7,578 research outputs found

    Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities

    Get PDF
    The development of local energy communities observed in the last years requires the reorganization of energy consumption and production. In these newly considered energy systems, the commercial and technical decision processes should be decentralized in order to reduce their maintenance costs. This will be allowed by the progressive spreading of IoT systems capable of interacting with distributed energy resources, giving local sources the ability to be optimally coordinated in terms of network and energy management. In this context, this paper presents a decentralized controlling architecture that performs a wide spectrum of power system optimization procedures oriented to the local market management. The controller framework is based on a decentralized genetic algorithm. The manuscript describes the structure of the tool and its validation, considering an automated distributed resource scheduling for local energy markets. The simulation platform permits implementing the blockchain-based trading process and the automated distributed resource scheduling. The effectiveness of the tool proposed is discussed with a hardware-in-the-loop case study

    Lightweight Blockchain Framework for Location-aware Peer-to-Peer Energy Trading

    Full text link
    Peer-to-Peer (P2P) energy trading can facilitate integration of a large number of small-scale producers and consumers into energy markets. Decentralized management of these new market participants is challenging in terms of market settlement, participant reputation and consideration of grid constraints. This paper proposes a blockchain-enabled framework for P2P energy trading among producer and consumer agents in a smart grid. A fully decentralized market settlement mechanism is designed, which does not rely on a centralized entity to settle the market and encourages producers and consumers to negotiate on energy trading with their nearby agents truthfully. To this end, the electrical distance of agents is considered in the pricing mechanism to encourage agents to trade with their neighboring agents. In addition, a reputation factor is considered for each agent, reflecting its past performance in delivering the committed energy. Before starting the negotiation, agents select their trading partners based on their preferences over the reputation and proximity of the trading partners. An Anonymous Proof of Location (A-PoL) algorithm is proposed that allows agents to prove their location without revealing their real identity. The practicality of the proposed framework is illustrated through several case studies, and its security and privacy are analyzed in detail

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Optimal and Secure Electricity Market Framework for Market Operation of Multi-Microgrid Systems

    Get PDF
    Traditional power systems were typically based on bulk energy services by large utility companies. However, microgrids and distributed generations have changed the structure of modern power systems as well as electricity markets. Therefore, restructured electricity markets are needed to address energy transactions in modern power systems. In this dissertation, we developed a hierarchical and decentralized electricity market framework for multi-microgrid systems, which clears energy transactions through three market levels; Day-Ahead-Market (DAM), Hour-Ahead-Market (HAM) and Real-Time-Market (RTM). In this market, energy trades are possible between all participants within the microgrids as well as inter-microgrids transactions. In this approach, we developed a game-theoretic-based double auction mechanism for energy transactions in the DAM, while HAM and RTM are cleared by an optimization algorithm and reverse action mechanism, respectively. For data exchange among market players, we developed a secure data-centric communication approach using the Data Distribution Service. Results demonstrated that this electricity market could significantly reduce the energy price and dependency of the multi-microgrid area on the external grid. Furthermore, we developed and verified a hierarchical blockchain-based energy transaction framework for a multi-microgrid system. This framework has a unique structure, which makes it possible to check the feasibility of energy transactions from the power system point of view by evaluating transmission system constraints. The blockchain ledger summarization, microgrid equivalent model development, and market players’ security and privacy enhancement are new approaches to this framework. The research in this dissertation also addresses some ancillary services in power markets such as an optimal power routing in unbalanced microgrids, where we developed a multi-objective optimization model and verified its ability to minimize the power imbalance factor, active power losses and voltage deviation in an unbalanced microgrid. Moreover, we developed an adaptive real-time congestion management algorithm to mitigate congestions in transmission systems using dynamic thermal ratings of transmission lines. Results indicated that the developed algorithm is cost-effective, fast, and reliable for real-time congestion management cases. Finally, we completed research about the communication framework and security algorithm for IEC 61850 Routable GOOSE messages and developed an advanced protection scheme as its application in modern power systems
    • …
    corecore