7 research outputs found

    Global solvability and blow up for the convective Cahn-Hilliard equations with concave potentials

    Get PDF
    We study initial boundary value problems for the convective Cahn-Hilliard equation \Dt u +\px^4u +u\px u+\px^2(|u|^pu)=0. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any p>0p>0. In contrast to that, we show that the presence of the convective term u\px u in the Cahn-Hilliard equation prevents blow up at least for 0<p<490<p<\frac49. We also show that the blowing up solutions still exist if pp is large enough (p≥2p\ge2). The related equations like Kolmogorov-Sivashinsky-Spiegel equation, sixth order convective Cahn-Hilliard equation, are also considered

    Lie symmetries and exact solutions of a class of thin film equations

    Get PDF
    A symmetry group classification for fourth-order reaction-diffusion equations, allowing for both second-order and fourth-order diffusion terms, is carried out. The fourth-order equations are treated, firstly, as systems of second-order equations that bear some resemblance to systems of coupled reaction-diffusion equations with cross diffusion, secondly, as systems of a second-order equation and two first-order equations. The paper generalizes the results of Lie symmetry analysis derived earlier for particular cases of these equations. Various exact solutions are constructed using Lie symmetry reductions of the reaction-diffusion systems to ordinary differential equations. The solutions include some unusual structures as well as the familiar types that regularly occur in symmetry reductions, namely, self-similar solutions, decelerating and decaying traveling waves, and steady states
    corecore