3,598 research outputs found

    Variational image regularization with Euler's elastica using a discrete gradient scheme

    Full text link
    This paper concerns an optimization algorithm for unconstrained non-convex problems where the objective function has sparse connections between the unknowns. The algorithm is based on applying a dissipation preserving numerical integrator, the Itoh--Abe discrete gradient scheme, to the gradient flow of an objective function, guaranteeing energy decrease regardless of step size. We introduce the algorithm, prove a convergence rate estimate for non-convex problems with Lipschitz continuous gradients, and show an improved convergence rate if the objective function has sparse connections between unknowns. The algorithm is presented in serial and parallel versions. Numerical tests show its use in Euler's elastica regularized imaging problems and its convergence rate and compare the execution time of the method to that of the iPiano algorithm and the gradient descent and Heavy-ball algorithms

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Covariance Eigenvector Sparsity for Compression and Denoising

    Full text link
    Sparsity in the eigenvectors of signal covariance matrices is exploited in this paper for compression and denoising. Dimensionality reduction (DR) and quantization modules present in many practical compression schemes such as transform codecs, are designed to capitalize on this form of sparsity and achieve improved reconstruction performance compared to existing sparsity-agnostic codecs. Using training data that may be noisy a novel sparsity-aware linear DR scheme is developed to fully exploit sparsity in the covariance eigenvectors and form noise-resilient estimates of the principal covariance eigenbasis. Sparsity is effected via norm-one regularization, and the associated minimization problems are solved using computationally efficient coordinate descent iterations. The resulting eigenspace estimator is shown capable of identifying a subset of the unknown support of the eigenspace basis vectors even when the observation noise covariance matrix is unknown, as long as the noise power is sufficiently low. It is proved that the sparsity-aware estimator is asymptotically normal, and the probability to correctly identify the signal subspace basis support approaches one, as the number of training data grows large. Simulations using synthetic data and images, corroborate that the proposed algorithms achieve improved reconstruction quality relative to alternatives.Comment: IEEE Transcations on Signal Processing, 2012 (to appear

    A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR

    Get PDF
    L1L_1 regularization is used for finding sparse solutions to an underdetermined linear system. As sparse signals are widely expected in remote sensing, this type of regularization scheme and its extensions have been widely employed in many remote sensing problems, such as image fusion, target detection, image super-resolution, and others and have led to promising results. However, solving such sparse reconstruction problems is computationally expensive and has limitations in its practical use. In this paper, we proposed a novel efficient algorithm for solving the complex-valued L1L_1 regularized least squares problem. Taking the high-dimensional tomographic synthetic aperture radar (TomoSAR) as a practical example, we carried out extensive experiments, both with simulation data and real data, to demonstrate that the proposed approach can retain the accuracy of second order methods while dramatically speeding up the processing by one or two orders. Although we have chosen TomoSAR as the example, the proposed method can be generally applied to any spectral estimation problems.Comment: 11 pages, IEEE Transactions on Geoscience and Remote Sensin

    Convolutional Dictionary Learning: Acceleration and Convergence

    Full text link
    Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.Comment: 21 pages, 7 figures, submitted to IEEE Transactions on Image Processin
    • …
    corecore