845 research outputs found

    Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue

    Full text link
    Histological staining is a vital step used to diagnose various diseases and has been used for more than a century to provide contrast to tissue sections, rendering the tissue constituents visible for microscopic analysis by medical experts. However, this process is time-consuming, labor-intensive, expensive and destructive to the specimen. Recently, the ability to virtually-stain unlabeled tissue sections, entirely avoiding the histochemical staining step, has been demonstrated using tissue-stain specific deep neural networks. Here, we present a new deep learning-based framework which generates virtually-stained images using label-free tissue, where different stains are merged following a micro-structure map defined by the user. This approach uses a single deep neural network that receives two different sources of information at its input: (1) autofluorescence images of the label-free tissue sample, and (2) a digital staining matrix which represents the desired microscopic map of different stains to be virtually generated at the same tissue section. This digital staining matrix is also used to virtually blend existing stains, digitally synthesizing new histological stains. We trained and blindly tested this virtual-staining network using unlabeled kidney tissue sections to generate micro-structured combinations of Hematoxylin and Eosin (H&E), Jones silver stain, and Masson's Trichrome stain. Using a single network, this approach multiplexes virtual staining of label-free tissue with multiple types of stains and paves the way for synthesizing new digital histological stains that can be created on the same tissue cross-section, which is currently not feasible with standard histochemical staining methods.Comment: 19 pages, 5 figures, 2 table

    Automated detection of pain levels using deep feature extraction from shutter blinds‑based dynamic‑sized horizontal patches with facial images

    Get PDF
    Pain intensity classification using facial images is a challenging problem in computer vision research. This work proposed a patch and transfer learning-based model to classify various pain intensities using facial images. The input facial images were segmented into dynamic-sized horizontal patches or “shutter blinds”. A lightweight deep network DarkNet19 pre-trained on ImageNet1K was used to generate deep features from the shutter blinds and the undivided resized segmented input facial image. The most discriminative features were selected from these deep features using iterative neighborhood component analysis, which were then fed to a standard shallow fine k-nearest neighbor classifier for classification using tenfold cross-validation. The proposed shutter blinds-based model was trained and tested on datasets derived from two public databases—University of Northern British Columbia-McMaster Shoulder Pain Expression Archive Database and Denver Intensity of Spontaneous Facial Action Database—which both comprised four pain intensity classes that had been labeled by human experts using validated facial action coding system methodology. Our shutter blinds-based classification model attained more than 95% overall accuracy rates on both datasets. The excellent performance suggests that the automated pain intensity classification model can be deployed to assist doctors in the non-verbal detection of pain using facial images in various situations (e.g., non-communicative patients or during surgery). This system can facilitate timely detection and management of pain

    A Comprehensive Review of Deep Learning-based Single Image Super-resolution

    Get PDF
    Image super-resolution (SR) is one of the vital image processing methods that improve the resolution of an image in the field of computer vision. In the last two decades, significant progress has been made in the field of super-resolution, especially by utilizing deep learning methods. This survey is an effort to provide a detailed survey of recent progress in single-image super-resolution in the perspective of deep learning while also informing about the initial classical methods used for image super-resolution. The survey classifies the image SR methods into four categories, i.e., classical methods, supervised learning-based methods, unsupervised learning-based methods, and domain-specific SR methods. We also introduce the problem of SR to provide intuition about image quality metrics, available reference datasets, and SR challenges. Deep learning-based approaches of SR are evaluated using a reference dataset. Some of the reviewed state-of-the-art image SR methods include the enhanced deep SR network (EDSR), cycle-in-cycle GAN (CinCGAN), multiscale residual network (MSRN), meta residual dense network (Meta-RDN), recurrent back-projection network (RBPN), second-order attention network (SAN), SR feedback network (SRFBN) and the wavelet-based residual attention network (WRAN). Finally, this survey is concluded with future directions and trends in SR and open problems in SR to be addressed by the researchers.Comment: 56 Pages, 11 Figures, 5 Table

    Denoising OCT Images Using Steered Mixture of Experts with Multi-Model Inference

    Full text link
    In Optical Coherence Tomography (OCT), speckle noise significantly hampers image quality, affecting diagnostic accuracy. Current methods, including traditional filtering and deep learning techniques, have limitations in noise reduction and detail preservation. Addressing these challenges, this study introduces a novel denoising algorithm, Block-Matching Steered-Mixture of Experts with Multi-Model Inference and Autoencoder (BM-SMoE-AE). This method combines block-matched implementation of the SMoE algorithm with an enhanced autoencoder architecture, offering efficient speckle noise reduction while retaining critical image details. Our method stands out by providing improved edge definition and reduced processing time. Comparative analysis with existing denoising techniques demonstrates the superior performance of BM-SMoE-AE in maintaining image integrity and enhancing OCT image usability for medical diagnostics.Comment: This submission contains 10 pages and 4 figures. It was presented at the 2024 SPIE Photonics West, held in San Francisco. The paper details advancements in photonics applications related to healthcare and includes supplementary material with additional datasets for revie
    • …
    corecore