18 research outputs found

    A sparse semi-blind source identification method and its application to Raman spectroscopy for explosives detection

    Get PDF
    Rapid and reliable detection and identification of unknown chemical substances are critical to homeland security. It is challenging to identify chemical components from a wide range of explosives. There are two key steps involved. One is a non-destructive and informative spectroscopic technique for data acquisition. The other is an associated library of reference features along with a computational method for feature matching and meaningful detection within or beyond the library. In this paper, we develop a new iterative method to identify unknown substances from mixture samples of Raman spectroscopy. In the first step, a constrained least squares method decomposes the data into a sum of linear combination of the known components and a non-negative residual. In the second step, a sparse and convex blind source separation method extracts components geometrically from the residuals. Verification based on the library templates or expert knowledge helps to confirm these components. If necessary, the confirmed meaningful components are fed back into step one to refine the residual and then step two extracts possibly more hidden components. The two steps may be iterated until no more components can be identified. We illustrate the proposed method in processing a set of the so called swept wavelength optical resonant Raman spectroscopy experimental data by a satisfactory blind extraction of a priori unknown chemical explosives from mixture samples. We also test the method on nuclear magnetic resonance (NMR) spectra for chemical compounds identification. © 2013 Published by Elsevier B.V

    Sparsity and adaptivity for the blind separation of partially correlated sources

    Get PDF
    Blind source separation (BSS) is a very popular technique to analyze multichannel data. In this context, the data are modeled as the linear combination of sources to be retrieved. For that purpose, standard BSS methods all rely on some discrimination principle, whether it is statistical independence or morphological diversity, to distinguish between the sources. However, dealing with real-world data reveals that such assumptions are rarely valid in practice: the signals of interest are more likely partially correlated, which generally hampers the performances of standard BSS methods. In this article, we introduce a novel sparsity-enforcing BSS method coined Adaptive Morphological Component Analysis (AMCA), which is designed to retrieve sparse and partially correlated sources. More precisely, it makes profit of an adaptive re-weighting scheme to favor/penalize samples based on their level of correlation. Extensive numerical experiments have been carried out which show that the proposed method is robust to the partial correlation of sources while standard BSS techniques fail. The AMCA algorithm is evaluated in the field of astrophysics for the separation of physical components from microwave data.Comment: submitted to IEEE Transactions on signal processin

    A convex model for non-negative matrix factorization and dimensionality reduction on physical space

    Full text link
    A collaborative convex framework for factoring a data matrix XX into a non-negative product ASAS, with a sparse coefficient matrix SS, is proposed. We restrict the columns of the dictionary matrix AA to coincide with certain columns of the data matrix XX, thereby guaranteeing a physically meaningful dictionary and dimensionality reduction. We use l1,l_{1,\infty} regularization to select the dictionary from the data and show this leads to an exact convex relaxation of l0l_0 in the case of distinct noise free data. We also show how to relax the restriction-to-XX constraint by initializing an alternating minimization approach with the solution of the convex model, obtaining a dictionary close to but not necessarily in XX. We focus on applications of the proposed framework to hyperspectral endmember and abundances identification and also show an application to blind source separation of NMR data.Comment: 14 pages, 9 figures. EE and JX were supported by NSF grants {DMS-0911277}, {PRISM-0948247}, MM by the German Academic Exchange Service (DAAD), SO and MM by NSF grants {DMS-0835863}, {DMS-0914561}, {DMS-0914856} and ONR grant {N00014-08-1119}, and GS was supported by NSF, NGA, ONR, ARO, DARPA, and {NSSEFF.
    corecore