12 research outputs found

    A survey on sensor calibration in air pollution monitoring deployments

    Get PDF

    On the choice of reference in sensor offset calibration

    Full text link
    Sensor calibration is an indispensable feature in any networked cyberphysical system. In this paper we consider a sensor network plagued with offset errors measuring a rank-1 signal subspace where each sensor collects measurements under additive zero-mean Gaussian noise. Under varying assumptions on the underlying noise covariance, we investigate the effect of using an arbitrary reference for estimating the sensor offsets in contrast to the mean of all the unknown sensor offsets as a reference. We show that the mean reference yields an efficient estimator in the mean square error sense. If the underlying noise is homoscedastic in nature then the mean reference yields a factor 2 improvement on the variance as compared any arbitrarily chosen reference within the network. Furthermore when the underlying noise is independent, but not identical, we derive an expression for the improvement offered by the mean reference. We demonstrate our results using the problem of clock synchronization in sensor networks, and present directions for future work.Comment: In submissio

    Using Ensemble Learning Techniques to Solve the Blind Drift Calibration Problem

    Get PDF
    Large sets of sensors deployed in nearly every practical environment are prone to drifting out of calibration. This drift can be sensor-based, with one or several sensors falling out of calibration, or system-wide, with changes to the physical system causing sensor-reading issues. Recalibrating sensors in either case can be both time and cost prohibitive. Ideally, some technique could be employed between the sensors and the final reading that recovers the drift-free sensor readings. This paper covers the employment of two ensemble learning techniques — stacking and bootstrap aggregation (or bagging) — to recover drift-free sensor readings from a suite of sensors. The ensembles are composed of two different deep learning network types: Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks. Standalone LSTM and GRU networks were also constructed, trained, and optimized to create a baseline against which the ensemble methods could be compared. The metrics used to compare the various models were Mean Squared Error (MSE), time and computing resources required, as well as a comparison of output graph shape compared to the drift-free sensor readings. Both the stacking and bagging ensembles outperformed the standalone models (LSTM and GRU). The stacked ensemble achieved a lower MSE than the both the LSTM and GRU models and a similar overall fit compared to the standalone models. This was achieved using less time to train the ensemble than either of the standalone models. The bagging ensemble achieved an MSE lower than both standalone models by a factor of nearly 100 and achieved a much tighter fit when compared to the standalone models, though did require nearly 30 times the number of CPU seconds to train. In both instances, the ensemble learning methods were determined to outperform the standalone models

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore