6 research outputs found

    Watermarking security part II: practice

    Get PDF
    This second part focuses on estimation of secret parameters of some practical watermarking techniques. The first part reveals some theoretical bounds of information leakage about secret keys from observations. However, as usual in information theory, nothing has been said about practical algorithms which pirates use in real life application. Whereas Part One deals with the necessary number of observations to disclose secret keys (see definitions of security levels), this part focuses on the complexity or the computing power of practical estimators. Again, we are inspired here by the work of Shannon as in his famous article [15], he has already made a clear cut between the unicity distance and the work of opponents' algorithm. Our experimental work also illustrates how Blind Source Separation (especially Independent Component Analysis) algorithms help the opponent exploiting this information leakage to disclose the secret carriers in the spread spectrum case. Simulations assess the security levels theoretically derived in Part One

    Watermarking security: theory and practice

    Get PDF
    This article proposes a theory of watermarking security based on a cryptanalysis point of view. The main idea is that information about the secret key leaks from the observations, for instance watermarked pieces of content, available to the opponent. Tools from information theory (Shannon's mutual information and Fisher's information matrix) can measure this leakage of information. The security level is then defined as the number of observations the attacker needs to successfully estimate the secret key. This theory is applied to two common watermarking methods: the substitutive scheme and the spread spectrum based techniques. Their security levels are calculated against three kinds of attack. The experimental work illustrates how Blind Source Separation (especially Independent Component Analysis) algorithms help the opponent exploiting this information leakage to disclose the secret carriers in the spread spectrum case. Simulations assess the security levels derived in the theoretical part of the article

    Blind separation of BPSK sources with residual carriers

    No full text
    corecore