320 research outputs found

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Full text link
    Blockchain (BC) and Software-Defined Networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization -- named BC-SDN -- based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC-SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC-SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios.Comment: 42 pages, 14 figures, to be published in Journal of Network and Systems Management - Special Issue on Blockchains and Distributed Ledgers in Network and Service Managemen

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Get PDF
    Blockchain (BC) and software-defined networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization—named BC–SDN—based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC–SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC–SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios

    DistB-Condo: Distributed Blockchain-based IoT-SDN Model for Smart Condominium

    Full text link
    Condominium network refers to intra-organization networks, where smart buildings or apartments are connected and share resources over the network. Secured communication platform or channel has been highlighted as a key requirement for a reliable condominium which can be ensured by the utilization of the advanced techniques and platforms like Software-Defined Network (SDN), Network Function Virtualization (NFV) and Blockchain (BC). These technologies provide a robust, and secured platform to meet all kinds of challenges, such as safety, confidentiality, flexibility, efficiency, and availability. This work suggests a distributed, scalable IoT-SDN with Blockchain-based NFV framework for a smart condominium (DistB-Condo) that can act as an efficient secured platform for a small community. Moreover, the Blockchain-based IoT-SDN with NFV framework provides the combined benefits of leading technologies. It also presents an optimized Cluster Head Selection (CHS) algorithm for selecting a Cluster Head (CH) among the clusters that efficiently saves energy. Besides, a decentralized and secured Blockchain approach has been introduced that allows more prominent security and privacy to the desired condominium network. Our proposed approach has also the ability to detect attacks in an IoT environment. Eventually, this article evaluates the performance of the proposed architecture using different parameters (e.g., throughput, packet arrival rate, and response time). The proposed approach outperforms the existing OF-Based SDN. DistB-Condo has better throughput on average, and the bandwidth (Mbps) much higher than the OF-Based SDN approach in the presence of attacks. Also, the proposed model has an average response time of 5% less than the core model

    NetChain: A Blockchain-Enabled Privacy-Preserving Multi-Domain Network Slice Orchestration Architecture

    Get PDF
    Multi-domain networking slice orchestration is an essential technology for the programmable and cloud-native 5G network. However, existing research solutions are either based on the impractical assumption that operators will reveal all the private network information or time-consuming secure multi-party computation which is only applicable to limited computation scenarios. To provide agile and privacy-preserving end-to-end network slice orchestration services, this paper proposes NetChain, a multi-domain network slice orchestration architecture based on blockchain and trusted execution environment. Correspondingly, we design a novel consensus algorithm CoNet to ensure the strong security, scalability, and information consistency of NetChain. In addition, a bilateral evaluation mechanism based on game theory is proposed to guarantee fairness and Quality of Experience by suppressing the malicious behaviors during multi-domain network slice orchestration. Finally, the prototype of NetChain is implemented and evaluated on the Microsoft Azure Cloud with confidential computing. Experiment results show that NetChain has good performance and security under the premise of privacy-preserving

    Towards fostering the role of 5G networks in the field of digital health

    Get PDF
    A typical healthcare system needs further participation with patient monitoring, vital signs sensors and other medical devices. Healthcare moved from a traditional central hospital to scattered patients. Healthcare systems receive help from emerging technology innovations such as fifth generation (5G) communication infrastructure: internet of things (IoT), machine learning (ML), and artificial intelligence (AI). Healthcare providers benefit from IoT capabilities to comfort patients by using smart appliances that improve the healthcare level they receive. These IoT smart healthcare gadgets produce massive data volume. It is crucial to use very high-speed communication networks such as 5G wireless technology with the increased communication bandwidth, data transmission efficiency and reduced communication delay and latency, thus leading to strengthen the precise requirements of healthcare big data utilities. The adaptation of 5G in smart healthcare networks allows increasing number of IoT devices that supplies an augmentation in network performance. This paper reviewed distinctive aspects of internet of medical things (IoMT) and 5G architectures with their future and present sides, which can lead to improve healthcare of patients in the near future

    Vehicle Communication using Secrecy Capacity

    Full text link
    We address secure vehicle communication using secrecy capacity. In particular, we research the relationship between secrecy capacity and various types of parameters that determine secrecy capacity in the vehicular wireless network. For example, we examine the relationship between vehicle speed and secrecy capacity, the relationship between the response time and secrecy capacity of an autonomous vehicle, and the relationship between transmission power and secrecy capacity. In particular, the autonomous vehicle has set the system modeling on the assumption that the speed of the vehicle is related to the safety distance. We propose new vehicle communication to maintain a certain level of secrecy capacity according to various parameters. As a result, we can expect safer communication security of autonomous vehicles in 5G communications.Comment: 17 Pages, 12 Figure

    Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCritical infrastructure systems are vital to underpin the functioning of a society and economy. Due to ever-increasing number of Internet-connected Internet-of-Things (IoTs) / Industrial IoT (IIoT), and high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this paper, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on state-of-the-art for security and privacy, and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.Engineering and Physical Sciences Research Council (EPSRC

    Block Chain Technology Assisted Privacy Preserving Resource Allocation Scheme for Internet of Things Based Cloud Computing

    Get PDF
    Resource scheduling in cloud environments is a complex task, as it involves allocating suitable resources based on Quality of Service (QoS) requirements. Existing resource allocation policies face challenges due to resource dispersion, heterogeneity, and uncertainty. In this research, the authors propose a novel approach called Quasi-Oppositional Artificial Jellyfish Optimization Algorithm (QO-AJFOA) for resource scheduling in cloud computing (CC) environments. The QO-AJFOA model aims to optimize the allocation of computing power and bandwidth resources in servers, with the goal of maximizing long-term utility. The technique combines quasi-oppositional based learning (QOBL) with traditional AJFOA. Additionally, a blockchain-assisted Smart Contract protocol is used to distribute resource allocation, ensuring agreement on wireless channel utilization. Experimental validation of the QO-AJFOA technique demonstrates its promising performance compared to recent models, as tested with varying numbers of tasks and iterations. The proposed approach addresses the challenges of resource scheduling in cloud environments and contributes to the existing literature on resource allocation policies
    • …
    corecore