995 research outputs found

    Blockchain-based Cloud Data Deduplication Scheme with Fair Incentives

    Full text link
    With the rapid development of cloud computing, vast amounts of duplicated data are being uploaded to the cloud, wasting storage resources. Deduplication (dedup) is an efficient solution to save storage costs of cloud storage providers (CSPs) by storing only one copy of the uploaded data. However, cloud users do not benefit directly from dedup and may be reluctant to dedup their data. To motivate the cloud users towards dedup, CSPs offer incentives on storage fees. The problems with the existing dedup schemes are that they do not consider: (1) correctness - the incentive offered to a cloud user should be computed correctly without any prejudice. (2) fairness - the cloud user receives the file link and access rights of the uploaded data if and only if the CSP receives the storage fee. Meeting these requirements without a trusted party is non-trivial, and most of the existing dedup schemes do not apply. Another drawback is that most of the existing schemes emphasize incentives to cloud users but failed to provide a reliable incentive mechanism. As public Blockchain networks emulate the properties of trusted parties, in this paper, we propose a new Blockchain-based dedup scheme to meet the above requirements. In our scheme, a smart contract computes the incentives on storage fee, and the fairness rules are encoded into the smart contract for facilitating fair payments between the CSPs and cloud users. We prove the correctness and fairness of the proposed scheme. We also design a new incentive mechanism and show that the scheme is individually rational and incentive compatible. Furthermore, we conduct experiments by implementing the designed smart contract on Ethereum local Blockchain network and list the transactional and financial costs of interacting with the designed smart contract

    Audita: A Blockchain-based Auditing Framework for Off-chain Storage

    Get PDF
    The cloud changed the way we manage and store data. Today, cloud storage services offer clients an infrastructure that allows them a convenient source to store, replicate, and secure data online. However, with these new capabilities also come limitations, such as lack of transparency, limited decentralization, and challenges with privacy and security. And, as the need for more agile, private and secure data solutions continues to grow exponentially, rethinking the current structure of cloud storage is mission-critical for enterprises. By leveraging and building upon blockchain's unique attributes, including immutability, security to the data element level, distributed (no single point of failure), we have developed a solution prototype that allows data to be reliably stored while simultaneously being secured, with tamper-evident auditability, via blockchain. The result, Audita, is a flexible solution that assures data protection and solves challenges such as scalability and privacy. Audita works via an augmented blockchain network of participants that include storage-nodes and block-creators. In addition, it provides an automatic and fair challenge system to assure that data is distributed and reliably and provably stored. While the prototype is built on Quorum, the solution framework can be used with any blockchain platform. The benefit is a system that is built to grow along with the data needs of enterprises, while continuing to build the network via incentives and solving for issues such as auditing and outsourcing

    A Blockchain-based Decentralized Electronic Marketplace for Computing Resources

    Get PDF
    AbstractWe propose a framework for building a decentralized electronic marketplace for computing resources. The idea is that anyone with spare capacities can offer them on this marketplace, opening up the cloud computing market to smaller players, thus creating a more competitive environment compared to today's market consisting of a few large providers. Trust is a crucial component in making an anonymized decentralized marketplace a reality. We develop protocols that enable participants to interact with each other in a fair way and show how these protocols can be implemented using smart contracts and blockchains. We discuss and evaluate our framework not only from a technical point of view, but also look at the wider context in terms of fair interactions and legal implications

    On the Convergence of Blockchain and Internet of Things (IoT) Technologies

    Full text link
    The Internet of Things (IoT) technology will soon become an integral part of our daily lives to facilitate the control and monitoring of processes and objects and revolutionize the ways that human interacts with the physical world. For all features of IoT to become fully functional in practice, there are several obstacles on the way to be surmounted and critical challenges to be addressed. These include, but are not limited to cybersecurity, data privacy, energy consumption, and scalability. The Blockchain decentralized nature and its multi-faceted procedures offer a useful mechanism to tackle several of these IoT challenges. However, applying the Blockchain protocols to IoT without considering their tremendous computational loads, delays, and bandwidth overhead can let to a new set of problems. This review evaluates some of the main challenges we face in the integration of Blockchain and IoT technologies and provides insights and high-level solutions that can potentially handle the shortcomings and constraints of both IoT and Blockchain technologies.Comment: Includes 11 Pages, 3 Figures, To publish in Journal of Strategic Innovation and Sustainability for issue JSIS 14(1
    • …
    corecore