11,974 research outputs found

    Blind source separation using temporal predictability

    Get PDF
    A measure of temporal predictability is defined and used to separate linear mixtures of signals. Given any set of statistically independent source signals, it is conjectured here that a linear mixture of those signals has the following property: the temporal predictability of any signal mixture is less than (or equal to) that of any of its component source signals. It is shown that this property can be used to recover source signals from a set of linear mixtures of those signals by finding an un-mixing matrix that maximizes a measure of temporal predictability for each recovered signal. This matrix is obtained as the solution to a generalized eigenvalue problem; such problems have scaling characteristics of O (N3), where N is the number of signal mixtures. In contrast to independent component analysis, the temporal predictability method requires minimal assumptions regarding the probability density functions of source signals. It is demonstrated that the method can separate signal mixtures in which each mixture is a linear combination of source signals with supergaussian, sub-gaussian, and gaussian probability density functions and on mixtures of voices and music

    Underdetermined blind source separation based on Fuzzy C-Means and Semi-Nonnegative Matrix Factorization

    Get PDF
    Conventional blind source separation is based on over-determined with more sensors than sources but the underdetermined is a challenging case and more convenient to actual situation. Non-negative Matrix Factorization (NMF) has been widely applied to Blind Source Separation (BSS) problems. However, the separation results are sensitive to the initialization of parameters of NMF. Avoiding the subjectivity of choosing parameters, we used the Fuzzy C-Means (FCM) clustering technique to estimate the mixing matrix and to reduce the requirement for sparsity. Also, decreasing the constraints is regarded in this paper by using Semi-NMF. In this paper we propose a new two-step algorithm in order to solve the underdetermined blind source separation. We show how to combine the FCM clustering technique with the gradient-based NMF with the multi-layer technique. The simulation results show that our proposed algorithm can separate the source signals with high signal-to-noise ratio and quite low cost time compared with some algorithms

    Multiscale blind source separation.

    Get PDF
    We provide a new methodology for statistical recovery of single linear mixtures of piecewise constant signals (sources) with unknown mixing weights and change points in a multiscale fashion. We show exact recovery within an epsilon-neighborhood of the mixture when the sources take only values in a known finite alphabet. Based on this we provide the SLAM (Separates Linear Alphabet Mixtures) estimators for the mixing weights and sources. For Gaussian error, we obtain uniform confidence sets and optimal rates (up to log-factors) for all quantities. SLAM is efficiently computed as a nonconvex optimization problem by a dynamic program tailored to the finite alphabet assumption. Its performance is investigated in a simulation study. Finally, it is applied to assign copy-number aberrations from genetic sequencing data to different clones and to estimate their proportions

    Blind Source Separation with Compressively Sensed Linear Mixtures

    Full text link
    This work studies the problem of simultaneously separating and reconstructing signals from compressively sensed linear mixtures. We assume that all source signals share a common sparse representation basis. The approach combines classical Compressive Sensing (CS) theory with a linear mixing model. It allows the mixtures to be sampled independently of each other. If samples are acquired in the time domain, this means that the sensors need not be synchronized. Since Blind Source Separation (BSS) from a linear mixture is only possible up to permutation and scaling, factoring out these ambiguities leads to a minimization problem on the so-called oblique manifold. We develop a geometric conjugate subgradient method that scales to large systems for solving the problem. Numerical results demonstrate the promising performance of the proposed algorithm compared to several state of the art methods.Comment: 9 pages, 2 figure

    Performing Nonlinear Blind Source Separation with Signal Invariants

    Full text link
    Given a time series of multicomponent measurements x(t), the usual objective of nonlinear blind source separation (BSS) is to find a "source" time series s(t), comprised of statistically independent combinations of the measured components. In this paper, the source time series is required to have a density function in (s,ds/dt)-space that is equal to the product of density functions of individual components. This formulation of the BSS problem has a solution that is unique, up to permutations and component-wise transformations. Separability is shown to impose constraints on certain locally invariant (scalar) functions of x, which are derived from local higher-order correlations of the data's velocity dx/dt. The data are separable if and only if they satisfy these constraints, and, if the constraints are satisfied, the sources can be explicitly constructed from the data. The method is illustrated by using it to separate two speech-like sounds recorded with a single microphone.Comment: 8 pages, 3 figure

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks
    • …
    corecore