
Vol.:(0123456789)

SN Computer Science (2020) 1:251
https://doi.org/10.1007/s42979-020-00243-7

SN Computer Science

ORIGINAL RESEARCH

A Blockchain‑based Decentralized Electronic Marketplace
for Computing Resources

Matteo Nardini1 · Sven Helmer2 · Nabil El Ioini1 · Claus Pahl1

Received: 1 April 2020 / Accepted: 24 June 2020 / Published online: 6 August 2020
© The Author(s) 2020

Abstract
We propose a framework for building a decentralized electronic marketplace for computing resources. The idea is that anyone
with spare capacities can offer them on this marketplace, opening up the cloud computing market to smaller players, thus
creating a more competitive environment compared to today’s market consisting of a few large providers. Trust is a crucial
component in making an anonymized decentralized marketplace a reality. We develop protocols that enable participants to
interact with each other in a fair way and show how these protocols can be implemented using smart contracts and block-
chains. We discuss and evaluate our framework not only from a technical point of view, but also look at the wider context
in terms of fair interactions and legal implications.

Keywords Decentralized electronic marketplaces · Computing resources · Blockchains

Abbreviations
ABI: application binary interface
Berkeley Open Infrastructue for Network Computing:
 BOINC
CGI: computer-generated imagery
cgroups: control groups
CSS: cascading style sheet
DApp: decentralized application
DRIVE: Distributed Resource Infrastructure for a

Virtual Economy
e-marketplace: electronic marketplace
ETH: Ether
EVM: Ethereum Virtual Machine
GNT: Golem Network Token
HTML: HyperText Markup Language

IoT: Internet of Things
IT: information technology
JSON-RPC: JavaScript Object Notation remote proce-

dure call
ODR: online dispute resolution
OS: operating system
PCP: probabilistically checkable proofs
seccomp: secure computing
SGX: Intel Software Guard Extensions
SHA-256: secure hash algorithm 256 bit
SONM: Supercomputer Organized by Network

Mining
TTP: trusted third party
VM: virtual machine

Introduction

In the last decade we have witnessed the emergence of the
sharing economy, in which persons grant access to assets
they own to others [1] (this has also been called an access
economy [2]). It affects areas as diverse as lodging (Airbnb),
transport (car and bike sharing schemes, Uber), parking
spaces (JustPark), and labor (timebanks), just to name a few.
In information technology (IT), cloud computing has had a
big impact on how people purchase computational power.
Instead of setting up and maintaining their own infrastruc-
ture, many users and organizations turn to cloud providers.

 * Sven Helmer
 helmer@ifi.uzh.ch

 Matteo Nardini
 matteo.shalen@gmail.com

 Nabil El Ioini
 Nabil.ElIoini@unibz.it

 Claus Pahl
 Claus.Pahl@unibz.it

1 Faculty of Computer Science, Free University of Bozen-
Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

2 Department of Informatics, University of Zurich,
Binzmühlestrasse 14, 8050 Zurich, Switzerland

http://orcid.org/0000-0002-9666-1932
http://orcid.org/0000-0002-9049-212X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00243-7&domain=pdf

 SN Computer Science (2020) 1:251251 Page 2 of 24

SN Computer Science

In large parts of the sharing economy we see transactions
taking place on a peer-to-peer level. While there are peer-to-
peer-based approaches in IT, such as open source software or
volunteer computing, the cloud computing market is domi-
nated by large players such as Amazon, Google, and Micro-
soft. As Subramanian points out, electronic marketplaces
(or, short, e-marketplaces) controlled by firms come with
certain downsides [3]. Companies are primarily interested in
maximizing their profits rather than matching buyers to the
products or services they really need. If there are only a few
players, this can lead to price-fixing or even monopolies [4].
Additionally, all payments have to go through trusted third
parties, adding an overhead to the transactions.

In decentralized e-marketplaces the matching of buy-
ers and sellers could be done in a more transparent way: a
buyer has more options to choose from, increasing the likeli-
hood of finding a good match. Also, the payments could go
directly from buyer to seller without passing through third
parties. So, why do we not see peer-to-peer e-marketplaces
for computational power? One important reason is a lack of
trust. The large providers have established a good reputa-
tion and there are also legal frameworks in place to protect
customers. It is not easy for smaller entities to enter this
market due to high barriers, such as setting up sufficient
infrastructure and earning a reputation.

Looking at the numbers for volunteer computing, e.g.
the Berkeley Open Infrastructure for Network Computing
(BOINC) [5], has convinced us that there is a potential mar-
ket to be found here: according to Wikipedia [6], as of 9 June
2018 there were 311,742 active participants with 834,343
active hosts processing on average 26.431 PetaFLOPS. This
is roughly comparable to the computational power of the
Tianhe-2 supercomputer, which was the world’s fastest com-
puter at the time of its introduction in June 2013 [7]. Given
the right financial incentives, we believe that there is an even
greater number of people who would allow access to their
computational devices when they are currently idle. The first
steps in this direction are already taken by projects such as
Golem [8], iExec [9], and SONM [10]. With the advent of
the Internet of Things (IoT), for an example see [11], we
expect the number of devices whose computational power is
underutilized to rise dramatically, making it more and more
attractive to monetize these resources.

Our goal is to provide a platform for a decentralized
market that matches participants with computational needs
with those providing computational power. We assume that
we operate in a peer-to-peer setting in which the partici-
pants neither know nor trust each other. On the one hand,
we cannot be sure that the computations are executed in a
proper and reliable way and, on the other hand, we have no
guarantees that the code used for the computations will not
have malicious side effects. In order to deal with the trust
issues, we propose to use blockchain technology as a basis

for handling interactions between the participants. In par-
ticular, we make the following contributions:

• We develop protocols for managing the interactions of
different parties in an e-marketplace for computational
power. These protocols also cover cases in which dis-
putes can arise and include ways to resolve them.

• The protocols run on top of a blockchain and we rely
on smart contracts to enforce the terms and conditions
agreed upon by the participants.

• For a start, we focus on deterministic computations that
do not involve network connectivity or inter-process
communication and propose to use portable container
images as a light-weight, stand-alone, executable pack-
age containing the software executing the computations.

• We implement a prototype as a proof of concept using the
Ethereum blockchain and the Docker container platform.
We evaluate our approach and discuss its advantages and
shortcomings.

Related Work

Although there is some overlap between volunteer com-
puting [12] and electronic marketplaces for computing
resources, volunteer computing uses different principles,
such as a master-worker parallel computing model, in which
a master node breaks down tasks into smaller chunks, dis-
tributes them among worker nodes, and then collects the
results [13–15]. This is far from the decentralized set-up we
envision, as the master is in full control of the process. Also,
the participants donate their computational power without
expecting a financial reward. We are looking for an approach
that attracts users by providing financial incentives.

A number of projects proposing decentralized electronic
marketplaces for computing resources are currently under-
way to fill this gap. However, unlike us, none of them envi-
sion a fully decentralized platform in which participants
remain anonymous. Probably closest to our approach comes
iExec [9], which is an Ethereum-based platform with the
goal of building a marketplace for generic cloud-comput-
ing resources. However, in order to make this work, iExec
relies on a form of reputation-based system, allowing users
to choose partners according to “their provable reputa-
tion” [9]. The work done by less trusted nodes is replicated
and the final outcome is decided via a majority vote. The
importance of a node in a vote is determined by the node’s
reputation and the value of its security deposit. A proof-of-
contribution mechanism is used to implement this scheme.
We take a closer look at particular issues of replication of
computations and reputation-based systems in Sections 2.1.1
and 2.3, respectively. There we explain why these mecha-
nisms are problematic, which basically comes down to too

SN Computer Science (2020) 1:251 Page 3 of 24 251

SN Computer Science

much overhead for replicating computations and the chal-
lenges of tracking reputation in an anonymous setting. These
are the reasons we do not use replication and reputation in
our approach, which sets our work apart from iExec.

Golem [8] and SONM [10] are two other electronic mar-
ketplace platforms that differ from iExec by not providing
general-purpose services: Golem is (currently) limited to
CGI rendering, while SONM focuses on fog and edge com-
puting. Golem proposes a platform where users are paid in
Golem Network Tokens (GNT) in exchange for their com-
puting resources. Applications get certified by validators in
order to make them more trustworthy. Users build commu-
nity-driven trust networks by blacklisting and whitelisting
other participants and/or applications. So, essentially Golem
runs a form of reputation-based framework with all the
drawbacks of such an approach. There is also a verification
process relying on verifying specific parts of the rendered
images. Currently, the plan is to introduce Intel Software
Guard Extensions (SGX) into the system to increase its
trustworthiness. We look at the particular issues of trusted
hardware in Section 2.2, showing that this approach requires
a wide-spread deployment of trusted hardware among all
participant in the marketplace, which we do not expect to
happen in the near future. Finally, there is the Supercom-
puter Organized by Network Mining (SONM) system for
renting out fog and edge computing resources on a decen-
tralized computing platform. All suppliers (and other par-
ticipants) have a profile and a rating, utilizing different status
levels (from strongest to weakest): professional, identified,
registered, and anonymous. Thus, this is similar to iExec, as
it relies on a reputation-based mechanism and the recompu-
tation of tasks to increase trust.

Chard and Bubendorfer developed the Distributed
Resource Infrastructure for a Virtual Economy (DRIVE), to
support an open cloud market [16]. Their work is comple-
mentary to ours, as it focuses on the allocation of resources
and negotiating prices in an untrusted decentralized environ-
ment (e.g. via auctions), not on running the infrastructure for
executing the actual jobs.

In the following, we look at different aspects of imple-
menting and running a decentralized electronic marketplace.

Checking results

When outsourcing computations to possibly unreliable
systems, there is a need to check if the returned results are
actually correct. The source of this may not necessarily be a
malicious operator, incorrect results can also be caused by
hardware or software faults or misconfiguration issues. Here
we look at two different approaches, replication and verifi-
able computing, to solve the problem of checking whether a
computation was done correctly or not.

Replication

Replicating computing tasks (and data) has long been used
in fault-tolerant systems and involves the redundant execu-
tion of the same task on multiple CPUs or devices in order
to detect faulty computations and resolve conflicts [17]. The
resolution of conflicts usually involves a voting scheme in
which a majority decides on the correct result. Mission-crit-
ical systems such as aircraft, spacecraft, and nuclear facility
controls often employ fault-tolerant approaches [18, 19]. It is
also popular in the context of volunteer computing, in which
the same task is given to multiple workers to detect faulty
computations [14, 15, 20].

While replication works in such an environment as the
computational power is basically free, in an entrepreneurial
setting this would be too expensive. Dong et al. estimate that
moving computations to the cloud results in cost savings of
around 50% to 70% [21]. Executing many tasks redundantly
would eat up a lot of these savings. Nevertheless, Dong et al.
use a scheme that combines replication with a factor of two,
i.e., running each task twice, with game-theoretic concepts
to create incentives for the cloud providers not to cheat [21].
Apart from the overhead caused by the duplication, there
are a few more weaknesses. They assume that the provid-
ers are separate entities, each trying to maximize their own
profits. We assume a peer-to-peer network with anonymous
actors, meaning that multiple providers could be controlled
by the same entity and that it is not unlikely that all bidders
for a job are in fact controlled by the same entity (if bidding
takes place right after this entity has learned of the new job).
Moreover, the framework assumes that the client is honest.
Again, in a peer-to-peer network we cannot assume this. We
may encounter clients trying to game the system.

Verifiable Computing

Verifiable computing takes another approach. In addition
to the result of the computation, the system performing the
computation provides some more information with which
the client can verify that the computation was done cor-
rectly. The two parties are called prover and verifier in the
context of verifiable computing. The verifier asks the prover
to perform a computation, the prover executes it and then
tries to show to the verifier: (1) that the executed computa-
tion was actually the one requested and (2) that the executed
computation was executed correctly. Early work in this area
showed that this is theoretically possible, one of the ground-
breaking results was on probabilistically checkable proofs
(PCP) [22–25]. However, it was also shown that the costs
are too prohibitive to use this scheme in practice: it requires
exponential time on the side of the prover. Some more recent
breakthroughs have brought down the costs considerably.
For instance, Muggles achieves polynomial complexity for

 SN Computer Science (2020) 1:251251 Page 4 of 24

SN Computer Science

the prover, albeit for specific types of computations express-
ible as certain kinds of circuits [26]. Other approaches, such
as fully homomorphic encryption and non-interactive proto-
cols are still not feasible, even after reducing the costs [27].
Generally, while verifiable computing is getting closer to
its goals, i.e., there are actual implementations now, it is
still not usable in practice [28]. The biggest open issues at
the moment are how to make verifiable computing work for
general-purpose programming languages and how to reduce
the overhead for the prover even further (the currently imple-
mented systems only work for toy examples).

TrueBit is a more recent approach [29], based on a so-
called consensus computer [30]. The results of computa-
tional tasks generated by solvers are checked by verifiers in
a multi-round verification game. A verifier can earn a reward
by challenging an incorrect computation. The verification
game follows a versatile and elaborate protocol, e.g. in order
to provide enough incentives, the framework introduces
forced errors to make sure that verifiers are able to find a
sufficient number of errors to make their effort worthwhile.
However, to attract enough verifiers, i.e., at least one per
tasks, requires a sufficient payoff: the authors of [29] esti-
mate that a verification tax of 500% to 5000% of the cost of
performing a given task is necessary. This is a considerable
overhead, and as mentioned in Section 2.1.1 running each
task twice would already eat up the savings made by moving
to the cloud.

For an overview on verifiable computing, see [28].

Trusted Hardware

Relying on trusted hardware [31] shifts the issue of trust
from the cloud providers to the manufacturers and vendors
of that hardware. This approach creates a different chain
of trust and raises the barrier of entry even further, as all
the players in the e-marketplace need to acquire specialized
hardware and be able to satisfactorily show that they use
this hardware. Also, faults in the hardware can still lead to
incorrect results without any malicious intent by any party.

Reputation‑based Systems

A commonly used technique to increase trust in centralized
e-marketplaces, such as Amazon or Ebay, is a reputation-
based scheme. Users of the marketplace leave feedback or
write reviews on their experiences interacting with other
users. This feedback is publicly accessible and helps other
participants in deciding whether to go ahead with a transac-
tion or not: if the other party has received a lot of positive
feedback, it makes them more trustworthy [32].

Reputation-based systems are not foolproof, though.
Typical issues are users inflating their reputational score by
engaging in fake transactions and/or colluding with others

by providing positive reviews to each other. Another type of
fraudulent behavior is the exploitation of a good reputation
that has been built up via many small legitimate transac-
tions and then interacting maliciously on a large scale with
unsuspecting customers. Post et al. developed Bazaar, a
system that strengthens reputation in online marketplaces
by keeping track of transactions in a risk network (modeled
as a graph), which creates links between all users who have
interacted with each other in the past [33]. The graph uses
edge weights that summarize the total monetary volume of
successful transactions between two users and Bazaar uti-
lizes this information to calculate the max-flow between two
users who want to make a deal. The trade can only go ahead
if the value of the transaction is below the max-flow, limit-
ing the potential damage. While this scheme has its merits,
it is difficult to implement in an anonymous decentralized
setting, as a single entity could control multiple accounts and
use the techniques described above to boost their reputation.

Introducing a reputation-based scheme into an anony-
mous setting creates further problems, effectively making it
unusable in our framework. Users whose reputation drops to
a low level can re-enter the market under a new identity, get-
ting rid of their previous track record. Malicious participants
can stage Sybil attacks by simply creating and controlling
multiple fake identities, i.e., there is no need to collude with
other entities anymore to inflate ratings. Soska et al. attach a
small cost to each transaction that has to be paid in order to
generate feedback [34]. This makes the feedback more cred-
ible, since it provides a lower bound for the total sum that
was spent creating the feedback. While this scheme makes
the reputation more resilient against Sybil attacks, it does
not prevent them completely, especially if side-payments are
possible between colluding parties.

Casey et al. have applied game-theoretic concepts to
establish identity in anonymous settings [35]. On the one
hand, participating players want to preserve their privacy,
but, on the other hand, there is a need to manage (pseudony-
mous) identities in many scenarios. Signaling games, which
make it costly for a deceptive agent to fail a challenge ques-
tioning their identity, are at the core of this approach [36].
Although new insights have been gained recently and the
problem has been formalized mathematically [35], there are
still open questions that need to be answered before this
technique can be used in practice.

Other Approaches

Spot-checking is a technique that deploys special jobs,
so-called spotter jobs, whose sole purpose it is to check
that a service provider is doing their work properly. The
result of the computation is already known by the client in
advance [14]. A weaker version of this is running a heartbeat
protocol to check if the application is actually running [37].

SN Computer Science (2020) 1:251 Page 5 of 24 251

SN Computer Science

However, these approaches assume that the additional jobs
are not detectable and modifiable by cloud providers. In
principle, they follow a security by obscurity approach,
which makes them unreliable.

An approach merging a heartbeat protocol with verifiable
computing is proposed by Khan and Hamlen [38]. They sug-
gest to periodically checkpoint the computation state: these
checkpoints can then be used to re-execute the entire com-
putation in parallel, reducing the time needed for the check.
However, this technique is based on basically re-executing
the entire computation, which is not desirable in our case.

Premnath and Haas [39] describe an interesting appli-
cation based on the idea of garbled circuits, which allows
executing a computation in a way that preserves privacy and,
as a side effect, is (partially) verifiable. While this would
solve most of our problems, the time and storage costs are,
similarly to the verifiable computing approaches, too high.

Klems et al. develop Desema, their DEcentralized SEr-
vice MArketplace prototype, introducing trustless interme-
diation between the participants based on a blockchain [40].
Some of the ideas they present, such as smart contracts and
deposits made by service providers, are similar to aspects
we have integrated into our approach. However, it is not
quite clear how much of this is actually designed and imple-
mented, as the authors often use the subjunctive when
describing their approach.

Problem Specification and Constraints

We now specify which criteria a fully decentralized e-mar-
ketplace for computational power needs to satisfy in order
to function properly. The transactions have to be validated,
traceable, and made persistent for users to be able to trust the
marketplace. Additionally, there should be a fair exchange
of money for computational services, i.e., one side should
not be able to cheat the other. Finally, we have to make
sure that the e-marketplace is usable for a wide range of
users, even though they may rely on diverse, heterogeneous
infrastructures.

What we are currently not covering are privacy aspects
and matching buyers and sellers. In this approach we do not
yet look at how to secure the code and data sent to a cloud
provider to keep it private. So, at the moment this approach
is not suitable for processing sensitive data. Also, apart from
sketching how to publish and advertise tasks up for compu-
tation we do not explicitly discuss how buyers and sellers
find each other. In the following we take a closer look at the
criteria we do cover.

Decentralized E‑Marketplaces

Our goal is to create a fully decentralized e-marketplace, as
this has several advantages. First, there is no single point
of failure: even if individual servers break down, the over-
all market is not affected. Second, this lowers the barriers
to entry to the cloud computing market and opens it up to
many smaller players, preventing monopolies or collusion
among a few large players. Finally, we want to keep the
involvement of trusted third parties to a minimum and rely
on self-enforcing protocols wherever we can. Preventing or
resolving disputes among the participants automatically will
help in keeping the costs down.

Secure Transactions and Trust

For transparency, we need to be able to keep track of all
the transactions in the e-marketplace. More concisely, this
means checking them for validity, so that participants cannot
create fake transactions. They also need to be made persis-
tent in a way such that they cannot be changed or forged
afterwards. Finally, the transactions need to be traceable,
so it is clear who entered a contract with whom and who is
responsible when things start going wrong.

A crucial aspect of a decentralized e-market is trust,
as we expect participants who do not know each other to
collaborate. Assume we have two parties, let us call them
Alice and Bob, who want to exchange money in return for
a good (or a service). In the physical world this is not an
issue: Alice enters Bob’s store and exchanges her money
for whatever Bob is offering. As both are physically pre-
sent, they can monitor what is going on. In an anonymous
digital setting this becomes more complicated. If Alice
first transfers the money, she runs the risk of not getting
anything in return, and if Bob first provides the service he
may end up not getting paid. This scenario is not new and
fair exchange protocols have been proposed as solutions for
this problem [41–43], which are about the efficient and fast
exchange of electronic data between two parties that do not
necessarily trust each other. Early work in this area started
out by looking at the simultaneous exchange of secrets or
gradually releasing a secret [44, 45]. Ideally, we would like
to do this without relying on a trusted third party, but stud-
ies have shown that it is impossible to solve the general
problem without one [46–48]. Consequently, there is a lot
of work focusing on minimizing the influence and impact
of this third party: these approaches are called optimistic
fair exchange protocols [42, 49–51]. A common incentive
to keep participants honest is to punish a misbehaving party
by inflicting a monetary loss on them [51].

 SN Computer Science (2020) 1:251251 Page 6 of 24

SN Computer Science

Heterogeneity of Systems

Another issue we have to deal with is the heterogeneity of
systems in a peer-to-peer network. We cannot assume that all
participants use the same configuration, let alone the same
operating system or hardware. We have to be able to deal
with service providers using a wide range of devices and
machines with differences in computational power, memory
capacity, and processing capabilities. Also, we need to limit
the privileges of the code shipped to a provider in order
not to compromise their system. The code should run iso-
lated from the host system in a sand-boxed environment and
should not be able to exhaust all the resources of the host
system. At the same time, it should be easy to create, use,
and share code and a user should be able to flexibly config-
ure the execution environment of their code.

Preliminaries

For the purpose of self-containment we give a brief intro-
duction to blockchains and container architectures before
delving into the technical details of our solution. Readers
who are already familiar with these technologies can skip
this section.

Blockchains and Smart Contracts

The basic idea of a blockchain1 is to create a digital ledger
that records all transactions executed by the participants in
an immutable and secure way. It does so with the help of a
decentralized storage mechanism that maintains a continu-
ously growing list of records, grouped into structures called
blocks. Each block of the blockchain contains records of
transactions, the hash of the previous block, and a times-
tamp. This chain of hash values ensures the immutability of
the records, as changing a block either invalidates the chain
or the entire chain from that point on must be recomputed,
which is prohibitively expensive.

The system is maintained by a peer-to-peer network, each
node of which collects transactions, joins them in a new
block, and validates this block. The block validation is usu-
ally implemented with the help of a proof-of-work scheme,
e.g. in the form of a cryptographic puzzle that is (moder-
ately) hard to solve, but whose answer is easy to check.
This also randomizes which node actually gets to validate
a block (the node who solves the puzzle first). A node that
successfully validates a block is rewarded with currency
tokens usable in the blockchain. As long as a majority of

the nodes adhere to the protocol rules, invalid extensions
and tampering will be detected by the peer-to-peer network
and rejected.

Operating in a peer-to-peer environment means that the
(anonymous) participants do not trust each other. The trust
in a blockchain is established by a combination of crypto-
graphic protocols securing the ledger and incentives to keep
the maintainers honest [53].

A smart contract is a function, represented by a piece of
code, that resides on the blockchain and can be executed by
the nodes of the peer-to-peer network. It extends the idea of
putting data in a secure ledger to computation [54]. The dis-
tributed consensus protocol enforces the correct execution of
the code: each node runs the function locally and checks that
it gets the same results as the other nodes before validating
it. For instance, a smart contract could check that certain
conditions are met before going ahead with a transaction.
For instance, if the transaction involved a monetary transfer,
the smart contract would basically act as an escrow service.

The expressiveness of smart contracts depends on the
employed language, Ethereum uses Solidity, a programming
language influenced by C++, Python, and JavaScript [55].
Functions written in Solidity are compiled into byte code
and executed on the Ethereum Virtual Machine (EVM).

The blockchain framework allows users to create decen-
tralized applications (DApps) that are stored and executed
on the blockchain and inherit all the properties provided by
a blockchain environment: all the nodes agree on the current
state of the various DApps and the history of each modifi-
cation to the state is recorded on an append-only ledger. In
principle, we implement our decentralized e-marketplace for
computational power as a DApp running on a blockchain.

Containers

Deploying applications in heterogeneous environments by
distributing its binaries is fraught with all kinds of problems.
For instance, it is not clear whether the target system meets
all the requirements of the application in terms of the oper-
ating system (OS), libraries, or other resources. Containers
are one solution to these issues. A container holds packaged
self-contained, ready-to-deploy parts of applications and, if
necessary, middleware and business logic (in binaries and
libraries) to run applications. With containers, applications
share an OS (and possibly binaries and libraries). As a con-
sequence, their deployments can be substantially smaller in
size than hypervisor deployments traditionally used in cloud
environments. This enables to store large numbers of con-
tainers on a physical host since containers use the host OS.
More importantly, restarting a container does not require
rebooting the OS, launching a hypervisor, on the other hand,
requires initializing a whole OS.1 For more details on blockchains and a comprehensive introduction

we recommend [52].

SN Computer Science (2020) 1:251 Page 7 of 24 251

SN Computer Science

Containers are based on layers composed from individual
images built on top of a base image that can be extended.
Complete images form portable application containers,
which can also be used as building blocks for application
stacks. The approach is lightweight as single images can be
changed and distributed easily. Additional system capabili-
ties can be added or the access to system resources can be
limited. A container ecosystem consists of an application
container engine to run images and a repository or registry
operated via push and pull operations to transfer images to
and from host-based engines.

Docker, which is open-source and was released in 2013, is
one of the most well-known and successful containerization
frameworks [56]. It allows independent containers to run on
a single Linux instance, relying on the host’s kernel func-
tionality in an isolated view of the host’s operating system.
Additionally, the containers are not aware of other containers
running on the same kernel. Docker started on Linux plat-
forms, but in the meantime has also been made available for
Windows and MacOS.

Our Solution

After dealing with all the preliminaries, we now present
the design, protocols, and implementation of our electronic
marketplace. Before describing the protocols, we give an
overview and then sketch the overall architecture and pro-
vide implementation details.

Overview

We start off by giving a general overview of our approach,
introducing the different parties: we call them publishers,
farmers, and auditors. Publishers are the entities who need
someone to execute code for them in order to obtain the
results of some computation. For that purpose, they publish
a description of the task together with the code and a finan-
cial reward. Farmers2 are the entities offering computational
infrastructure and are willing to complete the publishers’
tasks. As already mentioned, a completely self-enforcing
protocol is out of reach, but we also do not want to run an
arbitrated protocol in which the trusted third party (TTP)
is involved in every step; so, we settled for an adjudicated
protocol, in which the TTP only intervenes in case of a dis-
pute [57]. We call the TTP an auditor in our protocol.

With the help of an auditor we implement an optimistic
fair exchange protocol. While the concept of such a protocol
is not new, implementing an optimistic fair exchange with

cryptocurrencies, especially with smart contracts, is still not
common. Utilizing protocols based on the Bitcoin block-
chain is more complicated and convoluted than it needs to be
in our case [58, 59], because this kind of blockchain does not
directly support powerful smart contracts, which would have
to be emulated in some way to get the same effect.

Liu et al. [60] and Klems et al. [40] propose approaches
that consider more general smart contracts, such as the ones
offered by Ethereum. While Liu et al. investigate a much
simpler scenario compared to ours, i.e., the exchange of
purely digital assets (which boils down to getting a receipt in
the form of a digital signature in return for a payment), they
identify a set of properties important for benchmarking the
quality of fair exchange protocols. We come back to these
properties when evaluating our own protocol in Section 7.2.
Klems et al., on the other hand, look at a more complex
scenario. Their vision is to offer a platform on which a cus-
tomer can subscribe to an on-going service, which makes it
necessary to constantly monitor the quality and integrity of
the service. For that purpose, and some other tasks, such as
dispute resolution, supporting actors providing functionality
going beyond the capabilities of smart contracts are intro-
duced. All the different supporting actors need to be inte-
grated into the framework and need to be offered (financial)
incentives, which adds to the cost.

Protocols

Standard scenario

The sequence diagram in figure 1 describes the standard
scenario, in which both the publisher and the farmer behave
correctly.

As can be seen from the diagram, the process is initiated
by the publisher, who interacts with the smart contract to
publish a new computation request. This request describes
the computational task and its parameters and also transfers
the reward for completing the computation to the account
of the smart contract. After validating the publisher’s input
(e.g. here we could check a signed hash of the submitted
code)3, the smart contract emits a ComputationPub-
lished event to announce the publication of a new pub-
lisher request. The event is broadcast on the blockchain,
where farmers can pick it up.

A farmer receiving such an event has to decide whether
to accept the request or not. In the case a farmer is willing
to perform the computation, they reserve it by sending a
request to the smart contract, which first checks whether
the task is still available. If this is the case, the contract

2 As the term miner is already used for worker nodes in the context
of blockchains, we settled for a similar yet different term.

3 Validation in this context means checking that the code was not
modified or corrupted during transmission or by the publisher.

 SN Computer Science (2020) 1:251251 Page 8 of 24

SN Computer Science

assigns it to the farmer and issues a ComputationAs-
signed event. Otherwise, the request by the farmer is sim-
ply rejected and they will not receive a ComputationAs-
signed event (see Figure 2). As soon as a farmer observes

a ComputationAssigned event for their request, they
can start with the computation, as this task has now been
reserved for them. Currently, the tasks are not assigned to
farmers via a bidding process, but on a first-come first-served

Fig. 1 Sequence diagram
for the standard scenario.
This figure shows the standard
protocol if all parties follow the
correct steps of the procedure

SN Computer Science (2020) 1:251 Page 9 of 24 251

SN Computer Science

basis. As soon as a farmer is accepted for a task, other con-
tenders are blocked from it. Nevertheless, our protocol could
be extended by a bidding component, which handles the
assignment of tasks to farmers.

Once a farmer has finished the work, they inform the
smart contract about this. In addition to some meta-data con-
cerning the task, this message also contains a one-way cryp-
tographic hash of the result, which is stored on the block-
chain. The purpose of this hash is to commit a farmer to
their computed result in case there is a dispute later on.4 The
smart contract also checks that the farmer who submits the
result is actually the one who reserved it and, if the answer is
positive, emits a ComputationDone event. This prompts
the publisher to retrieve the result from the farmer (more
details on the concrete implementation in Section 5.4). After
checking the results, the publisher can now choose to accept
or reject them. If the results are accepted, the smart contract
marks the task as accepted and issues a ResultAccepted
event, after which the farmer can withdraw their reward. We
cover the case of a rejected result in the following section.

Rejected Result

Verifying the correctness of a computation is difficult to do
directly on the blockchain via a smart contract, which is the
reason we opt for an optimistic fair exchange protocol. We
assume, given the right incentives, that the parties will act
honestly most of the time, resulting in the execution of the
protocol shown in Figure 1. In this case there is no need for
a TTP. However, if a publisher suspects a farmer to have not
done the computation properly, they can appeal to an auditor.
This invokes the part of the protocol depicted in Figure 3.

When a publisher rejects a result, the job of the auditor
is to re-execute the published computation, using the same
configuration parameters, and apply the already mentioned
cryptographic hash function to the result. The hash value
is sent to the smart contract, which compares it to the hash
value submitted by the farmer. If the two values match,
the farmer is acquitted and the smart contract releases the
reward, allowing the farmer to withdraw the funds. If the two
values do not match, because either the farmer was acting
maliciously or their system failed in some way, they face
some punitive measures. However, a farmer could upload a
hash, but not make the result available, so that a publisher
could not inspect the result when deciding to challenge the
farmer. In case the result is unavailable, this is treated as a

Fig. 2 Sequence diagram
for a failed reservation. This
figure describes the steps of
the protocol that are followed
in case a farmer is not able to
reserve a task

4 While this hash is not a processing correctness proof, a publisher
can check that the uploaded result is indeed the one that the farmer
committed to on the blockchain.

 SN Computer Science (2020) 1:251251 Page 10 of 24

SN Computer Science

failure on the farmer’s side to fulfill the contract and is inter-
preted as a successful challenge by a publisher. The code
that is re-executed by the auditor needs to be made available
by the publisher. Unavailability of the code is interpreted
as an unsuccessful challenge by a publisher, meaning that
they paid for the audition and get nothing in return. As stor-
ing the complete result and code on-chain is prohibitively
expensive, we only store the signed hashes there. The farmer
and the publisher are responsible for making the results and
code available, respectively. Not doing so will result in a
financial loss during a challenge. Storing the result and code
off-chain makes the system vulnerable to another type of
attack, though. A farmer or a publisher could make the result
or code available to the auditor but not to the other involved
party, so that for the auditor everything looks fine. However,
a farmer not able to access the code would not be able to

produce a correct result, while a publisher would not gain
access to the result and, when challenging the farmer, would
not be compensated for it. Even though there is no financial
gain for a farmer or a publisher to selectively deny access to
the data or code, they could still maliciously hurt the other
side. We will come back to this issue in Section 5.2.4.

Next we propose further incentives to encourage the
involved parties to interact in a trustworthy manner. On the
side of the farmer, this incentive takes the form of a deposit
called a stake fee. When publishing a computational task,
a publisher decides on the amount of this fee and when a
farmer submits the results of the computation, they have to
pay the stake fee. This payment is temporarily kept on hold
by the smart contract, similar to an escrow. If the publisher
accepts the result of a computation, the farmer is allowed to
withdraw both, the reward and the stake fee. If the publisher

Fig. 3 Result is rejected by
publisher. This figure describes
the steps of the protocol that
are followed when a publisher
rejects the result produced by a
farmer

SN Computer Science (2020) 1:251 Page 11 of 24 251

SN Computer Science

rejects the results, the deposit will not be released until the
auditor has made a decision. If the auditor comes to the
conclusion that the farmer has worked correctly, the reward
and the stake fee are unlocked. If the auditor concludes that
result is incorrect, then the farmer forfeits their stake fee and
is also not allowed to collect the reward, both of which are
transferred to the publisher.

The publisher and the auditor also need to be incentiv-
ized. We introduce an audit fee, which has two objectives.
On the one hand, it serves as payment for the auditor, as we
cannot expect and auditing service to be free. The audit fee
is paid independently of the decision made by the auditor,
which makes them impartial to the outcome. On the other
hand, it keeps publishers from challenging every compu-
tation done by farmers. If the audits were free, we would
expect almost every publisher to go for one to recheck the
results of a computation and get a confirmation for their cor-
rectness. This would add too much overhead and defeat the
purpose of the auditing mechanism. The minimum amount
of the audit fee needs to be fixed in a way to guarantee that
the auditor has enough funds to re-execute the computation
and still make a profit. However, this amount can be topped
up by a publisher to indicate a high priority and offer an
incentive for faster processing on the side of the auditor.
Naturally, a publisher will want to choose a stake fee that is
higher than the usual audit fee.

The combination of stake and audit fees create incentives
in the form of financial rewards and penalties to stimulate
honest behavior. There is one open question on the publish-
er’s side, though: when should a publisher request an audit?
Clearly, if a first glance at the result revealed inconsisten-
cies and discrepancies, a publisher would be well advised
to go for an audit. However, we expect that not all cases will
be straightforward to evaluate. In the related work section
we discussed spot-checking as a technique that is too unre-
liable on its own. Nevertheless, as an auxiliary method it
could have its place in our protocol to support a publisher’s
decision-making process. Integrating small spotter jobs
into their computational tasks would allow publishers to
quickly check the validity of results. This system does not
need to be perfect: it just has to be made difficult enough
for a farmer to analyze a publisher’s code when trying to
find spotter jobs so that it is more cost-effective to execute
the task properly. Zhao et al. call these spotter jobs quiz-
zes [61] and also provide a mathematical analysis on how
to choose the ratio between actual tasks and spotter jobs.
Generating generic spotter jobs efficiently that cannot easily
be distinguished from actual tasks is still an open problem.
Nevertheless, there are techniques for efficiently generating
application-specific spotter jobs, such as ringer schemes for
the inversion of one-way functions [62] and for map-reduce
workloads [63].

Our protocol can be enhanced further by tweaking the
auditing system. A minuscule amount of each reward posted
by a publisher could go to a special auditing account. When-
ever there are sufficient funds in this account, an auditor
would do a random check on a farmer to confirm the valid-
ity of their results. Actually, these checks do not have to
be completely random, but can be biased towards farmers
whose record shows a higher number of irregularities or
new farmers who have joined the market recently and do not
have a record yet. Farmers with a good track record would
be checked much less frequently. As the blockchain stores
all the previous transactions and their outcomes, it is not
difficult to track these statistics. In essence, we would be
integrating a reputation-based method into our protocol,
but only for farmers who have been around for a substantial
amount of time and have worked reliable during this time.
Similar to spot-checking, a reputation-based system on its
own has its flaws, but used as an auxiliary technique would
strengthen our protocol.

Time‑Outs

There are a few cases regarding the timeliness that we have
not covered yet. It could happen that a farmer accepts a job,
but then vanishes and never delivers any results. Conse-
quently, we need a mechanism ensuring that a publisher does
not wait indefinitely for the farmer’s return, in the meantime
blocking the reward posted by the publisher. We have two
mechanisms in place to deal with this case. Another farmer
who is willing to perform the task can challenge the current
farmer to whom the task is allocated. If the current farmer
does not react within a certain timeframe, the task gets
assigned to the challenging farmer. The individual steps of
the protocol covering this case are shown in Figure 4. There
is another time-out that releases the task even if no other
farmer challenged the current farmer.

A more elaborate ploy is a farmer challenging themselves
with a new identity effectively preventing the completion of
a task. A farmer can continue this indefinitely by creating
new identities and challenging previous unresponsive identi-
ties, leading to a denial-of-service attack. In order to prevent
this scenario, we put the following mechanism in place. Each
participant entering the marketplace has to make an initial
deposit. When leaving the marketplace, an entity gets the
deposit back. In case a participant remains unresponsive
(and is challenged successfully on this unresponsiveness),
they lose a part of this initial deposit. The money that is
lost goes into the special auditor account mentioned in Sec-
tion 5.2.2 and can be used to do some additional random
checks on results or to lower the fee that has to be paid by
a publisher to do an audit (basically subsidizing the audit
process).

 SN Computer Science (2020) 1:251251 Page 12 of 24

SN Computer Science

An entity can only keep participating in the marketplace
as long as the initial deposit remains above a certain thresh-
old. If it falls below this threshold, it needs to be topped
up again. This makes it expensive to run a denial-of-ser-
vice attack by hopping from identity to identity. Clearly,
if an attacker is willing to spend a significant amount of
resources, we cannot prevent this kind of attack completely.
However, this is a general difficulty in preventing denial-of-
service attacks and we are not able to provide a solution for
this fundamental problem here. We could make this situa-
tion even more expensive for an attacker by not reimburs-
ing the deposit immediately when a participant leaves the
marketplace. This delay will freeze assets for longer periods
of time.

Additionally, we can also introduce a mechanism that
allows a publisher to withdraw a task if no farmer is willing
to accept it after a certain period of time. This would allow
a publisher to get back the posted reward.

On the other side, we could have a non-responsive pub-
lisher. Once a farmer has completed a job, they wait for
the acceptance by the publisher (or a potential auditing
phase). However, if the publisher does not react in any way,
the farmer would have to wait for their reward indefinitely.
Here we also introduce a time-out, after which a farmer can

challenge the publisher to obtain the reward and retrieve
their stake fee. The sequence diagram for this procedure is
depicted in Figure 5.

A publisher could also have a negative impact on the
responsiveness of the marketplace by flooding it with lots
of small jobs and then not responding to the completion of a
task. However, we see less of a problem here, as a publisher
will still have to pay the reward for the completion of the
task. If this behavior by publishers is an issue, we can punish
them further by deducting a certain amount from their initial
deposit in case they do not respond.

Selectively Denying Access to Data

The issue of a farmer or publisher selectively denying access
to off-chain data is part of a larger challenge faced by block-
chains: how to track off-chain events reliably and map them
correctly to the chain. In our case, storing the hash value of
the code or the result on-chain allows us to verify that off-
chain data is correct, but it does not guarantee that the data
is actually transferred or made available to all parties. In the
words of the think tank Freedom Lab, “the interface between
the blockchain and the real world is of crucial importance

Fig. 4 Farmer does not deliver
results. This figure describes
the steps of the protocol that
are followed when a farmer
does not deliver the result to a
publisher

SN Computer Science (2020) 1:251 Page 13 of 24 251

SN Computer Science

and it is no wonder that many initiatives seek to develop
reliable and scalable solutions to this” [64].

One of these solutions is a trustworthy oracle [64, 65],
which verifies real-world events and feeds this information
to a smart contract. However, this is easier said than done.
Current proposals for oracles either need a third party [66]
or, in the case of decentralized methods, rely on reputation-
based approaches [67]. Once trustworthy oracles become
available, they could be used to solve our issue of selectively
denying access to data by verifying that the data was trans-
ferred or made available correctly. However, as it is not clear
when mature systems will be available, we suggest another
solution.

The Ethereum blockchain is only part of a whole eco-
system. Swarm and Whisper are two other components
of this system responsible for off-chain data storage and
messaging [55]. Swarm is of particular interest to us, as it
offers off-chain peer-to-peer storage that is built to resist

denial-of-service attacks. At the time of writing, Swarm was
not fully implemented yet. Nevertheless, it is in a proof-of-
concept phase (release 3) [68] and can be seamlessly inte-
grated into an Ethereum environment once it comes online.
For our framework this would mean that the transfer of
off-chain data between farmer and publisher could be done
reliably via Swarm. Compared to trustworthy oracles, we
believe that this is the more promising approach.

Further Thoughts

Even though we try to reduce the involvement of a TTP in
our protocol, it might still become a bottleneck, especially
if the number of users grows. The more we can automate
the auditing process, the better our approach will scale. For
instance, we could delegate the recomputation of a task due
to a dispute by hosting one or more auditor services (with

Fig. 5 Publisher neither
accepts nor rejects results.
This figure describes the steps
of the protocol that are followed
when a publisher disappears,
i.e., they do not accept the
results but also do not reject
them

 SN Computer Science (2020) 1:251251 Page 14 of 24

SN Computer Science

their own Docker IDs5) on one of the large, trusted players
in cloud computing. In the ideal case, the auditor would
be implemented in the form of a smart contract overseeing
the dispute resolution. However, in this case we may want
to add a step to the auditing process if any of the involved
parties want to challenge this purely algorithmic decision.
We discuss this and other legal matters in further detail in
Section 7.3.

Architecture

Our system is divided into two main components: a smart
contract residing on the blockchain and a client applica-
tion that interacts with it. The smart contract stores a list of
Computation objects on the chain, each object containing
all the details of that computation. The public interface of
the contract is composed of a list of methods that imple-
ment the protocol described in the previous section. Each
of these methods receives input from the client application,
performs checks related to the status of the computation, and
determines if the request is valid. If a request is valid, the
requested modifications are applied to the stored computa-
tion object and the required events are emitted. Otherwise,
an error is thrown. For each new published computation, the
contract generates an ID that will be used to reference it. We
used the Truffle framework6 as a basis for the contracts to
allow easier unit-testing and deployment.

The client interacts with the smart contract and is a web
application divided into three components:

1 A Geth client connected to the blockchain (either the
main one or one for testing purposes).

2 An Express server, interacting with the Geth client using
JSON-RCP over WebSockets, that serves the frontend
to the user. The server also listens for events on the
blockchain and takes the required actions, interacting
with the Docker daemon if needed. For example, if the
server receives a ComputationAssigned event,
which assigns a computation to the current farmer, it
will download the Docker image associated with the
computation, start the associated container, collect the
result, and automatically send the hash of the result to
the smart contract.

3 A frontend written with standard web technologies
(HTML, CSS, Javascript) that presents the informa-
tion to the user and relays user actions to the backend
Express server.

Implementation Details

Smart contract

The smart contract is written in the Solidity programming
language (the standard language for the Ethereum block-
chain) and is split into two subcontracts that are combined
to a single one before the deployment. The Administra-
ble contract maintains information related to the owner of
the contract and the auditors; the Main contract stores the
metadata of all the computations and contains the methods
needed for implementing the protocol described in 5.2.

We kept the Administrable contract simple in our
prototype implementation. On contract deployment, the
address of the deployer is stored as the owner of the con-
tract. This account has full control over the contract, can set

Fig. 6 State-chart diagram for transitions of a computation
object including corresponding actors. This figure gives an over-
view of the states a computing object can transition through while

being processed by our framework. It shows the states of the object as
well as the different actors

6 https ://truffl efra mewor k.com/

5 A Docker ID is a user name space for hosted Docker services and
can be requested on the official Docker web page.

https://truffleframework.com/

SN Computer Science (2020) 1:251 Page 15 of 24 251

SN Computer Science

configuration parameters and is the only trusted auditor. A
more sophisticated implementation may allow for multiple
auditors and/or owners or require a voting system in order
to change parameters.

The Main contract maintains a mapping that associates
every computation ID to an object containing all the infor-
mation related to that computation. The computation object
itself follows the state machine described in Figure 6. This
diagram also shows the names of the methods used by the
smart contract to transition between different states. Every
method can only be invoked by a specific entity (publisher,
farmer, or auditor) and these constraints are enforced in the

• assignedTo, assignmentTimestamp: the
address of the farmer to whom the computation is
assigned and the time when the computation was
assigned. The timestamp is needed to check if a chal-
lenge from another farmer is valid or not.

• stakeFee, auditFee: used to store the incentives
described above. All the amounts are in Wei.

• resultHash, resultLink: the hash of the result
computed by the farmer and the link from which the pub-
lisher can download the full results.

• resultSubmissionTimestamp: used to check how
long a farmer has to wait before they can challenge a non-
responsive publisher to claim their reward.

contract. A computation object is structured as shown in
Listing 1. Each field of the object has a specific function,
described below:

• status: maintains the current state of a computation in
the state machine (see Figure 6)

• publisher, dockerImageName, weiReward:
the address of the account that published the computation
request, the full name of the Docker image describing
the requested computation, and the amount of Ether (in
Wei) that will be given to the farmer for performing the
computation.

All the methods implemented in the smart contract
roughly follow the same basic structure. In Listing 2 we
show the method acceptComputation as an example. The
first parameter of a method is usually the ID of the com-
putation object. The first part of a method checks for the
existence of an object with this ID and, when found, checks
whether the object is in the correct state required for an
operation (cf. Figure 6). Some methods require additional
checks: for example, a farmer challenging the assignment
of a job has to satisfy the time constraints. These checks are
followed by the actual modification of a computation object.
The modifications themselves depend on the specific opera-
tion. The changes usually affect the state of the computation
object and are made persistent on the chain. After all modifi-
cations have been made, a corresponding event is emitted (if
appropriate). The events are also stored on the chain, ready
to be picked up by users listening for them.

 SN Computer Science (2020) 1:251251 Page 16 of 24

SN Computer Science

executable on the system of a farmer. Our solution to this
problem is to publish the computation in the form of a con-
tainer. Containers are light-weight virtual machines holding
an application including the environment needed to run it.
Using containers offers the following benefits.

First of all, containers are portable: every system for
which the specific container engine is implemented can
run that container. Additionally, they are very flexible. The
content of the container can be configured freely accord-
ing to the needs of the creator, i.e., a publisher in our case.
On top of that, a single host can run multiple containers,
allowing farmers to perform multiple computations simul-
taneously. Containers are also volatile, meaning that when
the container is shut down, its current state is not persisted.
Currently, we assume that input parameters are encoded in
the docker containers. Although this implies that new con-
tainer images need to be created for each set of inputs, these
images can be built quite quickly and executing a container
with a deterministic application twice will yield exactly the
same results. This is important for the auditing process in
our protocol. Another point is that a farmer can put a limit
on the resource consumption of a container, so that it cannot
completely exhaust the resources of a system. In principle,
containers are also isolated from the host system running
them, meaning farmers can execute computations without
compromising their system. We will discuss this issue in
more details in Section 7.1. Last but not least, containers are
easy to create, use, and share.

As a concrete implementation of a container framework
we chose Docker [70]. It was first released in 2013 and in the
meantime has reached a large user base, as it is open-source,
freely available for different platforms, and used by many
software vendors to run their system. According to Docker,
over 3.5 million applications have been implemented using
this technology and over 37 billion application containers
have been downloaded [71]. We have successfully applied
the Docker technology in an IoT context before [72, 73]

Client application

The Express server comprises modules that interact via a
shared event bus. Most of the events on the bus are generated
by a set of listeners registering specific events issued by the
smart contract. Other modules listen for the events generated
on the bus and, when triggered, initiate certain actions. In
particular, we have the following modules:

1 The WsEventQueue module dispatches a subset of the
events generated on the bus to the frontend, so that the
information shown to the user can be updated.

2 The WorkerManager module (used by farmers) listens
for ComputationAssigned events. If a computation is
assigned to the current farmer, this module downloads
the Docker container of the computation and starts it.
Additionally, it monitors running containers and, when
one of them finishes, reports this to the event bus via a
job-finished event.

3 The UploadManager listens for job-finished events, col-
lects the results, uploads them according to the specifi-
cations defined below, and submits the result hash to the
main contract.

4 The WithdrawalManager listens for events that allow a
farmer to collect their reward (either a ResultAccepted
event from a publisher or the decision of an auditor).
When one of these events is received, it creates the cor-
responding withdrawal request.

Docker

One challenge we faced was representing the computations
and their environments in a standardized and portable way.
The naive idea of simply distributing the binaries of the
applications has serious compatibility issues: we have to
be able to guarantee that the computation will actually be

SN Computer Science (2020) 1:251 Page 17 of 24 251

SN Computer Science

and we were also motivated by Naik, who proposes to use
Docker as a platform for data processing in the cloud [74].

Further details

When a computation is published, the complete name of
the Docker image containing the code for this computation
needs to be provided. In principle, there are two different
ways to refer to a specific version of an image: either via the
image name and a tag or the image name and a digest (usu-
ally in the form of a SHA-256 hash). We prefer the variant
using a digest, since tags are mutable, whereas digests are
not. This has an impact on the auditing process. A farmer
should only execute Docker images providing a digest. In
this way the farmer can check that the downloaded image
actually belongs to this digest and when an auditor re-exe-
cutes a computation, exactly the same image will be used.
Otherwise, when using tags, a publisher could rebind the
tag to another version of the image that produces a different
result. If they then reject the result, the auditor will recom-
pute the result using a different image, causing the farmer
to be blamed.

Currently, the delivery of the result is done in the follow-
ing way. The computation stores the results in the /result
folder inside the container, which the farmer mounts on a
host folder: in this way the results are retrievable and upload-
able. For submitting the results, the farmer compresses the
folder using gzip and computes the hash of this archive file;
the hash value is sent to the smart contract. The auditor per-
forms the same steps when resolving a dispute. The farmer
also provides a link from which the compressed result file
can be downloaded. In our prototype the link is accessible
via a simple HTTP GET request and no additional authen-
tication is required (we think of improving this in a future
version).

Evaluation

We now discuss in more details advantages and disadvan-
tages of our framework by looking at important aspects. In
a first part, we look at an evaluation from a technical point
of view, i.e., we investigate the costs for running our frame-
work. In a second part, we consider more general aspects,
such as security, fairness, and legal implications.

Cost evaluation

An important aspect of running computations on the
Ethereum blockchain is the financial cost of doing so. When
executing a transaction, every call of one of the methods of
a smart contract that alters the state of the contract has a
cost associated with it. We have to distinguish three different
components here. The first component is a measure for the
cost, while the other two components translate this cost into
a real-world currency. First of all, there is gas, which meas-
ures the amount of computational work that is needed to
complete a task. Every instruction executed on the Ethereum
Virtual Machine comes with a certain gas cost attached to it.
Second, when initiating a transaction, a user has to provide

Fig. 7 Exchange rate: value of one Ether in Euro. This figure
shows the exchange rate between Ether and Euro for the time between
1 February 2018 and 1 July 2018

Fig. 8 The average gasPrice on Ethereum’s main network.
This figure shows the average gas price on Ethereum’s main network
for the time between 1 February 2018 and 1 July 2018

Fig. 9 Total cost for executing standard scenario. This figure
shows the total cost for executing the standard part of the protocol for
the time between 1 February 2018 and 1 July 2018

 SN Computer Science (2020) 1:251251 Page 18 of 24

SN Computer Science

a gasPrice, which is not a cost in itself but states how
much the user is willing to pay per unit of gas that is con-
sumed. This price is measured in Ether or Wei: one Ether is
10

18 Wei (or 109 GWei). If there is a lot of contention, those
transactions with a higher gasPrice are prioritized by
miners, which means that their results make it to the block-
chain faster. Finally, there is the exchange rate between Ether
and the utilized non-crypto currency of reference (Euro in
our case), which determines the real-world cost of running
a transaction. Due to the volatility of the exchange rate, the
cost of using a service can vary considerably from day to
day. However, a user has some influence over controlling this
volatility. Instead of buying Ether at the point in time when
they want to execute a computation, users can buy Ether at
an earlier time, e.g. when the exchange rate is favorable.

We conducted experiments on our smart contract imple-
mentation, running both the standard and alternative sce-
narios.7 These tests have been run on the Rinkeby test
blockchain and can be reproduced by calling the /api/
estimate REST endpoint of the client application’s back-
end. This endpoint performs a list of transactions on the
smart contract and returns the amount of gas consumed by
each single transaction under different scenarios. Multiply-
ing this amount of gas with a gasPrice and the Ether-to-
Euro exchange rate yields the actual financial costs.

In table 1 we report the costs for running the various
methods of our smart contract. The following tables show
the total amount of gas, Ether, and Euro spent (for some
tables this is also split into the amount spent by different
parties). While the units of consumed gas are fixed, the other
two costs depend on the gasPrice and the Ether-to-Euro
exchange rate. At the time of conducting the experiments,
one Ether (ETH) was valued at C 537.257818083 and the
average gasPrice came in at 17.011103191 GWei. (At the
beginning of 2019, these costs were much lower: one Ether
was valued at around C 150 and the average gasPrice was
around 8 GWei.) We used the average price, as this will get
the transaction processed fairly quickly.8

The costs for running the standard scenario without the
intervention of an auditor or any other complications are
depicted in Table 2. Even though the computations executed
by the smart contract are straightforward and concise, the
costs are not negligible, clocking in at roughly one-and-a-
half Euros for a publisher and two Euros for a farmer.

Table 3 illustrates what happens to the costs when a result
is rejected by a publisher and an auditor has to step in. In
addition to the resources needed to pay the actions of the
auditor and the stake fees, compared to the standard case,
the split of the costs between farmer and publisher is differ-
ent. This is due to calling different functions of the smart
contract: the publisher has to call rejectResult, which costs
more than acceptResult, and the farmer does not have to call
withdrawReward.

Table 1 Costs for executing smart contract methods

Method Consumed gas Ether cost Cost
(in units) (in GWei) (in C)

requestComputation 138757 2360409.65 1.27
acceptComputation 69544 1183020.16 0.64
computationDone 113299 1927340.98 1.04
acceptResult 29141 495720.56 0.27
withdrawReward 43498 739948.97 0.40
rejectResult 49312 838851.52 0.45
submitAuditorResult 38551 655795.04 0.35
challengeFarmerDisappeared 34816 592258.57 0.32
challengeResultIgnored 29503 501878.58 0.27

Table 2 Costs for executing standard scenario

Party Consumed gas Ether cost Cost
(in units) (in GWei) (in C)

Publisher 167898 2856130.20 1.53
Farmer 226341 3850310.11 2.07
Total 394239 6706440.31 3.60

Table 3 Costs for scenario rejecting the result

Party Consumed gas Ether cost Cost
(in units) (in GWei) (in C)

Publisher 188069 3199261.17 1.72
Farmer 182843 3110361.14 1.67
Auditor 38551 655795.04 0.35
Total 409463 6965417.35 3.74

Table 4 Costs for deploying the smart contract

Contract Consumed gas Ether cost Cost
(in units) (in GWei) (in C)

Migrations 319470 5434537.14 2.92
Main 3158630 53731780.87 28.87
Total 3478100 59166318.01 31.79

7 Our code is available on https ://gitla b.com/shale n/bache lor-thesi s
8 Depending on the urgency of a task, it may be worth checking a site
such as https ://www.ethga sstat ion.info/ for current numbers.

https://gitlab.com/shalen/bachelor-thesis
https://www.ethgasstation.info/

SN Computer Science (2020) 1:251 Page 19 of 24 251

SN Computer Science

The costs reported in the tables above have to be con-
sidered as indicative. First, the Ether-to-Euro exchange rate
can vary from day to day. Figure 7 shows the conversion
rate for the time period between 1 February and 21 June
2018. Depending on the amount of traffic on the blockchain,
users also need to adjust their gasPrice, as they are compet-
ing with the transactions of other users. Figure 8 shows the
average gasPrice on Ethereum’s main network for the same
time period. These two parameters (gasPrice and Ether-to-
Euro exchange rate) determine the actual cost for running a
transaction. Figure 9 illustrates what it would have cost us
to execute the standard scenario for the given time period.9
As we can see clearly, these costs vary considerably: from
below C 2 up to more than C 14.

There is one more factor to consider, the costs for deploy-
ing and updating the smart contract. The deployment scheme
we use is the one suggested by the Truffle framework. The
first deployment on a chain requires deploying two contracts:
the actual smart contract and an additional Migrations con-
tract managed by Truffle. The Truffle framework simplifies
the deployment and redeployment process by keeping track
of contract addresses on the blockchain and automating the
overall process. For instance, when redeploying contracts
in a multi-contract application, it makes sure that only con-
tracts that have actually changes will get redeployed. In
Table 4 we can see the costs for deploying the two contracts
on the Rinkeby test network.

From these results, we can see that the development
costs for the smart contract are quite high: every update to
the application requires deactivating the old contract and
deploying a new one, incurring the associated costs. Proper
testing and extensive review before every deployment are
therefore necessary in order to avoid any unnecessary
deployment costs.

One of the most important questions left to answer is
whether the costs of using our platform are competitive with
the costs of deploying the computational tasks on a public
cloud. For a start, the pricing models used by cloud provid-
ers are completely different to our approach. Cloud providers
rent out resources for a specific time period, while in our
model a user pays per task. So, trying to come up with a
comprehensive answer is far from trivial and researchers are
just starting to analyze and to look into pricing models for
the cloud [75, 76]. For instance, prices on the Amazon spot
market can vary dramatically, sometimes reaching extremely
high levels: Wu et al. report spot prices of $999 [75]. Even
though there is a lot of uncertainty around these cost models,
we think that our current approach is probably not com-
petitive with deployment on a public cloud. However, we
believe that the replacement of proof-of-work mechanisms

with proof-of-stake ones could bring down the prices for
operating blockchains considerably [77, 78]. In addition to
this, there are other incentives besides financial ones: a pub-
lisher might want to distribute computations among many
different entities or may be interested in not using one of the
big players or entities that are located in certain countries.

Measuring a Workload

We suggest using the amount of gas consumed by the execu-
tion of a smart contract as a metric for measuring the per-
formance of this contract, i.e., the consumed gas column in
the tables of the previous section indicate the efficiency of
our methods. We did not measure execution times, since it is
not a very useful metric to track [69]. The time between the
first instruction of a method and its last instruction depends
on the specifics of the Ethereum VM implementation that is
employed. It is also not clear if this is what we should actu-
ally be measuring. The smart contracts are executed on many
different nodes (that may run different implementations of
the Ethereum VM) and even if a method is successfully
executed on a node, it does not mean that the transaction
has actually gone through.

Discussion

We now discuss more abstract aspects of our framework,
namely security aspects, the notion of fairness guaranteed
by us and also address potential legal issues faced when
deploying such a system in an international setting (or in
certain countries).

Security Aspects

The documentation on the Docker web site provides some
information about how the platform is made secure by using
techniques such as kernel namespaces and control groups
(cgroups) [79]. When starting a container, a set of names-
paces is created for this container to isolate it from other
containers (and the host system). This ranges from network
stack and mount point management all the way to process
isolation. With the help of cgroups the resource consump-
tion of containers is managed to prevent denial-of-service-
like attacks. The capabilities of containers started by Docker
are already limited, as for most tasks special privileges are
not needed. It is recommended in [79] to restrict this fur-
ther by removing all unneeded capabilities from a container
configuration.

While a lot has been done to make containers more
secure, there are deeper underlying problems caused by the
general architecture of container-based platforms. The main
motivation for developing container-based platforms, such 9 This is the total cost, i.e., costs of publisher and farmer.

 SN Computer Science (2020) 1:251251 Page 20 of 24

SN Computer Science

as Docker, was not to create completely isolated environ-
ments, on the contrary, this was about sharing resources of
the host system, e.g. the kernel [80]. Consequently, early
versions of Docker had severe shortcomings when it came
to security, e.g. mapping the privileged user in a container
to the privileged user of the host system, which means if
malicious software managed to break out of a container, it
could subvert the host system.10

Container-based platforms are much more lightweight
than virtual machines, such as Xen [81]. By sharing the
kernel of the host system, containers offer fast instantiation
times and low memory consumption. However, this comes
at a price: containers are considered less secure than virtual
machines [82]. In a virtual machine (VM), the guest software
stack (including the guest kernel) runs on virtual hardware
emulated by the VM. The hypervisor, which runs the VM,
provides an (x86) application binary interface (ABI). A con-
tainer, on the other hand, interacts with the host system via
the kernel system call interface. There is a huge difference
in the width of these interfaces: there are over 300 different
system calls in Linux in contrast to the about twenty dif-
ferent hypercalls in the Xen hypervisor interface [83]. This
makes it much easier to monitor and control the hypercalls
in a VM compared to the systems calls in a container-based
platform.

The system call interface can be hardened with the help of
kernel mechanisms such as secure computing (seccomp) [84,
85]. Using seccomp, a set of fine-grained rules can be for-
mulated to define which system calls a process is allowed
to make. If an unexpected call is encountered, it is blocked
(usually leading to the termination of the process). In prac-
tice, it is difficult to fine-tune an appropriate policy [83]: if
it is too restrictive, this will result in a significant number of
terminated processes. Additionally, policies tend to get large
and complicated quite quickly. Consequently, most policies
are too lenient, e.g. the default policy for Docker containers
allows more than 250 system calls [86]. On top of this, we
would have to formulate and fine-tune separate policies for
different application domains. So far, this has been done for
biomedical applications [87, 88], but in our case this might
result in a large overhead, as we do not restrict ourselves to
specific application domains.

One solution to make containers more secure is to run
them inside of a VM to gain the benefits of the much more
secure hypervisor interface.11 This still leaves us with
potential breaches between containers (unless we run each
container in its own VM environment), but this is a minor
concern for us, as we assume that farmers do not have a lot
of excess computational power, so most of them would be

running a single-tenancy configuration. However, running a
container inside of a VM adds a lot of overhead, which has
a considerable impact on the profitability, maybe even mak-
ing our scheme unsustainable. A farmer could separate the
container platform physically from the rest of their system,
e.g. by partitioning it into a dual-boot system. One of the
partitions would then exclusively run a bare-metal container
platform. While this is definitely a secure solution, it would
render the other partition unusable while running jobs for
publishers.

Although currently there does not seem to be a defini-
tive answer addressing all the security concerns, there is
promising work on lightweight VMs. Instead of running a
whole operating system stack inside of a VM, an applica-
tion is linked only against the parts that are needed, creat-
ing a lightweight unikernel (originally, this was done with
OCaml-based applications and MirageOS [90]). Williams
et al. have taken this a step further by running unikernels as
processes on a host [83]. At first glance this seems to be a
step backwards, as it exchanges the more secure hypervisor
interface for the less secure system call interface. However,
Williams et al. have shown in their prototype system Nabla
that they only require nine different systems calls, which
are much easier to manage via seccomp policies compared
to hundreds of different system calls for Docker. The down-
side is that unikernels are not as easy to manage as Docker
containers [80]. Once this technology becomes more mature
and easy-to-use Nabla-containerized options become avail-
able, this could become an interesting component of our
framework.

In summary, currently VMs are the more secure option,
but they add too much overhead, while containerized
approaches are more lightweight but less secure. Choosing
the right platform for our framework is still an open ques-
tion. Nevertheless, once a more secure containerized option
becomes available, we can integrate into our marketplace.

Fairness

In [60], which is based on earlier work by Asokan [91], Liu
et al. define requirements for the fairness of exchange proto-
cols. This definition consists of four criteria: effectiveness,
fairness, timeliness, and non-repudiation. Asokan states that,
strictly speaking, non-repudiation is not an integral part of
such a protocol, but that it helps in resolving conflicts. In
the following we show that our protocol satisfies the criteria
defined by [60] and [91].

Effectiveness means that two participants acting hon-
estly will lead to a successful completion of the protocol.
Under this definition, our protocol is effective: in this case
we execute the standard scenario at the end of which the
publisher receives the results of the computation and the
farmer receives the publisher’s payment.11 This is how Google actually runs customers’ containers[89].

10 Since version 1.10, containers can be run as non-privileged users.

SN Computer Science (2020) 1:251 Page 21 of 24 251

SN Computer Science

Asoka distinguishes two different levels of fairness,
strong fairness and weak fairness. A protocol using the
notion of strong fairness results in one of two outcomes:
either both participants have received what they wanted or
neither of them has. If a protocol utilizes the notion of weak
fairness, an honest party can prove to an arbiter that they
fulfilled their side of the bargain. Our protocol follows the
notion of weak fairness. When a fraudulent publisher claims
that the result of a computation is not correct (to avoid pay-
ing a farmer), they have already received the results of the
computation. However, a farmer can prove to a trusted
third party that they have delivered the services and will
get compensated for this (additionally, the publisher will
be punished). In the case of a cheating farmer, they will not
receive their payment, since the publisher has not received
the agreed-upon services. This second scenario actually fol-
lows the notion of strong fairness, as neither side gets what
they want.

Timeliness means that the protocol will eventually ter-
minate at a certain point in time, either successfully or in
a failed state. Our protocol satisfies this criterion as well,
because each individual step of the protocol will time out
after a certain period of time.

Finally, with non-repudiation a participant is able to
prove the origin of the exchanged goods or services. In our
protocol this is crucial for the container provided by a pub-
lisher and the results returned by a farmer. Both of these
components are hashed and signed (by the publisher and
farmer, respectively) and the signed hash is stored on the
blockchain. While this is not processing correctness proof,
it is there to make sure that a third party can verify which
code was was executed and that the received result is the
one actually submitted by the farmer. So, in our framework
this happens indirectly, the non-repudiation is provided by
the blockchain itself.

Legal Implications

Koulu analyzes the legal implications of employing block-
chain technology and smart contracts for regulating online
transactions [92]. In the following we summarize what this
analysis means for our electronic marketplace.

Generally, as Koulu points out, cross-border transactions
are on the rise, this is not just the case for our electronic mar-
ketplace, e.g. it has become common for consumers to order
merchandise online from a vendor in a different country. In
many cases these transactions are low-intensity, i.e., they
have a low financial volume, which makes it too expensive to
resolve a conflict in a court of law, especially if it is located
abroad. An interesting alternative is an online dispute reso-
lution (ODR) mechanism. According to Koulu [93], “ODR
still lacks a uniform definition,” the only common ground of
different solutions seems to be the application of technology

for a more efficient dispute resolution. Koulo points out
in [92] that enforcement is a crucial issue: “Without a way
to force compliance with a decision, the decision is mainly
without effect. Although voluntary compliance is possible,
an effective redress mechanism is needed to force compli-
ance in case the final decision reached in the ODR process is
not voluntarily followed.” Since going through public insti-
tutions, such as courts, is too expensive for low-intensity
transactions, implementing direct private enforcement via
self-enforcing protocols is a promising approach. This could
be integrated into the payment scheme of an electronic mar-
ketplace using methods such as escrows, changebacks, or
insurance mechanisms [94].

While private enforcement can be realized on a techno-
logical level in the form of smart contracts (as we have done
for our electronic marketplace), on the legal side this is con-
troversially discussed, as “private enforcement bypasses the
nation state’s monopoly on violence” [92]. In some jurisdic-
tions the introduction of binding pre-dispute arbitral clauses
is not allowed, because it removes the concept of due pro-
cess and the right to a fair trial from the dispute resolution
process. It is not clear what happens if one of the parties is
not satisfied with the outcome of a practically irreversible
automatic enforcement. Currently, there are no mechanisms
for handling follow-up disputes. Essentially, this shifts dis-
pute resolution from state control to private third parties,
potentially undermining a state’s authority in the long term.
A more subtle impact of utilizing smart contracts for ODR is
that this blurs the distinction between substantive law (under
which contracts fall) and procedural law (the due process
mentioned before). While substantive law covers fundamen-
tal principles governing society, procedural law is about its
practical application by courts and judges. Arnold argues
that these two should be kept separate and that changes to
a judicial system should not be made by judges who are
involved in running the system, but by independent, objec-
tive scholars [95].

In summary, we think that the building blocks for put-
ting private self-enforcing protocols already exist, but we
agree with Koulu who states in [92] that “the implications
of ...the overall automation of complex legal issues are not
straightforward.” Consequently, legal aspects may play an
important role in which mechanisms will be used to imple-
ment the protocols in the end.

Conclusion and Future Work

We have developed a framework for implementing a decen-
tralized marketplace for computational power that would
allow a wide range of providers to offer cloud computing
services. A major stumbling block was assuring the qual-
ity of the computational results. While a technique such as

 SN Computer Science (2020) 1:251251 Page 22 of 24

SN Computer Science

verifiable computing would give us rigorous proofs that a
task was executed correctly, the overhead is currently too
high to make this a realistic option, so we opted for a differ-
ent approach. Our solution revolves around an adjudicated
protocol where in most cases the two parties interact without
any intervention by a third party. Here the blockchain acts as
an escrow service, making sure that the payment is actually
there to begin with and that it gets released once the com-
putational task has been completed and accepted. If there is
a disagreement between the two parties, a third party steps
in to resolve the conflict. We have put various incentives in
place to encourage the participants to behave honestly.

In addition to developing the protocol, we have imple-
mented a prototype as a proof-of-concept and have also con-
ducted a number of experiments to test the performance.
Although we have shown the viability of the approach by
successfully running the prototype, a crucial aspect is the
financial overhead imposed by the blockchain. Currently, the
system has some non-negligible costs for the users, which
would probably make the fees higher than those of large
cloud providers. Ethereum, as many other blockchains, is
not an ideal platform to run our framework on, as its network
supports a range of applications, some of which are rather
speculative, causing a considerable volatility of the exchange
rate between Ether and traditional currencies. On top of this,
Ethereum relies on a proof-of-work consensus mechanism12,
which incurs significant computational and in turn financial
costs. There are plans to bring down these costs by switch-
ing to a proof-of-stake mechanism [77, 78]. Independent of
this, it would be very interesting to develop cost models and
compare the costs of running our platform versus the costs
of deploying on a public cloud. Generally, current research is
looking into overcoming scalability issues (and also reduc-
ing the costs) by introducing sharding into blockchain pro-
tocols [96]. Although latency is not our main issue at the
moment, since we assume that the computational tasks will
run for several hours or even days, improving the response
times would certainly have a positive impact when it comes
to users adopting our framework. In summary, we think that
our framework is a promising approach that could become
viable with a few more improvements in the underlying
blockchain technology.

Acknowledgements We thank the anonymous reviewers of an earlier
version of the paper for pointing out a flaw in our protocol.

Author Contributions Matteo Nardini implemented the framework in
the context of his thesis. Sven Helmer and Nabil El Ioini were work-
ing together with him on the conceptual parts as supervisor and co-
supervisor, respectively. Claus Pahl helped in writing large parts of the
paper and in providing further guidance.

Funding No external funding.

Availability of data and materials The source code of the implementa-
tion is available in the following repository: https ://gitla b.com/shale
n/bache lor-thesi s

Competing interests The authors declare that they have no competing
interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Stephany A. The Business of Sharing: Making It in the New Shar-
ing Economy. London, United Kingdom: Palgrave Macmillan;
2015.

 2. Giana M, Eckhardt FB. The Sharing Economy Isn’t About Shar-
ing at All. Harvard Business Review, 2015-01-28, https ://hbr.
org/2015/01/the-shari ng-econo my-isnt-about -shari ng-at-all.
[Online; accessed July 2018] 2015

 3. Subramanian H. Decentralized blockchain-based electronic mar-
ketplaces. Comm. of the ACM. 2018;61(1):78–84.

 4. Weyl EG. A price theory of multi-sided platforms. The American
Economic Review. 2009;100(4):1642–72.

 5. Anderson DP. BOINC: a system for public-resource computing
and storage. In: 5th IEEE/ACM Int. Workshop on Grid Comput-
ing, 2004; 4–10

 6. Wikipedia: Berkeley Open Infrastructure for Network Computing.
https ://en.wikip edia.org/wiki/Berke ley_Open_Infra struc ture_for_
Netwo rk _Compu ting. [Online; accessed July 2018] 2018

 7. Wikipedia: Tianhe-2. https ://en.wikip edia.org/wiki/Tianh e-2.
[Online; accessed August 2018] 2018

 8. Golem Network. Online White paper, https ://golem .netwo rk/doc/
Golem white paper .pdf. [Online; accessed May 2019] 2016

 9. iExec. Online White paper, https ://iex.ec/wp-conte nt/uploa ds/pdf/
iExec -WPv3.0-Engli sh.pdf. [Online; accessed May 2019] 2018

 10. SONM. Online White paper, https ://white paper .io/docum ent/326/
sonm-white paper . [Online; accessed May 2019] 2017

 11. Taherizadeh S, Stankovski V, Grobelnik M. A capillary comput-
ing architecture for dynamic internet of things: Orchestration of
microservices from edge devices to fog and cloud providers. Sen-
sors. 2018;18:2938.

 12. Nouman Durrani M, Shamsi JA. Review: Volunteer computing:
Requirements, challenges, and solutions. J. Netw. Comput. Appl.
2014;39:369–80.

 13. Heien EM, Fujimoto N, Hagihara K. Computing low latency
batches with unreliable workers in volunteer computing environ-
ments. In: IEEE Int. Symposium on Parallel and Distributed Pro-
cessing, 2008; 1–8

 14. Watanabe K, Fukushi M. Generalized spot-checking for sabotage-
tolerance in volunteer computing systems. In: 10th IEEE/ACM
Int. Conf. on Cluster, Cloud and Grid Computing, 2010; 655–66012 This is also the case for many other blockchains.

https://gitlab.com/shalen/bachelor-thesis
https://gitlab.com/shalen/bachelor-thesis
http://creativecommons.org/licenses/by/4.0/
https://hbr.org/2015/01/the-sharing-economy-isnt-about-sharing-at-all
https://hbr.org/2015/01/the-sharing-economy-isnt-about-sharing-at-all
https://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network%20_Computing
https://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network%20_Computing
https://en.wikipedia.org/wiki/Tianhe-2
https://golem.network/doc/Golemwhitepaper.pdf
https://golem.network/doc/Golemwhitepaper.pdf
https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf
https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf
https://whitepaper.io/document/326/sonm-whitepaper
https://whitepaper.io/document/326/sonm-whitepaper

SN Computer Science (2020) 1:251 Page 23 of 24 251

SN Computer Science

 15. Watanabe K, Fukushi M, Kameyama M. Adaptive group-based
job scheduling for high performance and reliable volunteer com-
puting. Journal of Information Processing. 2011;19:39–51.

 16. Chard K, Bubendorfer K. Co-operative resource allocation: Build-
ing an open cloud market using shared infrastructure. IEEE Trans.
on Cloud Computing. 2019;7(1):183–95.

 17. Avizienis A. Dependable Computing and Fault-Tolerant Systems
Vol. 1: The Evolution of Fault-Tolerant Computing. Vienna:
Springer; 1987.

 18. Holt RM. MOS processor for the F14A CADC. Technical Report
No. 71-7266, Garrett AiResearch Corp 1971

 19. Briere D, Traverse P. AIRBUS A320/A330/A340 electrical flight
controls: A family of fault-tolerant systems. In: 23rd Int. Sympo-
sium on Fault-Tolerant Computing (FTCS’93) 1993

 20. Sarmenta LFG. Sabotage-tolerance mechanisms for volunteer
computing systems. Future Gener. Comput. Syst. 2002; 18(4)

 21. Dong C, Wang Y, Aldweesh A, McCorry P, van Moorsel A.
Betrayal, distrust, and rationality: Smart counter-collusion con-
tracts for verifiable cloud computing. In: ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS’17), 2017;
211–227

 22. Arora S, Lund C, Motwani R, Sudan M, Szegedy M. Proof verifi-
cation and hardness of approximation problems. In: 33rd Annual
Symposium on Foundations of Computer Science (FOCS’92),
Pittsburgh, Pennsylvania, 1992; 14–23

 23. Arora S, Safra S. Probabilistic checking of proofs; A new charac-
terization of NP. In: 33rd Annual Symposium on Foundations of
Computer Science (FOCS’92), Pittsburgh, Pennsylvania, 1992;
2–13

 24. Arora S, Lund C, Motwani R, Sudan M, Szegedy M. Proof verifi-
cation and the hardness of approximation problems. J. ACM 1998;
45(3)

 25. Arora S, Safra S. Probabilistic checking of proofs: A new charac-
terization of NP. J. ACM. 1998;45(1):70–122.

 26. Goldwasser S, Kalai YT, Rothblum GN. Delegating computation:
Interactive proofs for muggles. J. ACM. 2015;62(4):27–12764.
https ://doi.org/10.1145/26994 36.

 27. Gennaro R, Gentry C, Parno B. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In: Rabin, T.
(ed.) Advances in Cryptology (CRYPTO’10) 2010

 28. Walfish M, Blumberg AJ. Verifying computations without reex-
ecuting them. Commun. ACM. 2015;58(2):74–84. https ://doi.
org/10.1145/26415 62.

 29. Teutsch J, Reitwies ̈sner C. A scalable verification solution for
blockchains. CoRR arXiv :1908.04756 2019

 30. Luu L, Teutsch J, Kulkarni R, Saxena P. Demystifying incentives
in the consensus computer. In: Proc. of the 22nd ACM SIGSAC
Conf. on Computer and Communications Security (CCS’15),
2015; 706–719

 31. Sadeghi A-R, Schneider T, Winandy M. Token-based cloud com-
puting. In: Trust and Trustworthy Computing, 2010; 17–429

 32. Resnick P, Zeckhauser R. In: Baye, M.R. (ed.) Trust among stran-
gers in internet transactions: Empirical analysis of eBay’ s repu-
tation system, vol. 11, pp. 127–157. Emerald Group Publishing
Limited, Bingley, United Kingdom 2002

 33. Post A, Shah V, Mislove A. Bazaar: Strengthening user reputa-
tions in online marketplaces. In: 8th USENIX Conf. on Networked
Systems Design and Implementation (NSDI’11), 2011; 183–196

 34. Soska K, Kwon A, Christin N, Devadas S. Beaver: A decentralized
anonymous marketplace with secure reputation. Technical Report
2016/464, IACR Cryptology ePrint Archive 2016

 35. Casey W, Kellner A, Memarmoshrefi P, Morales JA, Mishra
B. Deception, identity, and security: The game theory of sybil
attacks. Commun. ACM. 2018;62(1):85–93.

 36. Casey W, Memarmoshrefi P, Kellner A, Morales JA, Mishra B.
Identity deception and game deterrence via signaling games. In:

Proc. of the 9th EAI Int. Conf. on Bio-inspired Information and
Communications Technologies (BICT’15), New York City, New
York, 2016; 73–82

 37. Falcarin P, Scandariato R, Baldi M, Ofek Y. Integrity checking
in remote computation. Technical report, Politecnico di Torino
(January 2005)

 38. Khan SM, Hamlen KW. Computation certification as a service in
the cloud. In: 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, 2013; 434–441 https ://doi.
org/10.1109/CCGri d.2013.75

 39. Premnath SN, Haas ZJ. A practical, secure, and verifiable cloud
computing for mobile systems. CoRR. arxiv : 1410.1389 2014

 40. Klems M, Eberhardt J, Tai S, Härtlein S, Buchholz S, Tidjani
A. Trustless intermediation in blockchain-based decentralized
service marketplaces. In: Service-Oriented Computing, 2017;
731–739

 41. Jakobsson M. Ripping coins for a fair exchange. In: Advances in
Cryptology (EUROCRYPT’95), 1995; 220–230

 42. Asokan N, Schunter M, Waidner M. Optimistic protocols for fair
exchange. In: 4th ACM Conf. on Computer and Communications
Security(CSS’97), 1997; 7–17

 43. Bao F, Deng RH, Mao W. Efficient and practical fair exchange
protocols with off-line TTP. In: 1998 IEEE Symposium on Secu-
rity and Privacy, 1998; 77–85

 44. Even S, Goldreich O, Lempel A. A randomized protocol for sign-
ing contracts. In: Advances in Cryptology, 1983; 205–210

 45. Okamoto T, Ohta K. How to simultaneously exchange secrets by
general assumptions. In: 2nd ACM Conference on Computer and
Communications Security(CSS’94). CCS ’94, 1994;184–192

 46. Even S, Yacobi Y. Relations among public key signature systems.
Technical Report 175, Technion 1990

 47. Pagnia H, Gärtner FC. On the impossibility of fair exchange with-
out a trusted third party. Technical Report TUD-BS-1992-02,
Darmstadt University of Technology 1999

 48. Garbinato B, Rickebusch I. Impossibility results on fair exchange.
In: 10th Int. Conf. on Innovative Internet Community Systems
(I2CS’10), 2010; 507–518

 49. Cachin C, Camenisch J. Optimistic fair secure computation. In:
Advances in Cryptology (CRYPTO’00), 2000; 93–111

 50. Micali S. Simple and fast optimistic protocols for fair electronic
exchange. In: 22nd Annual Symposium on Principles of Distrib-
uted Computing (PODC’03), 2003; 12–19

 51. Küpçü A, Lysyanskaya A. Usable optimistic fair exchange. Com-
put. Netw. 2012;56(1):50–63.

 52. Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S. Bitcoin
and Cryptocurrency Technologies: A Comprehensive Introduc-
tion. Princeton, New Jersey: Princeton University Press; 2016.

 53. Sompolinsky Y, Zohar A. Bitcoin’s underlying incentives. Com-
mun. ACM. 2018;61(3):46–53.

 54. Narayanan A, Clark J. Bitcoin’s academic pedigree. Commun.
ACM. 2017;60(12):36–45.

 55. Dannen C. Introducing Ethereum and Solidity. Berlin, Germany:
Springer; 2017.

 56. Merkel D. Docker: Lightweight linux containers for consistent
development and deployment. Linux J. 2014; 2014(239)

 57. Schneier B. Applied Cryptography - Protocols, Algorithms, and
Source Code in C. 2nd ed. Hoboken, New Jersey: Wiley; 1996.

 58. Jayasinghe D, Markantonakis K, Mayes K. Optimistic fair-
exchange with anonymity for bitcoin users. In: 11th Int. Conf. on
e-Business Engineering, 2014; 44–51

 59. Goldfeder S, Bonneau J, Gennaro R, Narayanan A. Escrow pro-
tocols for cryptocurrencies: How to buy physical goods using
bitcoin. In: Financial Cryptography and Data Security, 2017;
321–339

 60. Liu J, Li W, Karame GO, Asokan N. Toward fairness of cryptocur-
rency payments. IEEE Security Privacy. 2018;16(3):81–9.

https://doi.org/10.1145/2699436
https://doi.org/10.1145/2641562
https://doi.org/10.1145/2641562
http://arxiv.org/abs/1908.04756
https://doi.org/10.1109/CCGrid.2013.75
https://doi.org/10.1109/CCGrid.2013.75
http://arxiv.org/abs/1410.1389

 SN Computer Science (2020) 1:251251 Page 24 of 24

SN Computer Science

 61. Zhao S, Lo V, GauthierDickey C. Result verification and trust-
based scheduling in peer-to-peer grids. In: Proc. of the 5th IEEE
Int. Conf. on Peer-to-Peer Computing (P2P’05), 2005; 31–38

 62. Golle P, Mironov I. Uncheatable distributed computations. In:
Naccache D, editor. Topics in Cryptology (CT-RSA’01). San
Francisco: CA; 2001. p. 425–40.

 63. Bendahmane A, Bennasar H, Essaaidi M. An efficient approach to
improve security for mapreduce computation in cloud system. In:
Proc. of the Int. Conf. on Learning and Optimization Algorithms:
Theory and Applications (LOPAL’18) 2018

 64. FreedomLab: Where the blockchain meets the real world. No. 224,
Theme 01, Week 48, http://freed omlab .org/where -the-block chain
-meets -the-real-world /. [Online; accessed March 2020] 2019

 65. Zheng Z, Xie S, Dai H-N, Chen W, Chen X, Weng J, Imran M. An
overview on smart contracts: Challenges, advances and platforms.
Future Generation Computer Systems. 2020;105:475–91.

 66. Zhang F, Cecchetti E, Croman K, Juels A, Shi E. Town crier: An
authenticated data feed for smart contracts. In: Proc. of the 2016
ACM SIGSAC Conf. on Computer and Communications Security
(CCS’16), 2016; 270–282

 67. Ellis S, Juels A, Nazarov S. Chainlink: a decentralized oracle net-
work. https ://chain .link/. [Online; accessed March 2020] 2017

 68. Trón V. Announcing Swarm Proof-of-Concept Release 3.
Ethereum Blog, https ://blog.ether eum.org/2018/06/21/annou ncing
-swarm -proof -of-conce pt-relea se-3/. [Online; accessed March
2020] 2018

 69. Yang R, Murray T, Rimba P, Parampalli U. Empirically analyzing
Ethereum’s gas mechanism. CoRR arxiv : abs/1905.00553 2019

 70. Docker Inc: Docker - Build, Ship, and Run Any App, Anywhere.
https ://www.docke r.com/ Accessed 2018-06-20

 71. Vaughan-Nichols, S.J.: What Is Docker and Why Is It so Darn
Popular? https ://www.zdnet .com/artic le/what-is-docke r-and-why-
is-it-so-darn-popul ar/ Accessed 2018-10-30

 72. von Leon D, Miori L, Sanin J, Ioini NE, Helmer S, Pahl C. A
performance exploration of architectural options for a middleware
for decentralised lightweight edge cloud architectures. In: 3rd Int.
Conf. on Internet of Things, Big Data and Security (IoTBDS’18),
Funchal, Madeira, 2018; 73–84

 73. Pahl C, Helmer S, Miori L, Sanin J, Lee B. A container-based
edge cloud paas architecture based on raspberry pi clusters. In:
4th Int. Conf. on Future Internet of Things and Cloud Workshops
(FiCloud’16), Vienna, Austria, 2016; 117–124

 74. Naik N. Docker container-based big data processing system in
multiple clouds for everyone. In: IEEE Int. Systems Engineering
Symposium (ISSE’17), 2017; 1–7

 75. Wu C, Buyya R, Ramamohanarao K. Cloud pricing models: Tax-
onomy, survey, and interdisciplinary challenges. ACM Comput.
Surv. 2019; 52(6)

 76. Portella G, Rodrigues GN, Nakano E, Melo ACMA. Statistical
analysis of amazon ec2 cloud pricing models. Concurrency and
Computation: Practice and Experience. 2019;31(18)

 77. Bano S, Sonnino A, Al-Bassam M, Azouvi S, McCorry P, Meikle-
john S, Danezis G. Consensus in the age of blockchains. CoRR
arxiv : abs/1711.03936 2017

 78. CoinDesk: Ethereum’s Big Switch: The New Roadmap to Proof-
of-Stake. https ://www.coind esk.com/ether eums-big-switc h-the-
new-roadm ap-to-proof -of-stake /. [Online; accessed October 2017]
2017

 79. Docker: Docker security. Docker Docs, https ://docs.docke r.com/
engin e/secur ity/secur ity/. [Online; accessed March 2019] 2019

 80. Frazelle J. Research for practice: Security for the modern age.
Commun. ACM. 2019;62(1):43–5.

 81. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neu-
gebauer R, Pratt I, Warfield A. Xen and the art of virtualization.
In: Proc. of the 19th ACM Symposium on Operating Systems
Principles SOSP’03, Bolton Landing, New York, 2003; 164–177

 82. Manco F, Lupu C, Schmidt F, Mendes J, Kuenzer S, Sati S, Yasu-
kata K, Raiciu C, Huici F. My VM is lighter (and safer) than your
container. In: Proc. of the 26th Symposium on Operating Systems
Principles (SOSP’17), Shanghai, China, 2017; 218–233

 83. Williams D, Koller R, Lucina M, Prakash N. Unikernels as pro-
cesses. In: Proc. of the ACM Symposium on Cloud Computing
(SoCC’18), Carlsbad, California, pp. 2018; 199–211

 84. Edge J. A seccomp overview. LWN, https ://lwn.net/Artic les/65630
7/. [Online; accessed March 2019] 2015

 85. Kerrisk M. Using seccomp to limit the kernel attack surface. In:
Linux Plumbers Conference (LPC’15), Seattle, Washington 2015

 86. Docker: Seccomp security profiles for Docker. Docker Docs, https
://docs.docke r.com/engin e/secur ity/secco mp/. [Online; accessed
March 2019] 2019

 87. Witt M, Jansen C, Krefting D, Streit A. Fine-grained supervision
and restriction of biomedical applications in linux containers.
In: 17th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid
Computing (CCGRID’17), 2017; 813–822

 88. Witt M, Jansen C, Krefting D, Streit A. Sandboxing of biomedi-
cal applications in linux containers based on system call evalu-
ation. Concurrency and Computation: Practice and Experience.
2018;30(12):

 89. Babcock C. Google: Docker Does Containers Right. Information-
Week, https ://www.infor matio nweek .com/cloud /infra struc ture-as-
a-servi ce/googl e-docke r-does-conta iners -right /d/d-id/13191 46.
[Online; accessed March 2019] 2015

 90. Madhavapeddy A, Scott DJ. Unikernels: Rise of the virtual library
operating system. Queue. 2013;11(11):30–44.

 91. Asokan N. Fairness in electronic commerce. PhD thesis, Univer-
sity of Waterloo, Waterloo, Canada 1998

 92. Koulu R. Blockchains and online dispute resolution: Smart con-
tracts as an alternative to enforcement. SCRIPTed - A Journal of
Law, Technology & Society. 2016;13(1):40–69.

 93. Koulu R. Three quests for the justification in the ODR era:
Sovereignty, contract and quality standards. Lex Electronica.
2014;19(1):43–71.

 94. Kaufmann-Kohler G, Schultz T. Online Dispute Resolution: Chal-
lenges for Contemporary Justice. Alphen aan den Rijn, Nether-
lands: International Arbitration Law Library Series Set. Kluwer
Law International; 2004.

 95. Arnold TW. The role of substantive law and procedure in the legal
process. Harvard Law Review. 1932;45(4):617–47.

 96. Zamani M, Movahedi M, Raykova M. Rapidchain: Scaling block-
chain via full sharding. In: Proc. of the ACM SIGSAC Conf.
on Computer and Communications Security (CCS’18), 2018;
931–948

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://freedomlab.org/where-the-blockchain-meets-the-real-world/
http://freedomlab.org/where-the-blockchain-meets-the-real-world/
https://chain.link/
https://blog.ethereum.org/2018/06/21/announcing-swarm-proof-of-concept-release-3/
https://blog.ethereum.org/2018/06/21/announcing-swarm-proof-of-concept-release-3/
http://arxiv.org/abs/abs/1905.00553
https://www.docker.com/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://arxiv.org/abs/abs/1711.03936
https://www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/
https://www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.informationweek.com/cloud/infrastructure-as-a-service/google-docker-does-containers-right/d/d-id/1319146
https://www.informationweek.com/cloud/infrastructure-as-a-service/google-docker-does-containers-right/d/d-id/1319146

	A Blockchain-based Decentralized Electronic Marketplace for Computing Resources
	Abstract
	Introduction
	Related Work
	Checking results
	Replication
	Verifiable Computing

	Trusted Hardware
	Reputation-based Systems
	Other Approaches

	Problem Specification and Constraints
	Decentralized E-Marketplaces
	Secure Transactions and Trust
	Heterogeneity of Systems

	Preliminaries
	Blockchains and Smart Contracts
	Containers

	Our Solution
	Overview
	Protocols
	Standard scenario
	Rejected Result
	Time-Outs
	Selectively Denying Access to Data
	Further Thoughts

	Architecture
	Implementation Details
	Smart contract
	Client application
	Docker
	Further details

	Evaluation
	Cost evaluation
	Measuring a Workload

	Discussion
	Security Aspects
	Fairness
	Legal Implications

	Conclusion and Future Work
	Acknowledgements
	References

