6 research outputs found

    Coded Computation Against Processing Delays for Virtualized Cloud-Based Channel Decoding

    Get PDF
    The uplink of a cloud radio access network architecture is studied in which decoding at the cloud takes place via network function virtualization on commercial off-the-shelf servers. In order to mitigate the impact of straggling decoders in this platform, a novel coding strategy is proposed, whereby the cloud re-encodes the received frames via a linear code before distributing them to the decoding processors. Transmission of a single frame is considered first, and upper bounds on the resulting frame unavailability probability as a function of the decoding latency are derived by assuming a binary symmetric channel for uplink communications. Then, the analysis is extended to account for random frame arrival times. In this case, the trade-off between average decoding latency and the frame error rate is studied for two different queuing policies, whereby the servers carry out per-frame decoding or continuous decoding, respectively. Numerical examples demonstrate that the bounds are useful tools for code design and that coding is instrumental in obtaining a desirable compromise between decoding latency and reliability.Comment: 11 pages and 12 figures, Submitte

    A Droplet Approach Based on Raptor Codes for Distributed Computing with Straggling Servers

    Get PDF
    We propose a coded distributed computing scheme based on Raptor codes to address the straggler problem. In particular, we consider a scheme where each server computes intermediate values, referred to as droplets, that are either stored locally or sent over the network. Once enough droplets are collected, the computation can be completed. Compared to previous schemes in the literature, our proposed scheme achieves lower computational delay when the decoding time is taken into account

    Block-Diagonal and LT Codes for Distributed Computing With Straggling Servers

    Get PDF
    We propose two coded schemes for the distributed computing problem of multiplying a matrix by a set of vectors. The first scheme is based on partitioning the matrix into submatrices and applying maximum distance separable (MDS) codes to each submatrix. For this scheme, we prove that up to a given number of partitions the communication load and the computational delay (not including the encoding and decoding delay) are identical to those of the scheme recently proposed by Li et al., based on a single, long MDS code. However, due to the use of shorter MDS codes, our scheme yields a significantly lower overall computational delay when the delay incurred by encoding and decoding is also considered. We further propose a second coded scheme based on Luby Transform (LT) codes under inactivation decoding. Interestingly, LT codes may reduce the delay over the partitioned scheme at the expense of an increased communication load. We also consider distributed computing under a deadline and show numerically that the proposed schemes outperform other schemes in the literature, with the LT code-based scheme yielding the best performance for the scenarios considered.Comment: To appear in IEEE Transactions on Communication

    Block-Diagonal Coding for Distributed Computing With Straggling Servers

    Get PDF
    We consider the distributed computing problem of multiplying a set of vectors with a matrix. For this scenario, Li et al. recently presented a unified coding framework and showed a fundamental tradeoff between computational delay and com- munication load. This coding framework is based on maximum distance separable (MDS) codes of code length proportional to the number of rows of the matrix, which can be very large. We propose a block-diagonal coding scheme consisting of partitioning the matrix into submatrices and encoding each submatrix using a shorter MDS code. We show that the assignment of coded matrix rows to servers to minimize the communication load can be formulated as an integer program with a nonlinear cost function, and propose an algorithm to solve it. We further prove that, up to a level of partitioning, the proposed scheme does not incur any loss in terms of computational delay (as defined by Li et al.) and communication load compared to the scheme by Li et al.. We also show numerically that, when the decoding time is also taken into account, the proposed scheme significantly lowers the overall computational delay with respect to the scheme by Li et al.. For heavy partitioning, this is achieved at the expense of a slight increase in communication load

    Straggler-Resilient Distributed Computing

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Bergen's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Utbredelsen av distribuerte datasystemer har økt betydelig de siste årene. Dette skyldes først og fremst at behovet for beregningskraft øker raskere enn hastigheten til en enkelt datamaskin, slik at vi må bruke flere datamaskiner for å møte etterspørselen, og at det blir stadig mer vanlig at systemer er spredt over et stort geografisk område. Dette paradigmeskiftet medfører mange tekniske utfordringer. En av disse er knyttet til "straggler"-problemet, som er forårsaket av forsinkelsesvariasjoner i distribuerte systemer, der en beregning forsinkes av noen få langsomme noder slik at andre noder må vente før de kan fortsette. Straggler-problemet kan svekke effektiviteten til distribuerte systemer betydelig i situasjoner der en enkelt node som opplever en midlertidig overbelastning kan låse et helt system. I denne avhandlingen studerer vi metoder for å gjøre beregninger av forskjellige typer motstandsdyktige mot slike problemer, og dermed gjøre det mulig for et distribuert system å fortsette til tross for at noen noder ikke svarer i tide. Metodene vi foreslår er skreddersydde for spesielle typer beregninger. Vi foreslår metoder tilpasset distribuert matrise-vektor-multiplikasjon (som er en grunnleggende operasjon i mange typer beregninger), distribuert maskinlæring og distribuert sporing av en tilfeldig prosess (for eksempel det å spore plasseringen til kjøretøy for å unngå kollisjon). De foreslåtte metodene utnytter redundans som enten blir introdusert som en del av metoden, eller som naturlig eksisterer i det underliggende problemet, til å kompensere for manglende delberegninger. For en av de foreslåtte metodene utnytter vi redundans for også å øke effektiviteten til kommunikasjonen mellom noder, og dermed redusere mengden data som må kommuniseres over nettverket. I likhet med straggler-problemet kan slik kommunikasjon begrense effektiviteten i distribuerte systemer betydelig. De foreslåtte metodene gir signifikante forbedringer i ventetid og pålitelighet sammenlignet med tidligere metoder.The number and scale of distributed computing systems being built have increased significantly in recent years. Primarily, that is because: i) our computing needs are increasing at a much higher rate than computers are becoming faster, so we need to use more of them to meet demand, and ii) systems that are fundamentally distributed, e.g., because the components that make them up are geographically distributed, are becoming increasingly prevalent. This paradigm shift is the source of many engineering challenges. Among them is the straggler problem, which is a problem caused by latency variations in distributed systems, where faster nodes are held up by slower ones. The straggler problem can significantly impair the effectiveness of distributed systems—a single node experiencing a transient outage (e.g., due to being overloaded) can lock up an entire system. In this thesis, we consider schemes for making a range of computations resilient against such stragglers, thus allowing a distributed system to proceed in spite of some nodes failing to respond on time. The schemes we propose are tailored for particular computations. We propose schemes designed for distributed matrix-vector multiplication, which is a fundamental operation in many computing applications, distributed machine learning—in the form of a straggler-resilient first-order optimization method—and distributed tracking of a time-varying process (e.g., tracking the location of a set of vehicles for a collision avoidance system). The proposed schemes rely on exploiting redundancy that is either introduced as part of the scheme, or exists naturally in the underlying problem, to compensate for missing results, i.e., they are a form of forward error correction for computations. Further, for one of the proposed schemes we exploit redundancy to also improve the effectiveness of multicasting, thus reducing the amount of data that needs to be communicated over the network. Such inter-node communication, like the straggler problem, can significantly limit the effectiveness of distributed systems. For the schemes we propose, we are able to show significant improvements in latency and reliability compared to previous schemes.Doktorgradsavhandlin

    Coding against stragglers in distributed computation scenarios

    Get PDF
    Data and analytics capabilities have made a leap forward in recent years. The volume of available data has grown exponentially. The huge amount of data needs to be transferred and stored with extremely high reliability. The concept of coded computing , or a distributed computing paradigm that utilizes coding theory to smartly inject and leverage data/computation redundancy into distributed computing systems, mitigates the fundamental performance bottlenecks for running large-scale data analytics. In this dissertation, a distributed computing framework, first for input files distributedly stored on the uplink of a cloud radio access network architecture, is studied. It focuses on that decoding at the cloud takes place via network function virtualization on commercial off-the-shelf servers. In order to mitigate the impact of straggling decoders in this platform, a novel coding strategy is proposed, whereby the cloud re-encodes the received frames via a linear code before distributing them to the decoding processors. Transmission of a single frame is considered first, and upper bounds on the resulting frame unavailability probability as a function of the decoding latency are derived by assuming a binary symmetric channel for uplink communications. Then, the analysis is extended to account for random frame arrival times. In this case, the trade-off between an average decoding latency and the frame error rate is studied for two different queuing policies, whereby the servers carry out per-frame decoding or continuous decoding, respectively. Numerical examples demonstrate that the bounds are useful tools for code design and that coding is instrumental in obtaining a desirable compromise between decoding latency and reliability. In the second part of this dissertation large matrix multiplications are considered which are central to large-scale machine learning applications. These operations are often carried out on a distributed computing platform with a master server and multiple workers in the cloud operating in parallel. For such distributed platforms, it has been recently shown that coding over the input data matrices can reduce the computational delay, yielding a trade-off between recovery threshold, i.e., the number of workers required to recover the matrix product, and communication load, and the total amount of data to be downloaded from the workers. In addition to exact recovery requirements, security and privacy constraints on the data matrices are imposed, and the recovery threshold as a function of the communication load is studied. First, it is assumed that both matrices contain private information and that workers can collude to eavesdrop on the content of these data matrices. For this problem, a novel class of secure codes is introduced, referred to as secure generalized PolyDot codes, that generalize state-of-the-art non-secure codes for matrix multiplication. Secure generalized PolyDot codes allow a flexible trade-off between recovery threshold and communication load for a fixed maximum number of colluding workers while providing perfect secrecy for the two data matrices. Then, a connection between secure matrix multiplication and private information retrieval is studied. It is assumed that one of the data matrices is taken from a public set known to all the workers. In this setup, the identity of the matrix of interest should be kept private from the workers. For this model, a variant of generalized PolyDot codes is presented that can guarantee both secrecy of one matrix and privacy for the identity of the other matrix for the case of no colluding servers
    corecore