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Abstract
We consider the Cahn-Hilliard equation with concentration dependent mobility in
two dimensions. Global existence and uniqueness of classical solutions are
established for a mobility with some delayed structure and general potential
including –u + γ u3 for both γ > 0 and γ < 0.
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1 Introduction
TheCahn-Hilliard equation, as an important continuousmodel for a phase transitionwith
a conservative order parameter, arises from a continuum model for a phase transition in
binary systems such as alloys, glasses, and polymer-mixtures; see for example [–]. It can
also be used to characterize the case of the zig-zag instability for the interface dynamics
in liquid crystals; see Chevallard et al. []. Due to its important physical background, this
type of equations has been the subject of intensive study by mathematical and physical
scientists in recent years; see [–] and the references therein. Our interest is particularly
motivated by the study of a spinodal decomposition, a phenomenon inwhich rapid cooling
of a homogeneously mixed binary alloy causes separation to occur, resolving the mixture
into regions in which one component or the other is dominant. In this context, u typically
denotes the concentration of one component of the binary alloy. In this paper we consider
the following Cahn-Hilliard equation in two spatial dimensions:

∂u
∂t

+ div
[
m(u)

(
k∇�u –∇ϕ(u)

)]
= , (x, t) ∈QT ≡ � × (,T), (.)

supplemented by the zero mass flux boundary condition

�J · ν =m(u)
(
k∇�u –∇ϕ(u)

) · ν = , x ∈ ∂�, t ∈ (,T), (.)

the natural boundary value condition

∇u · ν = , x ∈ ∂�, t ∈ (,T), (.)

and the initial value condition

u(x, ) = u(x), x ∈ �, (.)
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where� is a bounded domain inR with smooth boundary ∂�, ν denotes the unit exterior
normal to the boundary ∂�, u = u(x, t) is the unknown function describing the concen-
tration of one of the phases of the system, k is a positive constant,m(u) >  is the mobility
depending on the concentration, ϕ(u) is the intrinsic chemical potential, whose typical
example is the so-called double-well potential, namely

ϕ(u) = –u + γu (.)

for γ �=  being a constant. It follows from the boundary value condition (.) that the
boundary value condition (.) can be replaced by

∇�u(x, t) · ν = , x ∈ ∂�, t ∈ (,T). (.)

For the readers’ convenience, we sketch the derivation of the Cahn-Hilliard equation
(.) here. One can also find it in almost the same fashion in [, ]. We start with a free
energy functional of the form, given by Cahn and Hilliard [],

F[u] =
∫

�

(
H(u) +



k|∇u|

)
dx, (.)

where H ′(u) = ϕ(u). The Cahn-Hilliard equation arises from the conservation law

∂u
∂t

+ div�J = , (.)

where �J is the flux of the order parameter u. A standard phenomenological and well-
accepted law for the flux �J is given by

�J = –m(u)∇μ,

wherem(u) denotes themobility associatedwith concentration u, and is typically assumed
to be positive. That is, the composition of the alloy tends to change from configurations for
which a small change in concentration is accompanied by a large change in total free en-
ergy into configurations to ones in which a small change in concentration is accompanied
by a small change in total free energy. Here μ is the chemical potential. Usually, the chem-
ical potential is the derivative of the free energy with respect to the order parameter u.
But, since the term ∇u occurs in (.), this is no longer valid. Instead μ is now defined as
the variational derivative of (.) with respect to u. That is, μ = δF

δu . Then we have

�J = –m(u)∇ δF
δu

. (.)

Combining (.), (.), and (.), and by a simple calculation, we obtain the desired Cahn-
Hilliard equation (.).
The Cahn-Hilliard equation with constant mobility, i.e. m(u) ≡ const., has been inten-

sively studied. In one spatial dimension, a well-known work is by to Elliott and Zheng [],
who showed that the sign of γ is crucial to the global existence of solutions. Exactly speak-
ing, if γ >  then solutions exist always globally in time; while if γ < , then solutions must
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blow up in a finite time for large initial data. From the physical point of view, the mobility
should depend on the concentration. In general, form(u), there is no restriction with pos-
itive lower bound, but there is a possibility with degeneracy, see for example [, –],
where, for γ > , the existence of weak solutions for the degenerate case and classical solu-
tions for the uniformly parabolic case are established, respectively. Our interest lies in the
case that the mobilitym(s) >  but decays as s → ∞. Some discussion in this topic for one
spatial dimension was given in our previous work [], while the present paper is focused
on the discussion for two dimensions. The case with decayed mobilitym(u) not only gets
rid of some properties for the case m(u) ≡ const., but it also exhibits some new features
compared to the case m(u) ≡ const. Indeed, the existence result can be established for
both γ <  and γ >  without essential restrictions on the initial data, see [] for some
information in one spatial dimension. However, compared to the one-dimensional case
[], the present work will encounter more difficulties in the arguments of the regularity
of solutions. For this reason, we employ the framework based on Campanato spaces to
obtain the Hölder continuity of higher order derivatives of solutions.
The main result of this paper is the following theorem.

Theorem . Assume that m(s) belongs to C+α(R) for some α ∈ (, ), and there exist pos-
itive constants C and p, such that for any s ∈R,

 <m(s)≤ C
(
 + s

)–(p+),
∣
∣m′(s)

∣
∣ ≤ Cm(s), (.)

∣
∣ϕ′(s)

∣
∣ ≤ C

(|s|p+ + 
)
,

∣
∣ϕ′′(s)

∣
∣ ≤ C

(|s|p + 
)
. (.)

Then the problem (.)-(.) admits a unique classical solution for a small smooth initial
value u(x).

This paper is organized as follows. Section  is devoted to the a prioriHölder norm esti-
mates; the gradient Hölder norm estimates are given subsequently in Section . Finally, in
the last sectionwe prove the existence and uniqueness of classical solutions to the problem
(.)-(.).

2 Hölder norm estimates
In this section, by means of energy estimates, we establish the a priori Hölder norm esti-
mates on solutions to the problem (.)-(.).

Proposition . If u is a solution of the problem (.)-(.), and all the assumptions in
Theorem . hold, then there exists a constant  < α < , such that

∣
∣u(x, t) – u(x, t)

∣
∣ ≤ C

(|x – x|α + |t – t|α/
)
, ∀(x, t), (x, t) ∈ QT ,

where C is a positive constant.

Proof Multiplying both sides of (.) by �u and integrating the resulting relation with
respect to x over �, we have

∫

�

ut�udx +
∫

�

div
[
m(u)

(
k∇�u –∇ϕ(u)

)]
�udx = .
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By the assumptions (.), (.), we have m(s)|ϕ′(s)| ≤ C, ∀s ∈ R. Noticing this fact and
integrating the above equality by parts, we have

d
dt

∫

�

|∇u| dx + k
∫

�

m(u)|∇�u| dx

= 
∫

�

m(u)ϕ′(u)∇u∇�udx

≤ k
∫

�

m(u)|∇�u| dx + 
k

∫

�

m(u)
∣∣ϕ′(u)

∣∣|∇u| dx

≤ k
∫

�

m(u)|∇�u| dx +C
∫

�

|∇u| dx,

namely,

d
dt

∫

�

|∇u| dx + k
∫

�

m(u)|∇�u| dx≤ C
∫

�

|∇u| dx.

It follows from the Gronwall inequality that

∫

�

|∇u| dx ≤ C
∫

�

|∇u| dx, ∀ < t < T , (.)
∫∫

QT

m(u)|∇�u| dxdt ≤ C
∫

�

|∇u| dx.

Multiplying both sides of (.) by �u and integrating the resulting relation with respect
to x over �, we have

∫

�

ut�udx +
∫

�

div
[
m(u)

(
k∇�u –∇ϕ(u)

)]
�udx = .

By the boundary conditions (.) and (.), we integrate by parts to conclude



d
dt

∫

�

|�u| dx + k
∫

�

m(u)
∣∣�u

∣∣ dx

= –k
∫

�

m′(u)∇u∇�u�udx +
∫

�

m(u)ϕ′(u)�u�udx

+
∫

�

m(u)ϕ′′(u)|∇u|�udx

+
∫

�

m′(u)ϕ′(u)|∇u|�udx.

It follows from (.), (.), and the Hölder inequality that



d
dt

∫

�

|�u| dx + k
∫

�

m(u)
∣∣�u

∣∣ dx

≤ k


∫

�

m(u)
∣∣�u

∣∣ dx +C
∫

�

|∇u||∇�u| dx

+C
∫

�

|�u| dx +C
∫

�

(∣∣ϕ′′(u)
∣
∣ +

∣
∣ϕ′(u)

∣
∣)|∇u| dx
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≤ k


∫

�

m(u)
∣
∣�u

∣
∣ dx +C

(∫

�

|∇u| dx
)/(∫

�

|∇�u|/ dx
)/

+C
∫

�

|�u| dx +C sup
(∣∣ϕ′′(u)

∣
∣ +

∣
∣ϕ′(u)

∣
∣)

∫

�

|∇u| dx. (.)

Next, we will estimate the terms in the right-hand side of the above inequality (.). It
follows from the Cagliardo-Nirenberg inequality that

(∫

�

|∇u| dx
)/

≤ C
(∫

�

|∇u| dx
)/((∫

�

∣
∣�u

∣
∣ dx

)/

+
(∫

�

|∇u| dx
)/)

and
(∫

�

|∇�u|/ dx
)/

≤ C
(∫

�

|∇u| dx
)/((∫

�

∣
∣�u

∣
∣ dx

)/

+
(∫

�

|∇u| dx
)/)

.

Combining the above inequality with (.) and the Young inequality, we have

(∫

�

|∇u| dx
)/(∫

�

|∇�u|/ dx
)/

≤ C
∫

�

|∇u| dx
((∫

�

∣∣�u
∣∣ dx

)/

+
(∫

�

|∇u| dx
)/)

·
((∫

�

∣
∣�u

∣
∣ dx

)/

+
(∫

�

|∇u| dx
)/)

≤ C
∫

�

|∇u| dx
(∫

�

∣∣�u
∣∣ dx +

∫

�

|∇u| dx

+
(∫

�

∣
∣�u

∣
∣ dx

)/

·
(∫

�

|∇u| dx
)/

+
(∫

�

∣∣�u
∣∣ dx

)/

·
(∫

�

|∇u| dx
)/)

≤ C
∫

�

|∇u| dx
(∫

�

∣∣�u
∣∣ dx +

∫

�

|∇u| dx
)

≤ C
∫

�

|∇u| dx
(∫

�

∣∣�u
∣∣ dx +

∫

�

|∇u| dx
)
. (.)

For the third term in the right-hand side of (.), we first notice that
∫

�

|�u| dx = –
∫

�

∇u∇�udx

≤
(∫

�

|∇u| dx
)/(∫

�

|∇�u| dx
)/

=
(∫

�

|∇u| dx
)/(

–
∫

�

�u�udx
)/

http://www.boundaryvalueproblems.com/content/2014/1/264
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≤
(∫

�

|∇u| dx
)/(∫

�

|�u| dx
)/(∫

�

∣
∣�u

∣
∣ dx

)/

≤ C
(∫

�

|∇u| dx
)/(∫

�

|�u| dx
)/(∫

�

∣∣�u
∣∣ dx

)/

.

Then we have

∫

�

|�u| dx ≤ C
(∫

�

|∇u| dx
)/(∫

�

∣
∣�u

∣
∣ dx

)/

≤ C
∫

�

|∇u| dx
∫

�

∣
∣�u

∣
∣ dx +C

(∫

�

|∇u| dx
)/

. (.)

For the fourth term in the right-hand side of (.), we use the Cagliardo-Nirenberg in-
equality to conclude that

(∫

�

|∇u| dx
)/

≤ C
(∫

�

|∇u| dx
)/(∫

�

∣∣�u
∣∣ dx

)/

+C
(∫

�

|∇u| dx
)/

.

It follows from (.) that

∫

�

|∇u| dx≤ C
(∫

�

|∇u| dx
)/(∫

�

∣
∣�u

∣
∣ dx

)/

+C
(∫

�

|∇u| dx
)

≤ C
(∫

�

|∇u| dx
)/(∫

�

∣∣�u
∣∣ dx

)/

+C
(∫

�

|∇u| dx
)

. (.)

On the other hand, for small δ > , by the embedding theorem and the Poincaré inequality,
we have

sup |u| ≤ C
(∫

�

|∇u|(+δ) dx
)/(+δ)

+C
(∫

�

|u|(+δ) dx
)/(+δ)

≤ C sup |∇u|δ/(+δ)
(∫

�

|∇u| dx
)/(+δ)

+C sup |u|δ/(+δ)
(∫

�

u dx
)/(+δ)

≤ C
(∫

�

∣
∣�u

∣
∣ dx

)δ/(+δ)(∫

�

|∇u| dx
)/(+δ)

+C sup |u|δ/(+δ)
(∫

�

|∇u| dx
)/(+δ)

.

Then it follows from the Young inequality and (.) that

sup |u| ≤ C
(∫

�

∣
∣�u

∣
∣ dx

)δ/(+δ)(∫

�

|∇u| dx
)/(+δ)

+C
(∫

�

|∇u| dx
)/

.
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Combining the above inequality with (.), by Young’s inequality, we have

sup
(∣∣ϕ′′(u)

∣∣ +
∣∣ϕ′(u)

∣∣)
∫

�

|∇u| dx

≤ C
((∫

�

∣
∣�u

∣
∣ dx

)qδ/(+δ)

+ 
)

·
((∫

�

|∇u| dx
)/(∫

�

∣∣�u
∣∣ dx

)/

+C
(∫

�

|∇u| dx
))

≤ C
((∫

�

|∇u| dx
)/ ∫

�

∣
∣�u

∣
∣ dx + 

)
, (.)

where q is a positive constant depending on p, and here we used the smallness of δ to
conclude that qδ/( + δ) ≤ /.
It follows from (.), (.), (.), (.), and the smallness of ‖u(x)‖H(�) that

d
dt

∫

�

|�u| dx + k
∫

�

m(u)
∣∣�u

∣∣ dx≤ C.

Then we have

sup
<t<T

∫

�

∣
∣�u(x, t)

∣
∣ dx ≤ C. (.)

By (.) and the embedding theorem, we know that there exists a constant  < α < , such
that

∣∣u(x, t) – u(x, t)
∣∣ ≤ C|x – x|α , ∀(x, t), (x, t) ∈QT .

Then, by (.) itself, we can conclude that

∣
∣u(x, t) – u(x, t)

∣
∣ ≤ C|t – t|α/

holds for any given (x, t), (x, t) ∈QT . The proof of this proposition is complete. �

3 Gradient Hölder norm estimates
In this section, we establish the gradient Hölder norm estimates on solutions to the prob-
lem (.)-(.).

Proposition . If u is a solution of the problem (.)-(.), and all the assumptions in
Theorem . hold, then there exists a constant  < α < , such that

∣
∣∇u(x, t) –∇u(x, t)

∣
∣ ≤ C

(|x – x|α + |t – t|α/
)
, ∀(x, t), (x, t) ∈QT ,

where C is a positive constant.

We will employ the theory of Campanato spaces to prove Proposition .. That is to say,
we use the Campanato spaces to describe the integral characteristic of the Hölder contin-
uous functions. To shorten the length of this paper, we omit the definition and properties

http://www.boundaryvalueproblems.com/content/2014/1/264
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of the Campanato spaces, which can be found in [, –]. In order to obtain the a pri-
ori estimate on the solutions in a suitable Campanato space, we first rewrite (.) into the
following form:

∂u
∂t

+ div
(
a(x, t)∇�u

)
= div �f , (.)

where

a(x, t) = km
(
u(x, t)

)
, �f =m

(
u(x, t)

)∇ϕ
(
u(x, t)

)
.

Since the Hölder norm estimate of u has been already established in the previous section,
we may assume that a(x, t) is a known Hölder continuous function. For a qualitative cal-
culation, without loss of generality, we may also assume that a(x, t) and �f are sufficiently
smooth, otherwise we replace them by their approximation functions.
Let (x, t) ∈ � × (,T) be fixed and define

θ (u,ρ) =
∫∫

Sρ

(∣∣∇u – (∇u)ρ
∣
∣ + ρ|∇�u|)dxdt,

where

Sρ =
(
t – ρ, t + ρ) × Bρ(x), (∇u)ρ =


|Sρ |

∫∫

Sρ

∇udxdt

and Bρ(x) is the ball centered at x with radius ρ .
We split the solution u of the problem (.)-(.) on SR as u = u + u, where u is the

solution of the problem

∂u
∂t

+ a(x, t)�u = , (x, t) ∈ SR, (.)

∂u
∂ν

=
∂u
∂ν

,
∂�u
∂ν

=
∂�u
∂ν

, (x, t) ∈ (
t – R, t + R) × ∂BR(x), (.)

u = u, t = t – R, x ∈ BR(x), (.)

and u solves the problem

∂u
∂t

+ a(x, t)�u = div �f + div
[(
a(x, t) – a(x, t)

)∇�u
]
, (x, t) ∈ SR, (.)

∂u
∂ν

= ,
∂�u
∂ν

= , (x, t) ∈ (
t – R, t + R) × ∂BR(x), (.)

u = , t = t – R, x ∈ BR(x). (.)

By the classical linear theory, the above decomposition is uniquely determined by u. The
following lemmas will be used to establish the a priori estimates of the solutions in the
Campanato space.

Lemma . Assume there exists a constant  < σ <  such that

∣∣a(x, t) – a(x, t)
∣∣ ≤ C

(|x – x|σ + |t – t|σ /
)

http://www.boundaryvalueproblems.com/content/2014/1/264
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holds for any given x ∈ BR(x) and t ∈ (t – R, t + R). Then

sup
(t–R,t+R)

∫

BR(x)

∣
∣∇u(x, t)

∣
∣ dx +

∫∫

SR
|∇�u| dxdt

≤ C sup
SR

|�f |R +CRσ
∫ t

t–R

∫

BR(x)
|∇�u| dxdt.

Proof Multiplying both sides of (.) by �u and integrating the resulting relation over
(t – R, t)× BR(x), we have




∫

BR(x)

∣∣∇u(x, t)
∣∣ dx + a(x, t)

∫ t

t–R

∫

BR(x)
|∇�u| dxdt

=
∫ t

t–R

∫

BR(x)

[(
a(x, t) – a(x, t)

)∇�u
] · ∇�u dxdt

+
∫ t

t–R

∫

BR(x)
�f · ∇�u dxdt

≤ 

a(x, t)

∫ t

t–R

∫

BR(x)
|∇�u| dxdt +C

∫ t

t–R

∫

BR(x)
|�f | dxdt

+C
∫ t

t–R

∫

BR(x)

∣∣(a(x, t) – a(x, t)
)∇�u

∣∣ dxdt

≤ 

a(x, t)

∫ t

t–R

∫

BR(x)
|∇�u| dxdt +C sup

SR
|�f |R

+CRσ
∫ t

t–R

∫

BR(x)
|∇�u| dxdt.

The above inequality implies the desired result of this lemma. The proof of this lemma is
complete. �

Lemma . There exists a positive constant C such that

|∇u(x, t) –∇u(x, t)|
|x – x| + |t – t|/

≤ C sup
(t–ρ,t+ρ)

∫

Bρ (x)

(
ρ–∣∣∇u – (∇u)ρ

∣
∣ + ρ|∇�u|

)
dx

+C
∫∫

Sρ

(
ρ–|∇�u| + ρ

∣∣∇�u
∣∣)dxdt

holds for any given (x, t), (x, t) ∈ Sρ .

Proof From the Sobolev embedding theorem, we get, for any (x, t), (x, t) ∈ Sρ ,

|∇u(x, t) –∇u(x, t)|
|x – x| + |t – t|/

≤ C sup
(t–ρ,t+ρ)

∫

Bρ (x)

(
ρ–∣∣∇u – (∇u)ρ

∣∣ + ρ|∇�u|
)
dx.

http://www.boundaryvalueproblems.com/content/2014/1/264


Huang et al. Boundary Value Problems 2014, 2014:264 Page 10 of 19
http://www.boundaryvalueproblems.com/content/2014/1/264

Then by using (.) itself we can obtain the desired estimate at once. The proof of this
lemma is complete. �

Lemma . (Caccioppoli-type inequalities) We have

sup
(t–(R/),t+(R/))

∫

BR/(x)

∣∣∇u – (∇u)R
∣∣ dx +

∫∫

SR/
|∇�u| dxdt

≤ C
R

∫∫

SR

∣∣∇u – (∇u)R
∣∣ dxdt,

sup
(t–(R/),t+(R/))

∫

BR/(x)
|�u| dx +

∫∫

SR/

∣∣�u
∣∣ dxdt

≤ C
R

∫∫

SR
|�u| dxdt ≤ C

R

∫∫

SR

∣
∣∇u – (∇u)R

∣
∣ dxdt

and

sup
(t–(R/),t+(R/))

∫

BR/(x)
|∇�u| dx +

∫∫

SR/

∣
∣∇�u

∣
∣ dxdt

≤ C
R

∫∫

SR
|∇�u| dxdt.

Proof As an example, we only prove the first inequality, since the other two can be shown
similarly. Choose a cut-off function χ (x) defined on BR(x) such that χ (x) =  in BR/(x)
and

|∇χ | ≤ C
R
, |�χ | ≤ C

R ,

|∇�χ | ≤ C
R ,

∣
∣�χ

∣
∣ ≤ C

R .

Let g(t) ∈ C∞
 (R) with  ≤ g(t) ≤ ,  ≤ g ′(t) ≤ C

R for all t ∈ R, g(t) =  for t ≥ t – (R/)

and g(t) =  for t ≤ t – R. Multiplying both sides of (.) by g(t)∇ · [χ(∇u – (∇u)R)]
and integrating the resulting relation over (t – R, t)× BR(x), we have

∫ t

t–R
g(t)dt

∫

BR(x)

∂u
∂t

∇ · [χ(∇u – (∇u)R
)]
dx

+ a(x, t)
∫ t

t–R
g(t)dt

∫

BR(x)
�u∇ · [χ(∇u – (∇u)R

)]
dx = . (.)

The first term of the left-hand side in the above equality can be written

∫ t

t–R
g(t)dt

∫

BR(x)

∂u
∂t

∇ · [χ(∇u – (∇u)R
)]
dx

= –
∫ t

t–R
g(t)dt

∫

BR(x)

∂∇u
∂t

χ(∇u – (∇u)R
)
dx

= –



∫ t

t–R
g(t)dt

∫

BR(x)
χ ∂

∂t
∣∣∇u – (∇u)R

∣∣ dx

http://www.boundaryvalueproblems.com/content/2014/1/264
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= –



∫ t

t–R

d
dt

∫

BR(x)
g(t)χ∣∣∇u – (∇u)R

∣∣ dxdt

+



∫ t

t–R

∫

BR(x)
g ′(t)χ∣∣∇u – (∇u)R

∣
∣ dxdt

= –



∫

BR(x)
g(t)χ∣∣∇u – (∇u)R

∣∣ dx

+



∫ t

t–R

∫

BR(x)
g ′(t)χ∣∣∇u – (∇u)R

∣
∣ dxdt.

For the second term of (.), we just notice that

∫

BR(x)
�u∇ · [χ(∇u – (∇u)R

)]
dx

= –
∫

BR(x)
∇�u�

[
χ(∇u – (∇u)R

)]
dx

= –
∫

BR(x)
χ|∇�u| dx – 

∫

BR(x)
∇χ∇�u�u dx

–
∫

BR(x)
∇�u

(∇u – (∇u)R
)
�χ dx

≡ –I – I – I,

where

I = 
∫

BR(x)
∇χ∇�u�u dx = 

∫

BR(x)
χ∇χ∇�u�u dx

≥ –



∫

BR(x)
χ|∇�u| dx – 

∫

BR(x)
|χ∇χ ||�u| dx

≡ –


I + I

and

I = –
∫

BR(x)
|χ∇χ ||�u| dx

≥ –
C
R

∫

BR(x)
χ|�u| dx

= –
C
R

∫

BR(x)
χ�u∇ · (∇u – (∇u)R

)
dx

=
C
R

∫

BR(x)

(∇u – (∇u)R
)∇(

χ�u
)
dx

=
C
R

∫

BR(x)

(∇u – (∇u)R
)
χ∇�u dx

+
C
R

∫

BR(x)
χ∇χ�u

(∇u – (∇u)R
)
dx

≥ –



∫

BR(x)
χ|∇�u| dx

http://www.boundaryvalueproblems.com/content/2014/1/264
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–
C
R

∫

BR(x)

∣∣∇u – (∇u)R
∣∣ dx

– 
∫

BR(x)
|χ∇χ ||�u| dx.

Then we have

I ≥ –


I –

C
R

∫

BR(x)

∣
∣∇u – (∇u)R

∣
∣ dx.

Thus

I ≥ –


I –

C
R

∫

BR(x)

∣∣∇u – (∇u)R
∣∣ dx

and

I =
∫

BR(x)
∇�u

(∇u – (∇u)R
)
�χ dx

=
∫

BR(x)
∇�u

(∇u – (∇u)R
)(
χ�χ + χ|∇χ |)dx

≥ –



∫

BR(x)
χ|∇�u| dx – 

∫

BR(x)
|χ�χ |∣∣∇u – (∇u)R

∣
∣ dx

– 
∫

BR(x)
|∇χ |∣∣∇u – (∇u)R

∣∣ dx

≥ –


I –

C
R

∫

BR(x)

∣
∣∇u – (∇u)R

∣
∣ dx,

and hence

I + I + I ≥ 

I –

C
R

∫

BR(x)

∣∣∇u – (∇u)R
∣∣ dx.

Then we can obtain the following estimate on the second term of (.):

a(x, t)
∫ t

t–R
g(t)dt

∫

BR(x)
�u∇ · [χ(∇u – (∇u)R

)]
dx

= –a(x, t)
∫ t

t–R
g(t)(I + I + I)dt

≤ –


a(x, t)

∫ t

t–R
g(t)dt

∫

BR(x)
χ|∇�u| dx

+
C
R

∫ t

t–R
g(t)dt

∫

BR(x)

∣
∣∇u – (∇u)R

∣
∣ dx,

which, together with the estimate on the first term of (.), implies that




∫

BR(x)
g(t)χ∣∣∇u – (∇u)R

∣
∣ dx

+
a(x, t)



∫ t

t–R
g(t)dt

∫

BR(x)
χ|∇�u| dx

http://www.boundaryvalueproblems.com/content/2014/1/264
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≤ 


∫ t

t–R

∫

BR(x)
g ′(t)χ∣∣∇u – (∇u)R

∣∣ dxdt

+
C
R

∫ t

t–R
g(t)dt

∫

BR(x)

∣
∣∇u – (∇u)R

∣
∣ dx

≤ C
R

∫∫

SR

∣
∣∇u – (∇u)R

∣
∣ dxdt.

By the definition of g(t) and χ , we immediately obtain the desired first inequality of this
lemma, and thus we complete the proof. �

Lemma . For any ρ ∈ (,R), we have

θ (u,ρ)≤ C
(

ρ

R

)

θ (u,R).

Proof It is sufficient to show the inequality for ρ ≤ R/. By the mean value theorem, there
exists a point (x∗, t∗) ∈ Sρ such that

(∇u)ρ = ∇u(x∗, t∗).

Then, by Lemma . and Lemma ., one has
∫∫

Sρ

∣
∣∇u – (∇u)ρ

∣
∣ dxdt

=
∫∫

Sρ

∣
∣∇u –∇u(x∗, t∗)

∣
∣ dxdt

≤ Cρ sup
(x,t)∈Sρ

∣
∣∇u –∇u(x∗, t∗)

∣
∣

≤ Cρ sup
t∈(t–(R/),t+(R/))

∫

BR/(x)

(
R–∣∣∇u – (∇u)R

∣∣ + R|∇�u|
)
dx

+Cρ
∫∫

SR/

(
R–|∇�u| + R

∣∣∇�u
∣∣)dxdt

≤ C
(

ρ

R

) ∫∫

SR

(∣∣∇u – (∇u)R
∣
∣ + R|∇�u|

)
dxdt

and
∫∫

Sρ

ρ|∇�u| dxdt ≤ Cρ sup
t∈(t–ρ,t+ρ)

∫

Bρ (x)
|∇�u| dx

≤ CρR sup
t∈(t–(R/),t+(R/))

∫

BR/(x)
|∇�u| dx

≤ C
(

ρ

R

) ∫∫

SR
R|∇�u| dxdt.

The proof of this lemma is complete. �

The following technical lemma is required to estimate the Hölder norm of ∇u. One can
find its proof in Giaquinta [].
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Lemma . Let θ (ρ) be a nonnegative and nondecreasing function satisfying

θ (ρ)≤ A
[(

ρ

R

)α

+ ε

]
θ (R) + BRβ , ∀ < ρ ≤ R ≤ R,

where A, B, α, β are positive constants with β < α. Then there exists a constant ε =
ε(A,α,β), such that for all  < ε < ε, and the following inequality holds:

θ (ρ)≤ C
(

ρ

R

)β[
θ (R) + BRβ

]
, ∀ < ρ ≤ R≤ R,

where C is a positive constant depending only on α, β , and A.

Lemma . For λ ∈ (, ), we have

θ (u,ρ)≤ C
(
 + sup

SR
|�f |

)
ρλ, ∀ < ρ ≤ R≤ R,

where R � min{dist(x, ∂�), t/ }.

Proof A simple calculation gives

(∇u)ρ = (∇u)ρ + (∇u)ρ

and
∫∫

Sρ

∣∣∇u – (∇u)ρ
∣∣ dxdt ≤

∫∫

Sρ

|∇u| dxdt.

Then, by Cauchy’s inequality and using Lemmas . and ., we have

θ (u,ρ)≤ θ (u,ρ) + θ (u,ρ)

≤ C
(

ρ

R

)

θ (u,R) + θ (u,R)

≤ C
(

ρ

R

)

θ (u,R) + 
∫∫

SR

(|∇u| + R|∇�u|
)
dxdt

≤ C
[(

ρ

R

)

+ Rσ
]
θ (u,R) +C sup

SR
|�f |R

≤ C
[(

ρ

R

)

+ Rσ
]
θ (u,R) +C sup

SR
|�f |Rλ,

where  < λ <  is a constant. For ε in Lemma ., we can choose R >  such that Rσ <
ε whenever R ≤ R. Then, by Lemma ., one can complete the proof of this lemma
immediately. �

Now we can give the proof of the main result in this section.
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Huang et al. Boundary Value Problems 2014, 2014:264 Page 15 of 19
http://www.boundaryvalueproblems.com/content/2014/1/264

Proof of Proposition . From the integral characteristic of the Hölder continuous func-
tions and Lemma ., one has

|∇u(x, t) –∇u(x, t)|
|x – x|(λ–)/ + |t – t|(λ–)/ ≤ C

(
 + sup

SR
|�f |

)
≤ C

(
 + sup

SR
|∇u|

)
.

By the interpolation inequality, we have

∣∣∇u(x, t) –∇u(x, t)
∣∣ ≤ C

(|x – x|(λ–)/ + |t – t|(λ–)/
)

for any given (x, t), (x, t) ∈ SR.
For the Hölder continuous of ∇u near the boundary of QT , we can deal with it in the

sameway. Let (x, t) ∈ ∂�× (,T) be fixed and assume that ∂� can be explicitly expressed
by a function y = φ(x) in some neighborhood of x.We split u as u +u in ŜR = (t –R, t +
R)× �R(x) with �R(x) = BR(x)∩ �. u solves the following problem:

∂u
∂t

+ a(x, t)�u = , (x, t) ∈ ŜR,

∂u
∂ν

=
∂u
∂ν

,
∂�u
∂ν

=
∂�u
∂ν

, (x, t) ∈ (
t – R, t + R) × ∂�R(x),

u = u, t = t – R, x ∈ �R(x),

and u solves the problem

∂u
∂t

+ a(x, t)�u = div
[(
a(x, t) – a(x, t)

)∇�u
]
+ div �f , (x, t) ∈ ŜR,

∂u
∂ν

= ,
∂�u
∂ν

= , (x, t) ∈ (
t – R, t + R) × ∂�R(x),

u = , t = t – R, x ∈ �R(x).

We can modify the function θ (u,ρ) as

θ (u,ρ) =
∫∫

Sρ

(|∂nu| + ∣∣∂τu – (∂τu)ρ
∣∣ + ρ|∇�u|)dxdt,

where

∂n = φ′(x)
∂

∂x
–

∂

∂x
, ∂τ =

∂

∂x
+ φ′(x)

∂

∂x

denote the normal and tangential derivatives, respectively. The remaining part of the proof
is similar to that in the proof of the previous lemmas, and we omit the details here. The
proof of this theorem is complete. �

4 Existence and uniqueness
In this section, we give the proof of the existence and uniqueness of classical solutions to
the problem (.)-(.).
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Proof of Theorem . Equation (.) can be rewritten

∂u
∂t

+ a(x, t)�u + �b(x, t)∇�u + a(x, t)�u + �b(x, t)∇u = , (.)

where

a(x, t) = km
(
u(x, t)

)
, �b(x, t) = km′(u(x, t)

)∇u(x, t),

a(x, t) = –m
(
u(x, t)

)
ϕ′(u(x, t)

)
, �b(x, t) = –∇(

m
(
u(x, t)

)
ϕ′(u)

)
.

By the a prioriHölder norm estimates on u and∇u, we see that theHölder normof a(x, t),
a(x, t), �b(x, t), and �b(x, t) can be estimated by known quantities. Define a linear space

X =
{
u ∈ C+α, +α

 (QT );∇u · ν|∂� = ,u(x, ) = u(x)
}

and an associated operator T on X,

T : X → X, u �→ w,

where w is determined by the following linear problem:

∂w
∂t

+ a(x, t)�w + �b(x, t)∇�w + a(x, t)�w + �b(x, t)∇w = , (x, t) ∈ QT ,

∇w · ν = ∇�w · ν = , x ∈ ∂�, t ∈ (,T),

w(x, ) = u(x).

By classical linear theory, the above problem admits a unique solution in the space
C+β , +β

 (QT ). So the operator T is well defined and compact. Moreover, if u = σTu for
some σ ∈ (, ], then u satisfies (.), (.), (.), and u(x, ) = σu(x). Thus, from above
discussion, the norm of u in the space C+α, +α

 (QT ) can be determined by some constant
C depending only on the known quantities. By the Leray-Schauder fixed point theorem,
the operator T has a fixed point u, which is the desired classical solution of the problem
(.)-(.).
Next, we prove the uniqueness of the classical solution of the problem (.)-(.). Sup-

pose u and u are two solutions of the problem (.)-(.). Then, for any smooth function
ψ(x, t) satisfying

∇ψ(x, t) · ν|∂� = ∇�ψ(x, t) · ν|∂� = ψ(x,T) = ,

we have
∫∫

QT

(u – u)
∂ψ

∂t
dxdt + k

∫∫

QT

(
m(u)∇�u –m(u)∇�u

)∇ψ dxdt

–
∫∫

QT

(
m(u)∇ϕ(u) –m(u)∇ϕ(u)

)∇ψ dxdt = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/264
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Since the second term of the left-hand side can be rewritten

k
∫∫

QT

(
m(u)∇�u –m(u)∇�u

)∇ψ dxdt

= k
∫∫

QT

(
m(u) –m(u)

)∇�u∇ψ dxdt

+ k
∫∫

QT

m(u)(∇�u –∇�u)∇ψ dxdt

= k
∫∫

QT

(u – u)
∫ 


m′(λu + ( – λ)u

)
dλ · ∇�u∇ψ dxdt

– k
∫∫

QT

(u – u)�
[
div

(
m(u)∇ψ

)]
dxdt

and the third term of the left-hand side of (.) can be rewritten

–
∫∫

QT

(
m(u)∇ϕ(u) –m(u)∇ϕ(u)

)∇ψ dxdt

= –
∫∫

QT

(
m(u) –m(u)

)∇ϕ(u)∇ψ dxdt

–
∫∫

QT

(∇ϕ(u) –∇ϕ(u)
)
m(u)∇ψ dxdt

= –
∫∫

QT

(
m(u) –m(u)

)∇ϕ(u)∇ψ dxdt

+
∫∫

QT

(
ϕ(u) – ϕ(u)

)
div

(
m(u)∇ψ

)
dxdt

= –
∫∫

QT

(u – u)
∫ 


m′(λu + ( – λ)u

)
dλ · ∇ϕ(u)∇ψ dxdt

+
∫∫

QT

(u – u)
∫ 


ϕ′(λu + ( – λ)u

)
dλ · div

(
m(u)∇ψ

)
dxdt,

(.) becomes
∫∫

QT

(u – u)
∂ψ

∂t
dxdt – k

∫∫

QT

(u – u)�
[
div

(
â(x, t)∇ψ

)]
dxdt

+
∫∫

QT

(u – u)b̂(x, t)�ψ dxdt +
∫∫

QT

(u – u)ĉ(x, t)∇ψ dxdt = ,

where

â(x, t) =m
(
u(x, t)

)
,

b̂(x, t) =m(u)
∫ 


ϕ′(λu + ( – λ)u

)
dλ,

ĉ(x, t) =
∫ 


m′(λu + ( – λ)u

)
dλ · (k∇�u –∇ϕ(u)

)

+
∫ 


ϕ′(λu + ( – λ)u

)
dλ · ∇m(u).
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For any given f ∈ C∞
 (QT ), we consider the following linear problem:

∂ψ

∂t
– k�

[
div

(
â(x, t)∇ψ

)]
+ b̂(x, t)�ψ + ĉ(x, t)∇ψ = f (x, t),

∇ψ(x, t) · ν|∂� = ∇�ψ(x, t) · ν|∂� = ,

ψ(x,T) = .

Since â(x, t) ∈ C+α, +α
 (QT ), b̂(x, t) ∈ Cα, α (QT ), ĉ(x, t) ∈ Cα, α (QT ) for some  < α < , we

know from the classical parabolic theory that the above linear problem admits a unique
solution ψ ∈ C+α,+ α

 (QT ). Then we have

∫∫

QT

(u – u)f dxdt = .

It follows from the arbitrariness of the function f that u = u a.e. in QT . Then, by the
continuity of u and u, we have u = u in QT . The proof of this theorem is complete. �
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