2,350 research outputs found

    Semiblind Channel Estimation and Data Detection for OFDM Systems With Optimal Pilot Design

    Get PDF
    This paper considers semiblind channel estimation and data detection for orthogonal frequency-division multiplexing (OFDM) over frequency-selective fading channels. We show that the samples of an OFDM symbol are jointly complex Gaussian distributed, where the mean and covariance are determined by the locations and values of fixed pilot symbols. We exploit this distribution to derive a novel maximum-likelihood (ML) semiblind gradient-descent channel estimator. By exploiting the channel impulse response (CIR) statistics, we also derive a semiblind data detector for both Rayleigh and Ricean fading channels. Furthermore, we develop an enhanced data detector, which uses the estimator error statistics to mitigate the effect of channel estimation errors. Efficient implementation of both the semiblind and the improved data detectors is provided via sphere decoding and nulling-canceling detection. We also derive the Cramér-Rao bound (CRB) and design optimal pilots by minimizing the CRB. Our proposed channel estimator and data detector exhibit high bandwidth efficiency (requiring only a few pilot symbols), achieve the CRB, and also nearly reach the performance of an ideal reference receiver

    Group-blind detection with very large antenna arrays in the presence of pilot contamination

    Get PDF
    Massive MIMO is, in general, severely affected by pilot contamination. As opposed to traditional detectors, we propose a group-blind detector that takes into account the presence of pilot contamination. While sticking to the traditional structure of the training phase, where orthogonal pilot sequences are reused, we use the excess antennas at each base station to partially remove interference during the uplink data transmission phase. We analytically derive the asymptotic SINR achievable with group-blind detection, and confirm our findings by simulations. We show, in particular, that in an interference-limited scenario with one dominant interfering cell, the SINR can be doubled compared to non-group-blind detection.Comment: 5 pages, 4 figure

    Design of Block Transceivers with Decision Feedback Detection

    Full text link
    This paper presents a method for jointly designing the transmitter-receiver pair in a block-by-block communication system that employs (intra-block) decision feedback detection. We provide closed-form expressions for transmitter-receiver pairs that simultaneously minimize the arithmetic mean squared error (MSE) at the decision point (assuming perfect feedback), the geometric MSE, and the bit error rate of a uniformly bit-loaded system at moderate-to-high signal-to-noise ratios. Separate expressions apply for the ``zero-forcing'' and ``minimum MSE'' (MMSE) decision feedback structures. In the MMSE case, the proposed design also maximizes the Gaussian mutual information and suggests that one can approach the capacity of the block transmission system using (independent instances of) the same (Gaussian) code for each element of the block. Our simulation studies indicate that the proposed transceivers perform significantly better than standard transceivers, and that they retain their performance advantages in the presence of error propagation.Comment: 14 pages, 8 figures, to appear in the IEEE Transactions on Signal Processin

    Structured least squares problems and robust estimators

    Get PDF
    Cataloged from PDF version of article.A novel approach is proposed to provide robust and accurate estimates for linear regression problems when both the measurement vector and the coefficient matrix are structured and subject to errors or uncertainty. A new analytic formulation is developed in terms of the gradient flow of the residual norm to analyze and provide estimates to the regression. The presented analysis enables us to establish theoretical performance guarantees to compare with existing methods and also offers a criterion to choose the regularization parameter autonomously. Theoretical results and simulations in applications such as blind identification, multiple frequency estimation and deconvolution show that the proposed technique outperforms alternative methods in mean-squared error for a significant range of signal-to-noise ratio values
    • …
    corecore