253 research outputs found

    Blocking and Persistence in the Zero-Temperature Dynamics of Homogeneous and Disordered Ising Models

    Full text link
    A ``persistence'' exponent theta has been extensively used to describe the nonequilibrium dynamics of spin systems following a deep quench: for zero-temperature homogeneous Ising models on the d-dimensional cubic lattice, the fraction p(t) of spins not flipped by time t decays to zero like t^[-theta(d)] for low d; for high d, p(t) may decay to p(infinity)>0, because of ``blocking'' (but perhaps still like a power). What are the effects of disorder or changes of lattice? We show that these can quite generally lead to blocking (and convergence to a metastable configuration) even for low d, and then present two examples --- one disordered and one homogeneous --- where p(t) decays exponentially to p(infinity).Comment: 8 pages (LaTeX); to appear in Physical Review Letter

    Persistence in the Zero-Temperature Dynamics of the Diluted Ising Ferromagnet in Two Dimensions

    Full text link
    The non-equilibrium dynamics of the strongly diluted random-bond Ising model in two-dimensions (2d) is investigated numerically. The persistence probability, P(t), of spins which do not flip by time t is found to decay to a non-zero, dilution-dependent, value P()P(\infty). We find that p(t)=P(t)P()p(t)=P(t)-P(\infty) decays exponentially to zero at large times. Furthermore, the fraction of spins which never flip is a monotonically increasing function over the range of bond-dilution considered. Our findings, which are consistent with a recent result of Newman and Stein, suggest that persistence in disordered and pure systems falls into different classes. Furthermore, its behaviour would also appear to depend crucially on the strength of the dilution present.Comment: some minor changes to the text, one additional referenc

    Zero-Temperature Dynamics of Plus/Minus J Spin Glasses and Related Models

    Full text link
    We study zero-temperature, stochastic Ising models sigma(t) on a d-dimensional cubic lattice with (disordered) nearest-neighbor couplings independently chosen from a distribution mu on R and an initial spin configuration chosen uniformly at random. Given d, call mu type I (resp., type F) if, for every x in the lattice, sigma(x,t) flips infinitely (resp., only finitely) many times as t goes to infinity (with probability one) --- or else mixed type M. Models of type I and M exhibit a zero-temperature version of ``local non-equilibration''. For d=1, all types occur and the type of any mu is easy to determine. The main result of this paper is a proof that for d=2, plus/minus J models (where each coupling is independently chosen to be +J with probability alpha and -J with probability 1-alpha) are type M, unlike homogeneous models (type I) or continuous (finite mean) mu's (type F). We also prove that all other noncontinuous disordered systems are type M for any d greater than or equal to 2. The plus/minus J proof is noteworthy in that it is much less ``local'' than the other (simpler) proof. Homogeneous and plus/minus J models for d greater than or equal to 3 remain an open problem.Comment: 17 pages (RevTeX; 3 figures; to appear in Commun. Math. Phys.

    Clusters and Recurrence in the Two-Dimensional Zero-Temperature Stochastic Ising Model

    Full text link
    We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of +1 or -1 to each site in Z2{\bf Z}^2, is the zero-temperature limit of the stochastic homogeneous Ising ferromagnet (with Glauber dynamics): the initial state is chosen uniformly at random and then each site, at rate one, polls its 4 neighbors and makes sure it agrees with the majority, or tosses a fair coin in case of a tie. Among the main results (almost sure, with respect to both the process and initial state) are: clusters (maximal domains of constant sign) are finite for times t<t< \infty, but the cluster of a fixed site diverges (in diameter) as tt \to \infty; each of the two constant states is (positive) recurrent. We also present other results and conjectures concerning positive and null recurrence and the role of absorbing states.Comment: 16 pages, 1 figur

    Metastable states of the Ising chain with Kawasaki dynamics

    Full text link
    We consider a ferromagnetic Ising chain evolving under Kawasaki dynamics at zero temperature. We investigate the statistics of the metastable configurations in which the system gets blocked (statistics of energy, spin correlations, distribution of domain sizes). A systematic comparison is made with analytical predictions for the ensemble of all blocked configurations taken with equal a priori weights (Edwards approach).Comment: 22 pages, 3 Tables, 6 Figure

    Universality classes in nonequilibrium lattice systems

    Full text link
    This work is designed to overview our present knowledge about universality classes occurring in nonequilibrium systems defined on regular lattices. In the first section I summarize the most important critical exponents, relations and the field theoretical formalism used in the text. In the second section I briefly address the question of scaling behavior at first order phase transitions. In section three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and the percolation behavior. The main body of this work is given in section four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In section five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of the known nonequilibrium transition classes are explored in low dimensions between active and absorbing states of reaction-diffusion type of systems. However by mapping they can be related to universal behavior of interface growth models, which I overview in section six. Finally in section seven I summarize families of absorbing state system classes, mean-field classes and give an outlook for further directions of research.Comment: Updated comprehensive review, 62 pages (two column), 29 figs included. Scheduled for publication in Reviews of Modern Physics in April 200

    Universality classes in nonequilibrium lattice systems

    Full text link
    This work is designed to overview our present knowledge about universality classes occurring in nonequilibrium systems defined on regular lattices. In the first section I summarize the most important critical exponents, relations and the field theoretical formalism used in the text. In the second section I briefly address the question of scaling behavior at first order phase transitions. In section three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and the percolation behavior. The main body of this work is given in section four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In section five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of the known nonequilibrium transition classes are explored in low dimensions between active and absorbing states of reaction-diffusion type of systems. However by mapping they can be related to universal behavior of interface growth models, which I overview in section six. Finally in section seven I summarize families of absorbing state system classes, mean-field classes and give an outlook for further directions of research.Comment: Updated comprehensive review, 62 pages (two column), 29 figs included. Scheduled for publication in Reviews of Modern Physics in April 200

    Local Persistence in the Directed Percolation Universality Class

    Full text link
    We revisit the problem of local persistence in directed percolation, reporting improved estimates of the persistence exponent in 1+1 dimensions, discovering strong corrections to scaling in higher dimensions, and investigating the mean field limit. Moreover, we introduce a graded persistence probability that a site does not flip more than n times and demonstrate how local persistence can be studied in seed simulations. Finally, the problem of spatial (as opposed to temporal) persistence is investigated.Comment: LaTeX, 24 pages, 12 figures; references added and corrected, section 4.3 rewritte
    corecore