49 research outputs found

    Blockchain and Random Subspace Learning-Based IDS for SDN-Enabled Industrial IoT Security

    Get PDF
    The industrial control systems are facing an increasing number of sophisticated cyber attacks that can have very dangerous consequences on humans and their environments. In order to deal with these issues, novel technologies and approaches should be adopted. In this paper, we focus on the security of commands in industrial IoT against forged commands and misrouting of commands. To this end, we propose a security architecture that integrates the Blockchain and the Software-defined network (SDN) technologies. The proposed security architecture is composed of: (a) an intrusion detection system, namely RSL-KNN, which combines the Random Subspace Learning (RSL) and K-Nearest Neighbor (KNN) to defend against the forged commands, which target the industrial control process, and (b) a Blockchain-based Integrity Checking System (BICS), which can prevent the misrouting attack, which tampers with the OpenFlow rules of the SDN-enabled industrial IoT systems. We test the proposed security solution on an Industrial Control System Cyber attack Dataset and on an experimental platform combining software-defined networking and blockchain technologies. The evaluation results demonstrate the effectiveness and efficiency of the proposed security solution

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Full text link
    Blockchain (BC) and Software-Defined Networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization -- named BC-SDN -- based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC-SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC-SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios.Comment: 42 pages, 14 figures, to be published in Journal of Network and Systems Management - Special Issue on Blockchains and Distributed Ledgers in Network and Service Managemen

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Get PDF
    Blockchain (BC) and software-defined networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization—named BC–SDN—based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC–SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC–SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios

    Analysis of IoT and Blockchain Technology for Agricultural Food Supply Chain Transactions

    Get PDF
    The Block chain is a peer to peer, distributed ledger in which members must establish consensus to record every new input and transactions that are stored by all members. Over the last decade, block chain technology has grown in popularity, attracting interest from a wide range of industries, including finance, manufacturing, energy, and government sectors, health, and agriculture supply chains, land registrations, and digital identifications (IDs). Block chain facilitates better opportunities and benefits in agriculture, as well as building trust between farmers and consumers and allowing the creation of reliable food supply chains. The Chapter discusses how block chain and smart contracts can improve productivity, transparency, and traceability in agricultural insurance, smart farming, and agricultural food supply chain transactions (AFSC). By applying Block chain agri-food supply chain tracking was made easy and won the trust from different stakeholders, which was a real benefit to the real heroes of the country. The consumer can research the history of a product they are thinking about buying and consume food in their cart, learning about the entire process from planting to harvesting, transporting, and selling. Food fraud may be reduced by using the traceability and integrity of financial information to detect untrustworthy intermediaries and business practices that exploit both independent farmers and cooperatives. The agricultural industry will be transformed by block chain for supply chain management. All phases of the agriculture supply chain are being simplified, enhancing food safety and preventing the sale of counterfeit goods. Access to agricultural finance services for farmers and companies could also be facilitated by the technology. This Paper presents a review and research challenges on the existing block chain based IoT applications in the agriculture domain where maximum research focuses on food supply chain and its security of Internet of things with Block chain. The chapter presents how block chain and smart contracts can increase productivity, transparency and traceability could be very effective in Agricultural insurance, smart farming, transactions of agricultural food supply chains

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    RDTIDS: Rules and Decision Tree-Based Intrusion Detection System for Internet-of-Things Networks

    Get PDF
    This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes

    DeliveryCoin: An IDS and Blockchain-Based Delivery Framework for Drone-Delivered Services

    Get PDF
    In this paper, we propose an intrusion detection system (IDS) and Blockchain-based delivery framework, called DeliveryCoin, for drone-delivered services. The DeliveryCoin framework consists of four phases, including system initialization phase, creating the block, updating the blockchain, and intrusion detection phase. To achieve privacy-preservation, the DeliveryCoin framework employs hash functions and short signatures without random oracles and the Strong Diffie–Hellman (SDH) assumption in bilinear groups. To achieve consensus inside the blockchain-based delivery platform, we introduce a UAV-aided forwarding mechanism, named pBFTF. We also propose an IDS system in each macro eNB (5G) for detecting self-driving network attacks as well as false transactions between self-driving nodes. Furthermore, extensive simulations are conducted, and results confirm the efficiency of our proposed DeliveryCoin framework in terms of latency of blockchain consensus and accuracy

    5G Security Challenges and Solutions: A Review by OSI Layers

    Get PDF
    The Fifth Generation of Communication Networks (5G) envisions a broader range of servicescompared to previous generations, supporting an increased number of use cases and applications. Thebroader application domain leads to increase in consumer use and, in turn, increased hacker activity. Dueto this chain of events, strong and efficient security measures are required to create a secure and trustedenvironment for users. In this paper, we provide an objective overview of5G security issues and theexisting and newly proposed technologies designed to secure the5G environment. We categorize securitytechnologies usingOpen Systems Interconnection (OSI)layers and, for each layer, we discuss vulnerabilities,threats, security solutions, challenges, gaps and open research issues. While we discuss all sevenOSIlayers, the most interesting findings are in layer one, the physical layer. In fact, compared to other layers,the physical layer between the base stations and users’ device presents increased opportunities for attackssuch as eavesdropping and data fabrication. However, no singleOSI layer can stand on its own to provideproper security. All layers in the5G must work together, providing their own unique technology in an effortto ensure security and integrity for5G data

    Survey on Security Issues and Protective Measures in Different Layers of Internet of Things (IoT)

    Get PDF
    In general perspective, Internet of things is defined as a network of physical objects by connecting” things to things” through the sensors, actuators and processors, to communicate and exchange data and information among each other along with other related devices and systems spread over different locations, without human-to-human or human-to-computer interactions. This survey summarises all the security threats along with privacy issues that may be confronted by the end users in Internet of Things (IoT). The majority of survey is to gather information about the current security requirements for IoT, the further scope and the challenges in IoT and the measures to prevent attacks upon the IoT systems

    Controller-in-the-Middle:Attacks on Software Defined Networks in Industrial Control Systems

    Get PDF
    Programmable networks are an area of increasing research activity and real-world usage. The most common example of programmable networks is software defined networking (SDN), in which the control and data planes are separated, with switches only acting as forwarding devices, controlled by software in the form of an SDN controller. As well as routing, this controller can perform other network functions such as load balancing and firewalls. There is an increasing amount of work proposing the use of SDN in industrial control systems (ICS) environments. The ability of SDN to dynamically control the network provides many potential benefits, including to security, utilising the dynamic orchestration of security controls. However, the centralisation of network control results in a single point of failure within the system, and thus potentially a major target of attack. An attacker who is capable of controlling the SDN controller gains near full control of the network. In this paper, we describe and analyse this very scenario. We demonstrate a number of simple, yet highly effective, attacks from a compromised SDN controller within an ICS environment which can break the real-time properties of industrial protocols, and potentially interfere with the operation of physical processes
    corecore