cognitive capacity and body patterns. However, establishing a direct and conclusive connection between high-level cognitive abilities and the expression of body patterns remains elusive, as concrete evidence supporting such a relationship is lacking.Cephalopoda utgör en vÀrdefull modell för att studera den kognitiva evolutionen pÄ grund av deras distinkta hjÀrnstruktur, organisation och nervernas kontaktmönster jÀmfört med ryggradsdjur. Utvecklingen av stora hjÀrnor och komplexa beteenden tros vara resultatet av evolutionÀr press frÄn faktorer som ökad predation, mer krÀvande födosökningsförhÄllanden och intensiv parningskonkurrens. Medan skillnaderna mellan krÄkfÄglar och dÀggdjur Àr mindre uttalade, Àr blÀckfiskhjÀrnan nÀrmare ryggradsdjurshjÀrnan nÀr det gÀller encefalisering av nervcellkluster. Det cerebrala ganglie hos blÀckfiskar liknar ryggradsdjurens frÀmre hjÀrna och mellanhjÀrna, medan den vertikala loben liknar ryggradsdjurens hjÀrnbark och hippocampusformation, som Àr involverade i inlÀrning och minne. Dessa hjÀrnregioner fungerar inom ett hierarkiskt system och Àr intimt kopplade till deras ögon och optiska lober dÀr visuell information bearbetas och motoriska kommandon överförs till de nedre motoriska centrarna. Kromatoforer Àr hudstrukturer som fysiologiskt kontrollerar kroppsmönster och Àr visuellt styrda och ljuskÀnsliga. Detta skiljer cephalopoder frÄn andra molluskfamiljer som gastropoder och musslor. Studier har nyligenavslöjat att de opsin som finns i huden liknar de som förekommer i nÀthinnan. Detta antyder att sambandet mellan visuell bearbetning och kroppsmönster inte Àr uteslutande medfödd. Utöver Macphails nollhypotes, som hÀvdar att det inte finns nÄgra signifikanta kvalitativa eller kvantitativa skillnader i intelligens mellan ryggradsdjur, Àmnar denna studie utforska kopplingen mellan kroppsmönster och kognitiva förmÄgor hos cephalopoda. Genom att jÀmföra likheter och skillnader i kognitiva förmÄgor syftar denna studie till att undersöka om kroppsmönster kan fungera som en indikator pÄ kognitiv kapacitet. Resultaten visar pÄ förekomst av variationer mellan individer inom arter och skillnader mellan olika arter bÄde vad gÀller kroppsmönster och kognitiva förmÄgor. Det finns samband mellan kognitiv kapacitet och funktioner samt kroppsmönster. Dock Àr det fortfarande svÄrt att faststÀlla en direkt och definitiv koppling mellan hög kognitiva förmÄgor och uttrycket av kroppsmönster, eftersom konkret bevis som stöder ett sÄdant samband saknas

    H3K27 Demethylases, at Long Last

    Get PDF
    Methylation of lysine 27 on histone H3 (H3K27me) by the Polycomb complex (PRC2) proteins is associated with gene silencing in many developmental processes. A cluster of recent papers (Agger et al., 2007; De Santa et al., 2007; Lan et al., 2007; Lee et al., 2007) identify the JmjC-domain proteins UTX and JMJD3 as H3K27-specific demethylases that remove this methyl mark, enabling the activation of genes involved in animal body patterning and the inflammatory response

    A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning.

    Get PDF
    Insect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms. NvecGrl1 transcripts are detected around the aboral pole, considered the equivalent to the head-forming region of Bilateria. Morpholino-mediated knockdown of NvecGrl1 causes developmental patterning defects of this region, leading to animals lacking the apical sensory organ. A deuterostome Grl from the sea urchin Strongylocentrotus purpuratus displays similar patterns of developmental expression. These results reveal an early evolutionary origin of the insect chemosensory receptor family and raise the possibility that their ancestral role was in embryonic development

    Mesoderm Formation in Eleutherodactylus coqui: Body Patterning in a Frog with a Large Egg

    Get PDF
    AbstractThe direct developing frog, Eleutherodactylus coqui, develops from a large egg (diameter 3.5 mm). To investigate the effect of egg size on germ-layer formation, we studied mesoderm formation in E. coqui and compared it to that of Xenopus laevis (diameter 1.3 mm). First, we identified the position of prospective mesoderm in the 16-cell E. coqui embryo by cell-lineage tracing. Although the animal blastomeres are small, they form most of the blastocoel roof and make extensive contributions to some mesodermal tissues. Second, we performed recombinant analysis with X. laevis animal caps to define the distribution of mesoderm-inducing activity. Mesoderm-inducing activity in E. coqui was restricted around the marginal zone with strong activity in the superficial cells. Neither the vegetal pole nor the blastocoel floor had activity, although these same regions from X. laevis induced mesoderm. Third, we cloned Ecbra, a homologue of Xbra, an early mesoderm marker in X. laevis. Ecbra was expressed in the marginal ring close to the surface, similar to X. laevis, but E. coqui had weaker expression on the dorsal side. Our results suggest that mesoderm formation is shifted more animally and superficially in E. coqui compared to X. laevis

    Interaction of Wnt and caudal-related genes in zebrafish posterior body formation

    Get PDF
    AbstractAlthough Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure–a more severe phenotype than with inhibition of each Wnt alone–indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish

    Decoding transcription and microRNA-mediated translation control in Drosophila development

    Get PDF
    The spatio-temporal regulation of gene expression lies at the heart of animal development. In this article we present an overview of our recent work to apply systems biological approaches to the study of transcription and microRNA-mediated translation control in Drosophila development. We have identified many new cis-regulatory elements within the segmentation gene network, a transcriptional hierarchy governing pattern formation along the antero-posterior axis of the embryo, and developed a novel thermodynamic model to predict their expression. A similar thermodynamic approach that takes into account the secondary structure of the target mRNA significantly improves the prediction of microRNA binding sites

    The development of the Silurian trilobite Aulacopleura koninckii reconstructed by applying inferred growth and segmentation dynamics: A case study in paleo-evo-devo

    Get PDF
    Fossilized growth series provide rare glimpses into the development of ancient organisms, illustrating descriptively how size and shape changed through ontogeny. Occasionally fossil preservation is such that it is feasible to test alternative possibilities about how ancient development was regulated. Here we apply inferred developmental parameters pertaining to size, shape, and segmentation in the abundant and well-preserved 429 Myr old trilobite Aulacopleura koninckii that we have investigated previously to reconstruct the post-embryonic ontogeny of this ancient arthropod. Our published morphometric analyses associated with model testing have shown that: specification of the adult number of trunk segments (polymorphic in this species) was determined precociously in ontogeny; that growth regulation was targeted (i.e., compensatory), such that each developmental stage exhibited comparable variance in size and shape; and that growth gradients operating along the main body axis, both during juvenile and adult ontogeny, resulted from a form of growth control based on positional specification. While such developmental features are common among extant organisms, our results represent the oldest evidence for them within Metazoa. Herein, the novel reconstruction of the development of Aulacopleura koninckii permits visualization of patterns of relative and absolute growth and segmentation as never before possible for a fossilized arthropod ontogeny. By conducting morphometric analysis of appropriate data sets it is thus possible to move beyond descriptive ontogenetic studies and to address questions of high interest for evolutionary developmental biology using data from fossils, which can help elucidate both how developmental processes themselves evolve and how they affect the evolution of organismal body patterning. By extending similar analyses to other cases of exceptional preservation of fossilized ontogeny, we can anticipate beginning to realize the research program of “paleo-evo-devo.

    The role of retinoic acid signaling in starfish metamorphosis

    Get PDF
    BackgroundAlthough retinoic acid (RA) signaling plays a crucial role in the body patterning of chordates, its function in non-chordate invertebrates, other than its mediation of environmental cues triggering metamorphosis in cnidarians, is largely unknown. We investigated the role of RA signaling in the metamorphosis of starfish (Echinodermata).ResultsWe found that exogenous RA treatment induced metamorphosis in starfish larvae. In contrast, inhibitors of RA synthesis and RA receptors suppressed metamorphosis triggered by attachment to a substrate. Gene expressions of the RA signaling component were detected in competent larvae.ConclusionsThis study provides insight into the ancestral function of RA signaling, which is conserved in the metamorphosis of cnidarians and starfish
    • 

    corecore