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Streaming digital video content providers such as YouTube, Amazon,

Hulu, and Netflix collaborate with production teams to obtain new and old

video content. These collaborations lead to an accumulation of video sources,

some of which might contain unacceptable visual artifacts. Artifacts may

inadvertently enter the video master at any point in the production pipeline,

due to any of a number of equipment and user failures. Unfortunately, these

artifacts are difficult to detect since no pristine reference exists for comparison.

As of now, few automated tools exist that can effectively capture the most

common forms of these artifacts. This work studies no-reference video source

inspection for generalized artifact detection and subjective quality prediction,

which will ultimate inform decisions related to acquisition of new content.

Automatically identifying the locations and severities of video artifacts

is a difficult problem. We have developed a general method for detecting local
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artifacts by learning differences in the statistics between distorted and pristine

video frames. Our model, which we call the Video Impairment Mapper (VID-

MAP), produces a full resolution map of artifact detection probabilities based

on comparisons of excitatory and inhibatory convolutional responses. Vali-

dation on a large database shows that our method outperforms the previous

state-of-the-art of even distortion-specific detectors.

A variety of powerful picture quality predictors are available that rely on

neuro-statistical models of distortion perception. We extend these principles

to video source inspection, by coupling spatial divisive normalization with a

series of filterbanks tuned for artifact detection, implemented using a common

convolutional framework. We developed the Video Impairment Detection by

SParse Error CapTure (VIDSPECT) model, which leverages discriminative

sparse dictionaries that are tuned to detect specific artifacts. VIDSPECT

is simple, highly generalizable, and yields better accuracy than competing

methods.

To evaluate the perceived quality of video sources containing arti-

facts, we built a new digital video database, called the LIVE Video Masters

Database, which contains 384 videos affected by the types of artifacts encoun-

tered in otherwise pristine digital video sources. We find that VIDSPECT

delivers top performance on this database for most artifacts tested, and com-

petitive performance otherwise, using the same basic architecture in all cases.
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Chapter 1

Introduction

1.1 Problem

Over the past decade, video streaming companies such as such as Net-

flix, Hulu, and YouTube have been at the forefront of new content. Netflix

has been increasing its production of original content, even outpacing the pro-

duction of existing content giant HBO [9]. With the advent of on-demand

streaming, consumers are capable of choosing from a variety of services. Con-

sumers can subscribe to YouTube Red, an increasingly popular platform for

independent content producers [21], which has an increasingly large number

of channels. As of 2017, over one billion hours of YouTube video are watched

worldwide each day [18]. These same consumers can also sign up for Amazon

Prime Video, Netflix, Hulu, HBO Now, which all promise premium streaming

video content services. Keeping pace with increased consumer demand, the

aforementioned streaming companies have an ever-increasing demand for new

content.

As streaming companies expand, they acquire a diverse and growing

consumer base [119, 51, 63] based on their selection of content. Such content

is comprised of productions both new and old. Netflix began releasing original

1



content in 2013 [1], and released a total of 1000 hours of original content in

2017 [11], as summarized by the trend depicted in Fig. 1.1. This trend con-

tinues into 2018 with the addition of 80 original films [126]. Other streaming

service companies, such as Hulu and Amazon Prime Video, have increased

their video production to maintain a competitive edge [13]. Disney has plans

to entering the streaming business [95] in 2019. A haven for independent con-

tent producers, YouTube reports that videos are uploaded at the rate of 400

hours per minute [19]. This upload rate has been steadily increasing since

2007, when just 6 hours of video were uploaded per minute [20]. This trend is

shown in Fig. 1.2. With increased on-demand video streaming services, more

content is being made to fulfill consumer demand and maintain a competitive

edge.

Demand necessitates an increase in content production. With such an

increase, maintaining excellent video quality becomes more laborious. Videos

cannot be manually inspected with fine granularity, and even a coarse inspec-

tion becomes a major burden for any inspection team. A set of automated

quality assessment tools that can ensure that source video quality standards

are maintained would be an invaluable asset as content collections grow.

1.2 Common Artifacts Observed in Source Videos

Ideally, video content is sourced directly from professional production

studios, who try to guarantee that videos are generally free of distortions.

This sourced content takes the form of both new and old productions, for

2
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Figure 1.1: Hours of original content added each year to Netflix collection
[1, 11, 14].
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Figure 1.2: Hours of video uploaded to YouTube per minute measured each
year [19, 20].
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Table 1.1: List of Artifacts found in Source Videos.

Combing Upscaling Video hits
Aliasing/"Jaggies" Dropped frames Banding/Quantization

Compression Non-native aspect ratio

which there exists a “golden” source video. Unfortunately, visual impairments

can still be introduced due to human and systematic errors. The original

video sources of older contents are sometimes lost, requiring a compromise

between availability and quality of content. Ultimately, the highest possible

source quality is ingested by streaming companies and delivered in a variety

of formats, depending on client requirements.

In some cases, these source videos contain artifacts that, if accepted

into the encoding pipeline, would yield video encodes with poor quality being

distributed to consumers. These artifacts may appear as a result of how a

content has been produced, stored, and/or manipulated. Simply knowing that

a distortion is present opens a path to remediation. Common artifacts that

get introduced into the video source during production and storage include

upscaling, video hits, frame drops, banding (false contours from quantization),

incorrect aspect ratio, among many others [8]. By detecting these artifacts and

measuring their perceptibility, sources can be considered on a case-by-case

basis, based on the degree to which they might be distorted.

Typical artifacts that may occur in source videos are provided in Table

1.1. Combing / Blending occurs most often in sources derived from DVDs

and from videos prepared for broadcast television. When the framerate is in-

4



creased as in these scenarios, additional frames are introduced by interleaving

or blending adjacent video frames, causing visible distortion on modern pro-

gressive displays. Upscaling may occur when spatially resizing a video source

to match a particular larger frame size, encoding these interpolated pixels into

the source. Video hits corrupt random blocks within one or more consecutive

video frames, commonly caused by packet loss. Aliasing artifacts (“jaggies”)

appear after spatially downscaling videos without using a low-pass anti-aliasing

filter, causing high-frequencies to interfere with low frequencies. Jaggies can

also appear by upscaling using nearest neighbor interpolation. Banding, also

known as “False Contouring,” appears when the pixel values in a video frame

are quantized, usually through compression, creating visible contours along

smooth gradients. Non-native aspect ratio refers to the case when a frame is

rescaled too far either vertically or horizontally, causing objects in a scene to

distort in shape. Dropped frames artifacts are simply frames that are miss-

ing, perhaps from recording a network stream where frames were dropped to

maintain a constant frame rate. Lastly, moderate to severe compression may

be present in source videos, resulting from a lengthy re-transcoding process or

incorrect selection of encoding parameters when the source is being produced.

This list is not all-inclusive, but it does represent the types of distortions that

are important and currently difficult to detect. A more comprehensive list is

provided in Netflix’s backlot pages [8].

A subset of these artifacts are shown in Fig. 4.2. Aliasing/jaggies

can range in appearance from subtle to dramatic alteration of content, as
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1.3: Examples of impairments that occur in source videos ingested
by the streaming video industry. (a) Aliasing/jaggies; (b) MPEG2 hits; (c)
H.264 hits; (d) Quantization; (e) False contours/banding; (f) Combing; (g)
Upscaling; (h) Compression.

exemplified by Fig. (a). MPEG2 corruption produces small blocky artifacts,

which can manifest as changes in the transform coefficient magnitudes, or

in horizontal striping, as seen in Fig. (b). H.264 corruption rarely leads to
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horizontal striping, but often causes blocky impairments, as shown in Fig. (c).

We regard quantization as a separate distortion than banding, which can arise

in a variety of ways, and can manifest differently, as can be seen by comparing

Figs. (d) and (e). Interlacing leads to “combing” artifacts, as depicted in Fig.

(f). Upscaling is an often subtle artifact, which presents as a loss of detail as in

the “nearest neighbor” upscaling shown in Fig. (g). Lastly, H.264 compression,

which increases blockiness and reduces details, is depicted in Fig. (h).

It becomes clear that models developed need to be “No-Reference,”

meaning predictions are made with no knowledge of the original pristine video.

Finding top-performing no-reference detectors for each of these artifacts is the

primary objective of the source inspection problem. Once these detectors are

identified, they can be leveraged to predict artifact severity as perceived by

the viewer. Within the types of artifacts to be detected, some artifacts are less

humanly perceptible than others, making study of subjective artifact severity

worthwhile when curating large video collections. Automated no-reference

inspection tools can assist and ideally replace manual video source inspection.

1.3 Contributions

An open question is: how do these artifacts impact the quality of ex-

perience of the video? Digital video collection curators perhaps care about

different aspects, but one important trait in any domain is the overall ap-

parent quality of each source video. Streaming companies such as Netflix,

YouTube, and Hulu maintain such large collections that manual assessment
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of each video’s quality is not practical. A first step in assessing that quality

is to determine if there are any dominating distortions that can seriously im-

pact a user’s experience. Once the dominating distortions are determined, the

degree of impact of that distortion on user experience can then be predicted.

Detecting these distortions and subsequently assessing quality are tasks that

should be automated, given the vast and increasing volume of purveyed video

content.

In this age of deep neural networks, one may wonder whether large-

scale, data-driven machine learning methods might be used. However, there

are several problems with this. First, large amounts of perceptually labeled

video data are not available for any kinds of distortions [148]. Second, even

for still pictures, deep learning methods for quality assessment are developing

slowly, impeded by a lack of subjective data at scale [60]. Thirdly, deep learn-

ing on video for any tasks is itself a nascent field, with serious solutions still

several years away [57]. Fourthly, while deep networks can produce excellent

results on databases, they require considerable tuning, and can produce un-

expected results, which is not acceptable when streaming to tens of millions

of viewers [33, 91]. Lastly, content providers may inspect hundreds of video

masters every day, hence highly efficient, lightweight solutions are needed.

Toward this goal of automated artifact detection, we present a gener-

alized system for detecting artifacts called the Video Impairment Detection

MAP (VIDMAP). For a given source video, this system can detect and lo-

calize artifacts that may be present in a video. Only the data itself and a
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global label is used for training VIDMAP, and the model learns to find local

evidence of an artifact based on the global label. The output of VIDMAP is

a probability map of the distortions detected. This system and model will be

further described in Chapter 3.

We release the LIVE Video Masters database, which can be used to

assess performance of source inspection frameworks. It contains 384 total

videos, each based on a set of source videos collected from the Netflix collection

and various public domain archives. A total of 30 subjective opinions were

collected per video. The subjective assessment and data analysis will be further

described in Chapter 4.

Lastly, we also present Video Impairment Detection by SParse Error

CapTure (VIDSPECT) to address both the video artifact detection and qual-

ity prediction tasks. VIDSPECT is a general two-stage artifact assessment

framework that exploits sparse coding principles to learn a discriminative dic-

tionary that can be used for detecting artifacts. These filters that are tuned

for detection are shown to be effective when used for the subsequent video

quality assessment task. This system and model will be further described in

Chapter 5.
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Chapter 2

Background

2.1 Image and Video Quality Assessment (I/VQA)

The word “quality” is touted as a measure of excellence, but there are

several distinct meanings important to image and video processing. For in-

stance, “perceptual quality” refers to the subjective quality of the stimuli as

perceived by the observer. In contrast, “aesthetic quality” refers to the ap-

preciation of beauty and possibly the artistic quality of the stimuli. Yet still,

“objective quality” is the quality of the stimuli without observer opinion. Given

the wide widespread adoption of images and videos, the human observer is the

most important receiver of that content to consider. Perceptual quality cap-

tures this most important aspect, and the most successful perceptual quality

algorithms model the same statistics within the human visual system.

The top Image Quality Assessment (IQA) and Video Quality Assess-

ment (VQA) models can be assembled into three major categories. Full-

Reference (FR) algorithms compare the distorted signal directly with the

pristine reference signal to obtain the quality measurement. MOtion-based

Video Integrity Evaluation (MOVIE) [112] is the leading FR VQA method,

which uses a Gabor filterbank to compare signal responses between reference
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and distorted videos. The Multi-scale Structural SIMilarity (MS-SSIM) index

[140] is one of several top performing FR IQA methods, which computes the

similarity between source and reference images over multiple scales. Reduced-

Reference (RR) algorithms compare a distorted video to some information re-

garding the original pristine video such as a imposed watermark or measured

signal. The leading RR VQA and IQA methods are the Spatio-Temporal

Reduced Reference Entropic Differences (ST-RRED) [125] and the Reduced

Reference Entropic Differences (RRED) [124], which both measure entropy

differences between reference and distorted signals after wavelet decomposi-

tion. No-Reference (NR) algorithms work using only the distorted video which

may not even have a pristine original version, such as the case with source

videos. The top NR VQA algorithm is Video BLind Image Integrity Notator

using DCT-Statistics (Video BLIINDS) [108], which uses motion regularities

and natural scene statistics as its foundation. Some top IQA no-reference

algorithms include the Blind/Referenceless Image Spatial Quality Evaluator

(BRISQUE) [82] and the Natural Image Quality Evaulator (NIQE) [81], which

make different measurements on divisively normalized image coefficients.

The top general NR quality models utilize perceptually relevant Natu-

ral Scene Statistics (NSS) models, which describe statistical regularities aris-

ing in images and videos of real-world scenes, to predict perceptual quality.

To predict the quality score of an image or video, NSS-based algorithms use

‘quality-aware’ features that capture statistical departures from pristine im-

ages and videos. These departures are defined as distortions. Quality-aware
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features are designed to be sensitive to a large or even unknown set of distor-

tions, such as blur, noise, and blocking. Finally, these quality-aware features

correlate well with human opinions of quality, allowing them to accurately

predict quality when trained and evaluated using various image databases.

2.2 Real World No-Reference I/VQA Performance

The performance of IQA NR methods is good for databases with arti-

ficially generated artifacts, especially when images are singly distorted. Popu-

lar benchmark databases such as the LIVE Image Quality Database [117], the

TID2008 Database [99], the TID2013 Database [98], and the CSIQ Database

[64] each offer a set of pristine images and corruptions of those pristine im-

ages, where the images are affected by small number of distortions. However,

performance degrades significantly when multiple distortions are present in an

image [47]. This limitation is overcome with deeper feature representations,

that can learn how these distortions interact to produce an expected quality

score.

The CID2013 Database [135] and Live Challenge Database [48] were

constructed to evaluate real-world image quality, which involve images that

contain many types of distortions to varying degrees. The latest predictors that

perform well on these databases capture deeper statistics, by incorporating

local luminance, local contrast, and local structure information [67] [47].

Automated solutions are being developed and explored to meet the

needs of video curators, who are concerned with visual artifacts and overall
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quality. The open source quality control tool for video preservation, VCQ,

enables automated objective analysis of digitized video through multiple in-

dicators, the results of which require interpretation by the user [131]. These

indicators indicate possible abnormalities found in the input video signal, but

lack the deeper statistics that artifact-based analysis requires.

2.3 Specialized Source Artifact Detectors

Previous work in source artifact detection has largely involved devel-

oping specialized distortion-specific algorithms. We will discuss these existing

specialized detection methods for upscaling, combing, aliasing, false contours,

dropped frames, video hits, and incorrect aspect ratio.

2.3.1 Upscaling

Upscaling artifacts often appear in videos, hence detecting them is of

importance. Many video contents may be upscaled during post-production,

transcoding, or to fit larger formats. Upscaling artifacts are produced by

imputing missing information from surrounding pixel data. This data impu-

tation happens, for example, during color interpolation (demosaicking) and

when adapting images for higher resolution displays. Since data imputation

does not add information, and usually involves interpolation, upscaled images

tend to be smoother than their originals, with reduced high-frequency energy.

Upscaling a patch effectively results in a lower dimensional data in a higher

dimensional space.
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Forensic scientists are interested in identifying doctored images and

video [54]. To be able to place more confidence in image and video evidence,

all traces of tampering should be detected. Often images are tampered with us-

ing upscale-crop-move manipulations. Among the many types of image/video

artifacts that occur in doctored videos are those that arise from upscaling

when either replacing or moving objects, or when placing one image within

another. This nearly always leads to re-scaling the image or object.

Upscaling prediction algorithms exist for (1) finding image-based ev-

idence of upscaling, (2) predicting the native resolution of an original im-

age/video, (3) classifying the upscaling method by type, and (4) quantifying

perceptible loss of quality. Most existing methods do not fully cover this prob-

lem space, instead being designed to solve (1) or (2).

For problem type (1), typical approaches include analyzing spatial co-

variance or using radon transform analysis [76] to design upscaling detectors.

Periodicities introduced by common upscaling techniques have been deeply

studied [46, 101, 107, 100, 134, 61]. For problem type (3), many frequency-

based approaches have been developed that derive a closed form prediction,

but more general energy falloff-based models have benefited from machine

learning to better characterize differences amongst upscaling techniques [56]

[44]. However, both the falloff observed in the frequency spectrum and the

periodicities introduced by upscaling can be reduced intentionally, to fool ex-

isting models [62], or by standard compression techniques. Methods that rely

upon the Discrete Fourier Transform (DFT) typically lose prediction power
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when handling upscaling ratios outside the range of 1x-2x [44] [96].

2.3.2 Combing

Legacy video content that was originally intended for viewing on older

televisions often was often encoded in an interlaced mode, which provided both

a way to modify the frame rate for the end user, and a means of achieving

further compression of the video signal by exploiting the persistence of CRT

displays. During frame rate conversion, interlacing can be used to interpolate

frames by copying even rows from a previous frame, and odd rows from a next

frame, then combining the even/odd fields. To achieving compression, only

half of the video information is required at a given frame rate, since only the

even or the odd rows of the current frame need be delivered. Methods for

interlace detection involve comparing interpolated row values with previous

row values, to find evidence that a subset of previous row values were used

[5, 28].

Another type of artifact that afflicts videos is combing, which occurs

when videos are represented in an interlaced form, where whole video frames

are sequenced as “top-bottom” or “even-odd” frame pairs, each having half

the rows (and requiring half the bandwidths). Since the even-odd frame pairs

are slightly temporally displaced in time, then when they are reconstituted

into whole (progressive) frames, combing artifacts may occur, particularly in

regions where the video contains motion.

For combing (interlacing artifact) detection, existing detectors have
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utilized top-field-first (TFF) and bottom-field-first (BFF) information across

several video frames to determine whether combing artifacts are present. For

example, the interlace detector within FFmpeg [5] computes the ratio of TFF

to BFF, and when this ratio exceeds a specified range, the three frames are

flagged as interlaced. The AVISynth detector [4] uses the same ratio, but only

analyzes frames where motion is detected. Baylon [28] introduced a zipper fil-

ter, which was used to detect the difference between TFF and BFF by looking

at “zipper points,” which are moving edges between frames that strongly ex-

hibit the combing artifact. Each of these models requires more than one frame

to affect detection, despite the fact that the combing artifact is present in a

single frame. Slight modifications to these detectors are provided in [53, 97, 58].

2.3.3 Aliasing

A digital video may also be downscaled improperly, leading to visi-

ble aliasing artifacts. The frequency content of higher frequency bands must

be appropriately reduced, otherwise it will wrap around onto lower frequency

bands after downsampling, causing visible distortions. The visible manifesta-

tions of aliasing can be “jaggies,” oscillating moire, or other content-dependent

patterns, which can be visually annoying. Aliasing detection methods include

Reibman and Suthaharan [103], who developed a Signal-to-Aliasing Ratio,

which measures the components of image aliasing at points of high contrast,

by computing the ratio between the estimated aliasing energy, and the image

energy with the estimated aliasing energy removed. Coulange and Moisan
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[40] developed an a-contrario model, by measuring suspicious co-localization

of Fourier coefficients to build up evidence of aliasing. This model requires

knowledge of the original resolution of the image in order to determine the co-

localization. Lastly, Eunjung et. al. [34] developed a detection method that

combines the Discrete Wavelet Transform (DWT) with the Discrete Fourier

Transform (DFT) to filter a potentially aliased image, then differences the

filtered result with the original image to provide a measure of aliasing.

2.3.4 "False Contours" and Banding

Video content can be compressed at any point in the production pipeline,

with loss occurring during quantization in a transformed (e.g. DCT) domain.

This truncation of bit depth can result in banding, producing the appearance

of “false contours,” or lines that appear in place of a smooth gradient. Ahn and

Kim [25] devised a block-based method for detecting flat regions that appear

near banding contours, by making local entropy and contrast measurements

on each block. Luo et. al. [75] explored the effect of quantization in different

transform domains, and found that the ratio of densities in the distribution of

non-DC components was sensitive to quantization.

2.3.5 Dropped Frames

When video content is delivered over a network, entire frames might be

lost, resulting in dropped frames, i.e. the loss of one or more frames. Frame

drops are most obvious when motion is present in a video, and produce the
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appearance of unnatural staggering of moving objects [141]. Upadhyay and

Singh’s method for detecting frame drops [132] extracts spatial entropy and

content variation features from binarized frame differences, then uses them

to predict frame drops using a Support Vector Machine (SVM). The earlier

method in [144] applies thresholds on frame differences, then detects frame

drops when the threshold is exceeded.

2.3.6 Video Hits

When a digital video is transmitted, transferred, or stored, it might be

re-encoded multiple times, often at relatively low levels of compression. Un-

fortunately compression artifacts can noticeably compound, and encoding and

video packet errors can occur before, during, and after transmission. Also,

digital tapes, which are commonly used to transport video content, might

introduce corruption, depending on the environmental conditions. These cor-

ruptions, commonly called video hits, may appear as single corrupted blocks

or as groups of corrupted blocks that persist for several seconds. Methods for

detecting packet loss, both with and without concealment, usually operate by

detecting sharp edges near block boundaries, whose locations are defined by

the coding standard that was used [128, 115]. These methods only work if the

structural information loss can be modeled. Winter et. al. [142] acknowledged

that this structure is often unknown, especially on analog recordings. They

provided an alternative row change measure and an edge ratio measure, that

when used in conjunction, define a video hit detection mechanism.
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2.3.7 Incorrect Aspect Ratio

Some video sources are packaged with aspect ratio metadata, that if ig-

nored or unsupported by the decoder, will result in improper encodes. This will

cause the final aspect ratio to be incorrect. Common aspect ratios observed

at ingest are 16:9 high-definition sources, and older 4:3 standard-definition

sources. Detecting incorrect aspect ratios has been attempted using convolu-

tional neural networks [109] for the purpose of correcting it.

2.4 Sparsity and Natural Scene Statistics

Toward the goal of automation, we leverage natural scene statistics

(NSS) models going forward. NSS models seek to capture the regularities that

exist in the statistics of images of the physical world. NSS tend to be dis-

rupted by visual artifacts, making them powerful tools for video inspection.

Generalized artifact detection is related to anomaly detection and saliency. If

the data distribution of a video signal is properly described, then anomalous

patterns produce deviations from the NSS model [30] that can be identified.

A variety of state-of-the-art picture quality prediction models [31] [86] such as

BRISQUE [82], NIQE [81], and FRIQUEE [47] model the statistical regular-

ities of natural images and videos, then assess distortions that disturb these

regularities. More recently, general no-reference video quality prediction mod-

els have been developed, including Video BLIINDS [108], VIIDEO [80], Li et.

al. [69], and Shabeer et. al. [114].
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Chapter 3

VIDMAP: Video Impairment Detection MAP

For generalized artifact detection, we present the Video Impairment

Detection MAPper (VIDMAP), which can both detect and localize most of

the artifacts described in Chapter 1, without need for a reference video. We

evaluate detection performance of VIDMAP on several artifact detection tasks

and compare that performance against competing methods. We show that

VIDMAP is a state-of-the-art detector of most artifact types, and is highly

competitive otherwise, even using the same network architecture across all

distortions. 1

Within the VIDMAP model, we make the following contributions:

• The VIDMAP framework (Section 3.1) designed for use with ingested

video sources that automatically detects possible distortions and assigns

that video for further processing if a distortion is detected.

1This chapter appears in the following papers: T. R. Goodall and A. C. Bovik, “Detecting
and Mapping Video Impairments” submitted to the IEEE Transactions on Image Processing,
2018; and T. R. Goodall and A. C. Bovik, “Artifact Detection Maps Learned Using Shallow
Convolutional Networks.” Southwest Symposium on Image Analysis and Interpretation,
2018. Todd Richard Goodall has designed the models, collected data, and performed full
experimental analysis of the works described therein.
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• An associated convolutional network (Section 3.2.2) designed to detect

and localize artifacts.

• Performance comparisons (Section 3.4) between the VIDMAP detection

framework and competing methods using both synthesized and real ar-

tifact data, showing VIDMAP as either superior to or at least highly

competitive with leading distortion-specific models.

• A publicly available package of this framework is provided at [16], which

includes the trained weights for the upscaling, combing, false contours,

quantization, aliasing, video hits, compression, and dropped frames dis-

tortion categories.

We believe that no high-performance, practical video source inspection

system similar to VIDMAP exists.
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3.1 VIDMAP System

We present the VIDMAP system in Fig. 3.1, which incorporates pre-

processing stages and convolutional network sub-components. For each ar-

tifact, the convolution network is rerun with artifact-specific weights. Any

detections are then aggregated and delivered to the next stage, a quality as-

sessment stage tasked with making a final decision regarding that input video

content. This last stage may be fully automated using quality assessment

prediction models, or it may be manual, depending on the level of scrutiny

desired. If no artifacts are detected, then the video is deemed to be free of

artifacts.

3.2 Models
3.2.1 Pre-Processing Model

Before applying VIDMAP processing to videos during either training

or testing, the video is pre-processed by center-surround, isotropic bandpass

filtering, followed by a non-linear divisive normalization process [106]. We will

refer to these steps collectively as Mean-Subtracted Contrast Normalization

(MSCN). This transformation is used in many successful image quality assess-

ment (IQA) models since it tends to strongly Gaussianize and decorrelate the

pixels of high-quality images, while different behavior is observed on distorted

image pixels [106, 82, 81]. The MSCN coefficients of image I are given by

Î(x) =
I(x)− µ(x)

σ(x) + C
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Figure 3.1: VIDMAP system design. An input video is submitted to VIDMAP
for artifact analysis. If an artifact is detected, the video is flagged for either
manual or automatic quality assessment. Videos with an acceptably low num-
ber of artifacts can be ingested. Otherwise, the video is rejected.
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where

µ(x) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(x)

and

σ(x) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(x)− µ(x))2,

whereK = L = 3, x are spatial coordinates, and w = {wk,l|k = −K, · · · , K, l = −L, · · · , L}

is a 2D circularly-symmetric, unit volume Gaussian weighting function sam-

pled out to 3 standard deviations. The parameter C = 1 avoids saturation on

low-contrast regions.

The MSCN pre-processing stage reflects both a well-established NSS

model [106], as well as simple center-surround retinal processing [31]. The

BRISQUE IQA model [82] deploys parametric fits of empirical probability

distributions of MSCN coefficients as the basis for extracting quality-aware

picture features. However, regularities in the statistics of the sigma field σ(x)

have also been shown to possess significant, and complementary picture quality

prediction power, e.g., as used in the FRIQUEE [47] and NIQE [81] image

quality models. We have found that using both the sigma field and the MSCN

transformed image improve the prediction power and thus the generalizability

of the VIDMAP model.
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3.2.2 Convolutional Detection Map Network

3.2.2.1 Version 1

Input Frame

Nx2xW2xW2 Convolution Layer

QxNxW1xW1 Convolution Layer

Channel Transformation

Figure 3.2: VIDMAP convolutional network architecture in the first configu-
ration. Dotted lines indicate the portion of the network that is removed when
creating full resolution artifact detection maps. The channel transformation
layer computes µ, σ, and MSCN coefficient maps. Each input frame has a sin-
gle binary label indicating whether the frame is distorted or not. Exponential
Linear Units [39] (not shown) are present at the convolution layer outputs.

A visual summary the first version of the VIDMAP artifact detection

network is provided in Fig. 3.2. Each input frame is transformed percep-

tually into Q channels, selected here as µ(x), σ(x), and MSCN transforms.

These channels are passed through the first layer, which includes both convo-

lutional and bias weights. The output of this layer is then passed through an

Exponential Linear Unit (ELU) [39] activation function. The layer after this
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applies convolution and bias weights, followed by another ELU non-linearity

activation function, yielding two outputs, RP and RN , which are treated as

excitatory (positive) and inhibatory (negative) response pairs. A final proba-

bility prediction map is formed as

¯̂y(x) =
eRP (x)

eRP (x) + eRN (x) , (3.1)

where x are spatial coordinates.

The ground-truth labels provided while training the network are bi-

nary. A given input image is either non-distorted or distorted, which can be

summarized using a global label. Although many distortions do not affect an

entire image or video frame, a global label indicating that at least some sub-

set of the image locations are distorted can be extremely useful when finding

discriminating statistics between populations of distorted and non-distorted

image distributions.

Instead of backpropagating error at each response location based from

each global label, we instead only backpropagate error through the most pos-

itively discriminative point x∗. By selecting this specific point, positively la-

beled input images are reinforced. Negatively labeled input images help to

minimize false positive responses. The point x∗ is found by reformulating p(x)

as

p(x) =
1

1 + e−A(x)
,

where A(x) = RP (x) − RN(x) is the discrimination distance. Positive val-

ues of A indicate positive detection responses, implying p(x) > 0.5. Thus,
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x∗ is determined by finding the point x that maximizes A(x). By following

this approach, the locations of artifacts in the training data are not known a

priori or needed. This is in contrast to models that learn to compute dense

image segmentation maps [26], which use class labels at each coordinate of the

training image. The dotted lines in Fig. 3.2 indicate the portion of the net-

work that is used during training. During testing, the Rp and RN responses are

passed through a softmax function to produce full resolution artifact detection

probability maps.

The only learned parameters in this network are the convolutional and

bias weights. The first layer contains N(Q∗W 2
1 +1) free parameters, while the

second layer learns 2(N ∗W 2
2 +1) free parameters. Thus, the complexity of this

“lightweight” model is quite low as compared with recent deep convolutional

algorithms like VGG, [122] which can have greater than 100 million parame-

ters. The first layer filters learn local statistics, while the second layer learns

larger scale features. The efficiency of the network is greatly enhanced by the

perceptual pre-processing that computes the MSCN inputs. Without this pre-

processing step, the network takes much longer to converge and performance

suffers. While a much deeper network might learn to replicate or resemble this

“perceptual process,” this would require additional computational expense. We

used the nominal values W1 = 5 and W2 = 11 in experiments related to this

version of the convolution network.

As we will show, this first version yields great predictors of upscaling

and combing. It does not, however, produce great predictors of video hits
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or dropped frames. For this reason, we extend this architecture in the next

section.

3.2.2.2 Version 2

A visual summary of the second version VIDMAP artifact detection

network is provided in Fig. 3.3. As before, each input frame is pre-processed

into Q = 2 channels, the MSCN coefficients and σ(x) maps. This network

can accommodate multiple frames, by pre-processing individual frames, then

concatenating these independent processed channels into a single multi-channel

input frame. When N frames are input to the network, we set Q = 2N .

Alternatively, the input frames may be differenced before the pre-processing

stage, which would require setting Q = 2(N − 1). Each frame or sequence

of frames input to the network is reorganized and pre-processed into a single

multichannel input before being applied to the network.

The first layers after pre-processing include both convolutional and bias

weights. The size of the internal representation, i.e., the number of output

channels for the first layer, is fixed at N = 100. Following this layer is an

Exponential Linear Unit (ELU) [39] activation function, which avoids neuron

death associated with the ReLu, while also reducing training time. The fol-

lowing two layers in both branches perform identical operations, albeit with

different channel configurations, such the final output of both branches is a sin-

gle response map. The lower path output labeled RN serves as the inhibitory

(negative) response, while the upper path output labeled RP is the excitatory
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(positive) response. A final probability prediction map is formed using Eq.

(3.1).

As in version 1, the ground-truth labels used to train the network are

binary. A given input image is either non-distorted or distorted, which can be

summarized using a global label. Although many distortions do not affect an

entire image or video frame, a global label indicating that at least some subset

of the image locations are distorted can be extremely useful when finding

discriminating statistics between populations of distorted and non-distorted

image distributions.

Although propagating error through x∗ as previously described was

found to produce excellent performance, we found that the resulting probabil-

ity maps did not label many distorted regions. This is a phenomenon similar

to that observed by Singh and Yee [123], who proposed randomly hiding the

most discriminative data during training. We tried this by sampling differ-

ent discriminative points, which improved training time, but did not produce

smoother maps. Instead, we extended our approach by adding a local smooth-

ness constraint on the output map, by using a small Gaussian kernel on RP

before computing the most discriminative point x∗. This serves two purposes:

first, to find a discriminative point that takes a neighborhood of responses into

account, and second, to backpropagate error through more than one point in

the map. In some cases this improves the overall detection performance of

VIDMAP, but in all cases it produces more complete probability maps.

The only learned parameters in the network are the convolutional and
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bias weights. The first layers contain 2N(QW 2
1 + 1) free parameters, the

second layer contains 2N(NW 2
2 +1) free parameters, and the last layer contains

2(NW 2
3 + 1) free parameters. We found that setting N = 100 and W1 = W2 =

W3 = 11 provided excellent generalizable performance, meaning there are

about 2 million parameters. The complexity of version 2, like version 1, is still

much lower than recent deep convolutional algorithms [122].

3.3 Dataset Preparation
3.3.1 Synthesized Datasets

We created a separate dataset for each artifact type: upscaling, video

hits (MPEG2), video hits (H.264), aliasing, banding, false contours, interlac-

ing, frame drops, and compression. The artifacts were generated artificially

using a pristine set of videos derived from the Netflix collection. We collected

a total of 1150 480p scenes and a total of 431 1080p scenes, clipped from

a total of 536 different contents. We identified scene boundaries using [93],

which compares luminance distributions between frames. When synthesizing

artifacts, we sought to maintain similar appearances as observed in discov-

ered distorted source videos. Artifacts were introduced onto each video, and

256x256 patches extracted from random spatial locations. For each extracted

patch, co-located neighboring patches in the next and previous frames were

also extracted, to capture artifact behavior over multiple frames. We also

required that each patch that contained an artifact had at least a minimum

variance, to ensure that enough evidence existed in the patch for a detection
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to occur. Training and testing sets were created by dividing the input video

contents in half prior to patch extraction, to minimize any content overlap.

Interlaced video was produced by considering sequences of 3 frames.

For example, a pristine video contains no artifacts within the 3 frames, but

an interlaced video recreates the center frame by interleaving rows from the

adjacent frames. For each video content, we extracted a maximum of 10

example 3x256x256 patches on the pristine original and a maximum of 10

additional patches from the interlaced copy. We collected a total of 61,653

samples in this way.

Upscaled video was produced by using one of “Bilinear Upscaling,”

“Bicubic Upscaling,” “Lanczos Upscaling,” or “Nearest Neighbor Upscaling.”

We mixed two philosophies of upscaling. First, we spatially downscaled video

using Lanczos-4 rescaling, then upscaled them back to the original native frame

size using one of the four interpolation methods. Second, we produced upscaled

samples by upscaling video and selecting patches directly. We kept positive

samples balanced with respect to these two philosophies. Pristine sequences

were clipped directly from the pristine sources, and we generated additional

samples by downsampling the pristine sources by a random amount, to coun-

teract the detection of any downsampling artifacts present within the positive

set of samples. The upscaling and downscaling factors were randomly selected

from the range [1.25, 3.0]. We collected a total of 202,752 samples.

Quantized video was produced by first selecting a q ∈ {2, 4, 8, 16, 32},
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then for a given patch P , applying

Q = q

⌊
P

q

⌋
.

to yield the quantized patch Q. A total of 31,281 samples were produced in

this manner.

We synthesized false contours by quantizing smooth gradients. Uniform

random noise was smoothed using a Gaussian filter to produce a rich diversity

of gradients. We then quantized these gradients by factors q ∈ {8, 16, 32}.

An example of the contours produced is depicted in Fig. (a). After observing

how film grain noise can affect the smoothness of these contours in video data,

we simulated film-grain noise by adding a small amount of random Gaussian

noise to our gradient prior to quantization. Examples of the contours produced

on noisy gradients are provided in Fig. (b). The negative samples in this

contour dataset were supplemented with pristine video data. The final dataset

contained 558,100 100x100 samples.

Videos with aliasing were created by simply downscaling frames with-

out anti-alias filtering. On each patch, the downscaling range was chosen in the

range [2.0, 4.0]. To focus on aliasing that results in visible jaggedness, we com-

pared anti-aliased and non-anti-aliased patches. If contrast energy increased

in the non-anti-aliased case, we measured contour length in the contrast dif-

ference image, which corresponds to the jaggy lines that result from aliasing.

We produced a total of 60,894 samples in this dataset.

The dataset for videos with dropped frames was created by considering
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sequences of 4 frames, based on the design of previous algorithms that compute

frame-differences before and after each potential drop. The number of frames

dropped in a positive sequence were N ∈ {3, 6, 9}. To ensure that the drop

would be visible (i.e. enough motion exists between frames), we discarded

positive samples with small TI [141]. A total of 63,030 samples were generated

in this way.

Two video hits datasets were created, based on corrupting MPEG2 or

H.264 bitstreams. When corrupting the bitstreams, we used FFmpeg’s ’bsf’

noise flag, which allows setting the corruption ratio, defined as the ratio of

correct bits to distorted bits. The lower this ratio, the more corruptions that

appear. We set the ratio to a reasonable level to ensure that both large scale

and small-scale artifacts would appear in the corrupted videos. To guarantee

that an extracted patch contained a video hit, we applied a small threshold to

compare the absolute differences between corrupted patches and their corre-

sponding pristine patches. We set the threshold to ensure that the video hits

were just noticeable when the video was played. We also avoided using error

concealment during decoding of the corrupted videos. A total of 31,510 H.264

and 30,043 MPEG2 hit samples were generated.

The compression dataset was created by considering the H.264 encoder,

which at a minimum, performs a transform-domain quantization and a de-

blocking filter. We randomly selected Constant Rate Factors (CRF) in the

range of 24 to 37, and we randomly selected from the commonly used encoding

profiles “baseline,” “main,” and “high” for each sample. Any compressed video
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was considered to be a positive sample, and any video part of the pristine

sources was considered to a be a negative sample. A total of 63,012 samples

were generated in this way.

3.3.2 Non-synthesized Datasets

While generated datasets provide an excellent baseline for how VIDMAP

captures different artifacts, it is unclear how VIDMAP performs on data that

is not synthesized. Videos were collected from Netflix that exhibited combing

artifacts. For videos with these artifacts, we noticed that some contained addi-

tional compression from the transcoding process. We also gathered an dataset

comprised of videos with aliasing and “jaggies” artifacts. We discovered that

“jaggies” can appear even when a video signal is not aliased (i.e. in the case

of upscaling or leftover patterns from a de-interlacing algorithm).

3.4 Artifact Detection Results

Table 3.1: Upscaling detection F1 scores computed on the test set for VIDMAP
version 1. Upscaling type includes “Not Upscaled,” “Bilinear Upscaling,” “Bicu-
bic Upscaling,” “Lanczos Upscaling,” and “Nearest Neighbor Upscaling.”

Algorithm Bilinear Bicubic Lanczos Nearest
VIDMAP 0.9902 0.9916 0.9915 0.9932
Vázquez-Padín [133] 0.9736 0.9706 0.9683 0.9929
Goodall et al. [50] 0.9872 0.9885 0.9941 0.9977
BRISQUE [82] 0.9331 0.8988 0.8847 0.8847
Feng et al. [44] 0.8609 0.9162 0.9577 0.9099

We evaluated two types of problems using version 1 of the VIDMAP
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network: the video upscaling (interpolation) detection and the combing (in-

terlacing artifact) detection problems.

For upscaling, we numerically evaluated the performances of the mod-

els using the F1 score, which is the harmonic mean of precision and recall.

Table 3.1 compares the performance of VIDMAP to several other models, us-

ing p(x∗) as the final predicted class label. One of the compared models is

a general-purpose blind IQA algorithm (BRISQUE). We included this high-

performance general model to determine whether, and to what degree, the

BRISQUE features contribute to the detection task. As shown in the Table,

BRISQUE did not perform nearly as well as artifact-specific detectors, while

remaining competitive with Feng et. al. [44].

Table 3.2: F1 scores achieved by the compared combing detection models on
the set of 150 video sequences for VIDMAP version 1.

Algorithm F1
VIDMAP 0.9868
BRISQUE [82] 0.8718
FFmpeg 0.9167
Baylon [28] 0.8811

For combing, we also evaluated two existing state-of-the-art algorithms.

The first is the FFmpeg ’idet’ detector, which requires 3 frames. For progres-

sive video, it assumes that the row in the current frame can be interpolated

using two rows in either the previous or next frame. For interlaced video,

it assumes the interpolated row will not match the corresponding row in the

previous or next frames. A prediction is generated by applying threshold T1

on these two measurements.
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The second algorithm was developed to determine field order on known

combed sequences [28]. We modified it to provide detection predictions. It

counts the number of zipper artifacts T0 of length Z in the top-field and the

bottom field between two frames. If the difference between these counts ex-

ceeds a threshold T1, then the two frames are labeled as combed. Thus, this

algorithm requires two frames for detection. Both of these algorithms are

provided in Appendix B.

Table 5.13 lists the obtained combing detection performance results

for multiple models. Our single-frame combing detection model clearly yields

stand-out, state-of-the-art combing detection performance.

Table 3.3: Detection results on validation sets. Top performers in boldface.
Distortion Category Method F1 Score MCC

Upscaling

VIDMAP 0.9899 0.9799
VIDMAP-D 0.9767 0.9549
Goodall [50] 0.9865 0.9728
BRISQUE [82] 0.9597 0.9185
Feng et. al. [44] 0.8713 0.7330
Vázquez-Padín et al. [133] 0.9767 0.9533

False Contours

VIDMAP 0.9762 0.9529
BRISQUE [82] 0.9996 0.9993
Luo et. al. [75] 0.9606 0.9240
Ahn and Kim [25] 0.8554 0.7033

Quantization

VIDMAP 0.9944 0.9887
VIDMAP-D 0.9753 0.9504
BRISQUE [82] 0.9954 0.9909
Luo et. al. [75] 0.9903 0.9806

Compression

VIDMAP 0.9790 0.9580
VIDMAP-D 0.9487 0.8961
BRISQUE [82] 0.9765 0.9528
Luo et. al. [75] 0.8422 0.6708
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Inspired by the performance of VIDMAP version 1, we evaluated the

performance of VIDMAP version 2 against state-of-the-art methods on the

aforementioned datasets in Section 3.3.1. Our evaluation included measur-

ing the errors between predictions and ground truth binary labels, hence we

assessed the binary classification to VIDMAP F1 scores, the harmonic mean

between precision and recall, and Matthew’s correlation coefficient (MCC),

which is a balanced measure related to the chi-square statistic. Tables 3.3 and

3.4 list the performance results, where VIDMAP refers to VIDMAP version

2 performance using only single frames, and VIDMAP-D refers to VIDMAP

performance using frame differences.

For the upscaling detection problem, VIDMAP using single frames

matched the top performance of a recent sparsity-based model. BRISQUE

performed surprisingly well on upscaling, although it was designed for arti-

facts that would affect an observer roughly 2 feet from the display. Upscaling

factors smaller than 2 produce distortions that are difficult to see, especially

when using Lanczos-4 interpolation.

A trivial quantization detector could be devised to exploit periodic gaps

in the simple image histogram. However, such an approach could not account

for the local visibility or masking of quantization artifacts, nor is it interest-

ing, since quantization can occur in a transform domain as in compression. We

found that BRISQUE was able to effectively detect the presence/absence of

quantization. VIDMAP also produced excellent quantization detection perfor-

mance, with the ability to also localize areas of visible quantization artifacts.
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On the detection of false contours, we observed that VIDMAP was

slightly outperformed by BRISQUE. This is likely because the false contour

detection problem is a subset of the quantization problem, which is easily de-

tected in the spatial domain. We noticed that Luo et. al.’s method detected

nearly all of the false contours in the dataset containing quantized gradients

without noise, but was less able to capture contours that appeared when quan-

tizing noisy gradients. We did not notice much difference in Ahn and Kim’s

method when applied to noisy vs. non-noisy gradients, since this method mea-

sures contrast and entropy at the block scale, and is unaffected by differences

in boundary appearance. We configured this last method with 16x16 blocks, a

contrast threshold of 14.5, and entropy threshold of 3.0, and a flat region area

threshold of 12.5.

On aliasing artifacts, VIDMAP delivered superior detection perfor-

mance. The competing compared method, which uses the Signal-to-Aliasing

ratio to measure aliasing, involves several steps that depend on implementa-

tion details that were not specified, such as energy masking parameters. As a

result, the performance could possibly be improved. We retrained VIDMAP

on a collection of 2000 video patches exhibiting jaggies, since we suspected

that jaggies were not produced only by aliasing artifacts. A test set of 100

negative video segments and 51 positive video segments were used. Detection

was performed per-frame, then averaged. To classify a segment as distorted

in VIDMAP, the detection probabilities are averaged across frames, then a

threshold on this average is learned using a separate validation set to binarize
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the final output detection prediction. Detection results on non-synthesized

data are provided in Table 3.6. Again, VIDMAP and VIDMAP-D yielded

superior performance.

Combing manifests as a vertical zipper artifact. VIDMAP again pro-

duced the best results, but FFmpeg’s idet detector was a close second in de-

tection performance. BRISQUE also was a very good detector of combing,

despite it not being designed for the artifact. We supplemented the analysis

with respect to the combing artifact by creating a distinct dataset from videos

exhibiting artifacts found in a real video collection. As in aliasing case, per-

frame predictions are averaged, then an entire video segment is classified as

exhibiting combing by using a threshold learned on a validation set. Table 3.5

lists performance results, evaluated using 271 interlaced segments and 285 non-

interlaced segments. VIDMAP outperforms the other methods. Interestingly,

FFmpeg suffers most on real data.

When detecting dropped frames, both individual frame-based and frame-

difference methods worked well. Upadhyay and Singh’s detector gave the

best results, using a threshold value of 30 in their algorithm in the frame-

difference binarization step. The default parameters in the model suggested

by Wolf yielded inadequate performance on the Netflix dataset. Surprisingly,

BRISQUE also performed well for this task.

By defining video hits as corruptions that can change the bits in a

stream at any point in the production process, the block positioning imposed

by an intermediate codec is generally unknown, due to cropping and reposi-
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tioning during the editing process. We found that VIDMAP produced the best

detection results, and was able to capture the locality of the artifacts. Glavota

et. al.’s features, which measured statistics related to structured block sizes of

8x8, 16x16, and 32x32 pixels, performed quite well when fed into an SVR for

prediction. There is a gap in performance for BRISQUE between detection

of H.264 versus MPEG2 artifacts. This is likely due to how the dataset was

constructed, whereby H.264 artifacts were more numerous and more uniformly

distributed across each frame, while the MPEG2 artifacts were fewer and much

more isolated.

Compression artifacts were detected well by both VIDMAP and BRISQUE.

Luo et. al.’s method that worked well for detecting quantization-based arti-

facts, does not work provide similar performance for compression.

3.5 Artifact Detection Maps

Example visualizations of the probability maps predicted by VIDMAP

for each artifact type are provided in the figures. In each example, the black

regions depict a probability of 0, grey regions depict a probability of 0.5, and

white regions depict a probability of 1. Figure 3.5 demonstrates predicted

corruptions on exemplar H.264 and MPEG2 streams. Notice that nearly all of

the visible artifacts are highlighted. Figure 3.6 shows detection of the combing

artifact, where the map appears to capture all visible portions of the artifact.

Notice that the detection probabilities nicely fall along the (gray) contours

where the smoother content is free of combing. The aliased regions in Fig. 3.7

40



are detected with high certainty along edges. Figure 3.8 depicts the detection

of false contours on a frame with film grain noise that was quantized. The

contour lines were largely captured. As shown in Fig. 3.9, the background

behind the trees is highly quantized, but the foreground toward the lower half

of the image is less quantized because of the increased contrast. Figure 3.10

depicts detection of H.264 compression artifacts. VIDMAP does not seem to

measure edge strength, but rather characteristic smoothness in low contrast

regions. Figure 3.11 depicts the results of several upscaling interpolation meth-

ods and corresponding artifact maps computed on a video of a traffic cone.

The upscaling artifacts were easily detected. Figure 3.12 shows the computed

spatial detection map for the case where 9 frames were dropped in between

the remaining frames 2 and 3. Highlighted regions in the impairment map

indicate motion discontinuities.

3.6 Discussion and Conclusion

We proposed a new video source inspection system called VIDMAP,

which is able to effectively learn how to detect and localize multiple types of

video artifacts without using a priori models of the statistics or structures

of the artifacts. We showed that VIDMAP achieves state-of-the-art detection

performance in most categories tested, with competitive performance in the

others. It is a practical tool that also assists a user in visualizing distortion

types, locations, and severities. We envision that this model will be useful as

a tool for source inspection of streaming video collections.
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Figure 3.3: Second version of the VIDMAP convolutional network architec-
ture. Dotted lines indicate the portion of the network that exists only for
training. No loss is propagated through the dense map prediction. The pre-
processing layer computes σ and MSCN coefficient maps. Each input frame
has a single associated binary label indicating whether the frame is distorted or
not. Exponential Linear Units [39] are present at all convolution layer outputs.
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(a) (b)

Figure 3.4: Examples of generated false contours. (a) False contours without
noise; (b) False contours with noise.
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Table 3.4: Detection results on validation sets. Top performers in boldface.
Distortion Category Method F1 Score MCC

Aliasing

VIDMAP 0.9728 0.9451
VIDMAP-D 0.9531 0.9056
BRISQUE [82] 0.9615 0.9230
Signal-to-Aliasing Ratio
[103] 0.6859 0.2223

Combing

VIDMAP 0.9693 0.9388
VIDMAP-D 0.9682 0.9360
BRISQUE [82] 0.9599 0.9196
FFmpeg [5] 0.9645 0.9288
Baylon [28] 0.9288 0.8562

Dropped Frames

VIDMAP 0.9355 0.8687
VIDMAP-D 0.9147 0.8250
BRISQUE [82] 0.9142 0.8249
Upadhyay and Singh [132] 0.9510 0.9007
Wolf [144] 0.6827 0.2406

Hits (H264)

VIDMAP 0.9323 0.8672
VIDMAP-D 0.9406 0.8856
BRISQUE [82] 0.8273 0.6467
AIDB [115] 0.7342 0.4867
Glavota et. al. [49] 0.8794 0.7777
Winter et. al. [142] 0.5521 0.2059

Hits (MPEG2)

VIDMAP 0.9083 0.8193
VIDMAP-D 0.8734 0.7716
BRISQUE [82] 0.6342 0.2959
AIDB [115] 0.6413 0.3124
Glavota et. al. [49] 0.8024 0.6296
Winter et. al. [142] 0.5159 0.1070

Table 3.5: Detection results on videos exhibiting combing artifacts.

Method F1
Score MCC

VIDMAP 0.9304 0.8663
VIDMAP-D 0.8676 0.8055
BRISQUE [82] 0.9065 0.8141
FFmpeg [5] 0.9154 0.8316
Baylon [28] 0.8535 0.7122
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Table 3.6: Detection results on videos exhibiting aliasing/jaggies artifacts.

Method F1
Score MCC

VIDMAP 0.8807 0.8179
VIDMAP-D 0.8772 0.8156
BRISQUE [82] 0.8571 0.7818
Signal-to-Aliasing Ratio [103] 0.5333 0.1758
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(a) (b)

(c) (d)

Figure 3.5: Video Hits Impairment Maps. (a) Video frame with H.264 video
hits; (b) VIDMAP visualization of (a); (c) Video frame with MPEG2 video
hits; (d) VIDMAP visualization of (c).
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(a) (b)

Figure 3.6: Combing impairment map. (a) Video frame with combing distor-
tion; (b) VIDMAP visualization of (a).

(a) (b)

Figure 3.7: Aliasing impairment map. (a) Video frame with aliasing distortion;
(b) VIDMAP visualization of (a).
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(a) (b)

Figure 3.8: False contour impairment map. (a) Video frame with false contour
distortion; (b) VIDMAP visualization of (a).

(a) (b)

Figure 3.9: Quantization impairment map. (a) Quantized frame; (b) VIDMAP
visualization of (a).
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(a) (b)

Figure 3.10: Compression impairment map. (a) Compressed frame; (b)
VIDMAP visualization of (a).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Upscaling impairment maps. (a) Bilinear upscaled; (b) Bicubic
upscaled frame; (c) Lanczos upscaled frame; (d) Neighbor upscaled frame; (e)
VIDMAP visualization of (a); (f) VIDMAP visualization of (b); (g) VIDMAP
visualization of (c); (h) VIDMAP visualization of (d).
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Impairment map

Figure 3.12: Dropped frame impairment map. The drop of 9 frames occurred
between frames 2 and 3.
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Chapter 4

LIVE Video Masters Database

4.1 Video Synthesis

A sizable database of human subjective opinion scores is required for

validating automated quality assessment methods on source videos. Towards

this end, we collected a total of 24 high-quality reference videos from both pub-

lic sources and from the closed Netflix collection, which was used as a cinematic

content resource. We found that obtaining interesting high-quality cinematic

video content from public sources was difficult. Representative thumbnails of

the public content is provided in Fig. 4.1. Each video content is 10 seconds

long, while the observed video frame rates included 23.98, 24, 25, 30, and 59.94

frames per second.

We distorted each of the pristine source videos using a total of 6 dif-

ferent distortion types. These types include “Video Hits (H.264),” “Video Hits

(MPEG2),” “Upscaling,” “Banding,” “Dropped Frames,” and “Incorrect Aspect

Ratio.” We produced H.264 and MPEG2 video hits by corrupting a 2 second

Group of Pictures (GoP) that was randomly selected within the middle portion

of an input video. To cause corruption, we used FFmpeg’s ’-bsf’ noise flag to

generate two severities of H.264 and two severities of MPEG2 hits distortions.
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Figure 4.1: Thumbnails of free contents in Video Masters database.

To create videos having incorrect aspect ratios, we considered two extremes:

stretching the video width by 25%, and shrinking the width by 25%. For the
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(a) (b) (c)

(d) (e)

Figure 4.2: Examples of impairments that occur in source videos ingested by
the streaming video industry. (a) H.264 hits; (b) MPEG2 hits; (c) Incorrect
Aspect Ratio; (d) Quantization; (e) Upscaling.

upscaling distortion, we upscaled pristine videos by 2x, 4x, and 6x using bi-

linear interpolation. To simulate quantization, we quantized videos by zeroing

the least significant 3rd, 4th, and 5th bits. For dropped frames, we carefully

selected points in the video where a frame drop would be noticeable, then we

dropped either 3, 6, or 9 frames at that point. In each case, severity levels

were chosen by making them perceptibly separable under normal viewing con-

ditions. Examples of these artifacts, excepting dropped frames, are depicted

in Fig. 4.2.
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Figure 4.3: Distribution of mean opinion scores per distortion.

4.2 Subjective Study Design

Prior to testing, subjects were provided with brief descriptions regard-

ing the types of artifacts they should expect to see. When informing each

subject regarding their task, we stressed that their holistic opinion was most

important, and that they should provide ratings that incorporated both seem-

ingly intended and non-intended distortion sources. The exact instructions
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given to each subject is provided in Appendix C. During each of the three

sessions, the subjects were seated with their eyes 2 feet away from the LCD

screen.

Since in real viewing scenarios only a single video is watched, the sub-

jects were presented content using a standard Single Stimulus Continuous

Quality Evaluation (SSCQE). In other words, a full-screen video would play,

and at the end of each video the subject would be asked to provide an overall

quality score. This quality score was reported using a continuous sliding bar

with qualitative Likert-like labels provided, ranging from “Worst” to “Excel-

lent.” In each of the three sessions, all of the contents and distortion types

were presented, but the total ranges of distortion severities were spread across

the sessions. We randomized the playout order, while also ensuring that iden-

tical distortion types and contents did not repeat between contiguous stimulus

presentations.

A total of 30 subjects participated in the experiment. Subjects were

obtained from the Image Processing class taught at the University of Texas at

Austin, graduate students, and a few external participants. Subjects selected

from the class were provided the option to participate in the study for course

credit in place of a homework assignment. No reward provided to subjects

otherwise. Each subject was determined to have either normal or corrected-

to-normal vision, as evaluated by their ability to read the 20/20 line of a

Snellen chart.
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4.3 Subjective Data Analysis

The recorded scores were discretized to integers on [0, 100]. These

scores collected from the study are histogrammed in Fig. 4.4. This distri-

bution shows a decent spread of subject scores that span the entire range of

quality scores. By averaging scores per video, we produced per-video scores,

histogrammed in 4.5. We notice that averaged scores do not span the entire

range, due to subject bias and variance. To reduce this bias and variance, we

perform z-scoring.

Let sijk be the opinion score given by subject i, on video j during

session k = {1, 2, 3}. Each score from each session was then converted to a

Z-score:

zijk =
sijk − µik

σik
(4.1)

where

µik =
1

Nik

Nik∑
j=1

sijk (4.2)

and

σik =

√√√√ 1

Nik − 1

Nik∑
j=1

(sijk − µik)2, (4.3)

and where Nik is the number of test videos seen by subject i in session k. This

Z-score computation removes individual subject bias and variation within each

session.
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We used the rejection procedure specified in the ITU-R BT recommen-

dation 500.13 for discarding scores from unreliable subjects. Z-scores were

considered to be normally distributed if their kurtosis fell between the values

of 2 and 4. The recommendation is to reject if more than 5 percent of the

Z-scores are found to lie outside two standard deviations of the mean. Using

this procedure, we found no significant outliers [113] [22].

After the subject rejection procedure, the values of zijk follow a normal

distrution, where 99% of the variance falling in the range on [−3, 3]. Linear

rescaling was used to remap this range onto [0, 100] using

z′ij =
100(zij + 3)

6
. (4.4)

Finally, the z-scored Mean Opinion Score (MOS) of each video was

computed as the mean of the M = 30 rescaled Z-scores:

MOSj =
1

M

M∑
i=1

z′ij. (4.5)

A plot of the histogram of the z-scored MOS is shown in Fig. 4.6, indicating

a reasonably broad distribution of subjective opinions.

The per-distortion MOS histograms are also provided, in Fig. 4.3. We

noticed that upscaling and banding provided wider histograms relative to the

hits, incorrect aspect ratio, and dropped frames. We combined the two types of

video hits into the same histogram, since the individual histograms for MPEG2

and H.264 hits were similar in appearance.
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Figure 4.4: Distribution of overall raw scores.
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Figure 4.5: Distribution of per-video mean opinion scores.

We measured the degree of agreement between groups of subjects in Fig.

4.8, per distortion type. This was done to inform us regarding potential model

prediction limitations. We split the collected subject data into two equally

sized groups, computed the MOS of each group, and computed correlation

between the two resulting MOS distributions. We repeated this experiment

1000 times, then computed the median SRCC and LCC, which we plotted in

Fig. 4.8. Unsurprisingly, we found that the distortions Dropped Frames and
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Figure 4.6: Distribution of z-scored per-video mean opinion scores.

Incorrect Aspect Ratio had the lowest median inter-subject group correlations.

Figure 4.7 plots the average MOS values per distortion and distortion level

along with 95% confidence intervals. Also shown in an overlay is the pristine

distribution. As may be seen, significant overlap exists between distortion

levels for dropped frames and incorrect aspect ratio, meaning these are the

most difficult to predict. Specifically, videos with 3 dropped frames are not

statistically separated from the pristine videos, further exhibiting the difficulty

that subjects observed when rating this distortion category.

4.4 Discussion and Conclusion

We are releasing the LIVE Video Masters database, which contains a

number of distortion types that are highly relevant to modern digital video

streaming companies. We believe that this database will prove to be quite

useful for developing and evaluating source inspection systems.

60



20
30

40
50

60
70

80
Z-
sc
or
ed

 M
OS

Hi
ts

 (H
26

4 
le

ve
l 1

)
Hi
ts
 (H

26
4 
le
ve

l 2
)

Hi
ts
 (M

PE
G2

 le
ve

l 1
)

Hi
ts
 (M

PE
G2

 le
ve

l 2
)

Up
sc
al
in
g 
(x
2)

Up
sc
al
in
g 
(x
4)

Up
sc
al
in
g 
(x
6)

Ba
nd

in
g 
(3
 b
it 
qu

an
tiz

at
io
n)

Ba
nd

in
g 
(4
 b
it 
qu

an
tiz

at
io
n)

Ba
nd

in
g 
(5
 b
it 
qu

an
tiz

at
io
n)

Dr
op

pe
d 
Fr
am

es
 (3

 fr
am

es
)

Dr
op

pe
d 
Fr
am

es
 (6

 fr
am

es
)

Dr
op

pe
d 
Fr
am

es
 (9

 fr
am

es
)

In
co

rre
ct
 A
sp

ec
t R

at
io
 (W

id
th
 sq

ue
ez

ed
)

In
co

rre
ct
 A
sp

ec
t R

at
io
 (W

id
th
 st

re
tc
he

d)

Figure 4.7: Distribution of z-scored mean opinion scores per distortion type.
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Chapter 5

VIDSPECT: Video Impairment Detection by
SParse Error CapTure

Powerful predictors of picture quality have been developed based on

models of human visual perception, which has had substantial time to evolve

in response to the statistics of the natural world. Here we extend these prin-

ciples to the problem of video source inspection, by coupling spatial divisive

normalization with a filterbank tuned for artifact detection, and implemented

using an augmented sparse functional form. We call this method the Video

Impairment Detection by SParse Error CapTure (VIDSPECT). We configure

VIDSPECT to create state-of-the-art detectors of 5 kinds of commonly en-

countered source video artifacts: upscaling, incorrect aspect ratio, dropped

frames, video hits, and banding. We validate detection performance using

a sizable video dataset, and we evaluate VQA performance using the LIVE

Video Masters Database. 1

1This chapter appears in the following papers: T. R. Goodall, I. Katsavounidis, Z. Li,
A. Aaron, and A. C. Bovik, “Blind Picture Upscaling Ratio Prediction.” IEEE Signal
Processing Letters Vol. 23 No. 12, pp. 1801-1805; and T. R. Goodall and A. C. Bovik,
“Detecting Source Video Artifacts with Supervised Sparse Filters.” accepted by Picture
Coding Symposium, 2018. Todd Richard Goodall has designed the models, collected data,
and performed full experimental analysis of the works described therein.
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5.1 Upscaling-Sensitive model

Before describing VIDSPECT, we first explore predictions that can be

made on different aspects of the upscaling problem by developing natural-

signal tuned set of basis functions. No-reference quality prediction models

such as the Blind Reference-less Image Spatial QUality Evaluator (BRISQUE)

[82] and Naturalness Image Quality Evaluator (NIQE) [81] use simple spatial-

domain feature extraction strategies that correlate well with human opinions

of multiple picture distortion types. Here, we follow this path by describing

a new high-performance blind upscaling prediction model that combines a

novel pre-filtering technique with the Mean-Subtracted Contrast-Normalized

(MSCN) and “paired product” computations developed in BRISQUE.

5.1.1 Proposed Natural Scene-Based Model

By decomposing an input image frame using an orthogonal filter bank

and locally normalizing the resulting responses, we show that the local energy

terms can be used to predict the upscaling ratio. In fact, a simple linear regres-

sor can be trained on these energy measurements, hence no hyper-parameter

tuning is necessary. We compare the proposed model with other no-reference

models using real-world data contained in the Netflix collection.

As described in [52], Principal Component Analysis (PCA), when ap-

plied to images, can find an orthogonal basis of natural image patches. We

observed that these derived basis functions change as natural image patches

are upscaled, leading us to explore how these changes can provide a useful
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Figure 5.1: Exemplar pristine image selected from the Berkeley image segmen-
tation database [79].

measurement on upscaling artifacts. Although different filter designs may be

applied, we opt for a simple approach learned directly from natural images,

differing from [134] in that the filters used are not specifically optimized for

upscaled images.

We select a corpus of 500 natural luminance images, obtained from the

Berkeley image segmentation database [79]. Each image is split into overlap-

ping patches of size 5x5, from which we select 2000 random patches. Each

patch is multiplied by a 5x5 Gaussian mask sampled to 2 standard devia-

tions and normalized to unit maximum value to reduce energy at the patch

boundaries. Accumulating the weighted patches from each image yields a to-

tal of 1 million patches. Given these 5x5 patches, PCA will produce at most

25 orthogonal basis functions, as depicted in Fig. 5.2, most of which exhibit
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Figure 5.2: Basis functions computed using PCA on 5x5 patches. All patches
were obtained on pristine images from the Berkeley image segmentation
database [79].

sinusoidal-like properties.

We use these 25 orthogonal basis functions for image pre-filtering.

Given an input luminance image, I, a total of 25 response images were pro-

duced after filtering with each of these basis functions, yielding R(f) where

f ∈ {1, 2, ..., 25}. Next, each response image, R(f), undergoes divisive normal-

ization to yield MSCN map R̂(f) for each f according to
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Figure 5.3: Histograms of MSCN and vertical paired product for basis filter
6 for different degrees of upscaling. These coefficients were computed using
bicubic upscaling of the image in Fig. 5.1.

R̂(f)(x) =
R(f)(x)− µ(R(f);x)

σ(R(f);x) + ε

where

µ(R(f);x) =
K∑

k=−K

L∑
l=−L

wk,lR
(f)
k,l (x)

and

σ(R(f);x) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(R
(f)
k,l (x)− µ(R(f);x))2,

whereK = L = 5, x is the pixel location vector, and w = {wk,l|k = −K, · · · , K, l = −L, · · · , L}

is a 2D circularly-symmetric Gaussian weighting function sampled out to 3
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standard deviations and normalized to unit volume. Throughout, we fixed the

saturation parameter ε = 1x10−9.

The coefficients R̂(f) are the MSCN versions of the basis filtered re-

sponses, like those obtained in BRISQUE. This MSCN transform is inspired

by retinal models of divisive normalization in the human visual system. A

total of 25 sample standard deviation features, σ(f)
m , are computed on the 25

R̂(f) maps. To obtain measurements of local spatial correlations that may exist

after normalization, “paired product” coefficient maps are computed for each

R̂(f) according to

H(R̂(f); i, j) = R̂(f)(i, j)R̂(f)(i, j + 1)

V(R̂(f); i, j) = R̂(f)(i, j)R̂(f)(i+ 1, j)

D1(R̂(f); i, j) = R̂(f)(i, j)R̂(f)(i+ 1, j + 1)

D2(R̂(f); i, j) = R̂(f)(i, j)R̂(f)(i+ 1, j − 1)

yielding a total of 100 “paired product” maps. The sample standard deviations

pp
(f)
H , pp(f)V , pp(f)D1, and pp

(f)
D2 are computed on H(R̂(f)), V(R̂(f)), D1(R̂(f)), and

D2(R̂(f)) respectively. Thus, 25 MSCN features, σ(f)
m , and 100 local correlation

features, pp(f)H , pp(f)V , pp(f)D1, and pp
(f)
D2, are computed on each input image, for

a total of 125 features.

To observe the behavior of the distributions from which our features

are extracted, we plot the histograms of R̂(6) and V (R̂(6)) in Fig. 5.3, for the

case of the test image in Fig. 5.1. When upscaling by factors of 1x, 2x, and

3x, a direct relationship appears between the histogram width and upscaling

factor, with higher upscaling resulting in narrower histograms.
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Figure 5.4: Absolute value SROCC between each basis function and the up-
scaling ratio. Images are upscaled using one of bilinear, bicubic, or Lanczos
interpolation.

By measuring correlations between each feature and the upscaling ratio,

we can better understand the contribution of each feature to a final prediction.

Using the Berkeley dataset, we obtained 1500 images by upscaling the 500

images to upscaling ratios in the continuous range [1, 3] with bilinear, bicubic,

and Lanczos upscaling. Next, we observed the correlations between the 125

features and the upscaling ratio. Figure 5.4 shows the absolute Spearman’s

Rank-Order Correlation Coefficients (SROCC) between features and upscaling

ratio.
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From Fig. 5.4, the highest correlation occurs using Basis 6, which

measures responses to a cross-like shape. A low correlation can be observed

against the response to the low-pass Basis 1, since the upscaling artifact per-

turbs high-frequencies. Interestingly, the 5 features extracted from each basis

have similar correlations, except pp(13)H .

5.1.2 General Prediction Performance

To compare performance amongst algorithms on a controlled dataset,

the Berkeley segmentation dataset was used again. We upscaled 75% of the

images in the dataset to have upscaling ratios in the continuous range [1.25, 3],

such that each upscaled image was assigned a unique ratio. The remaining 25%

of the images were not upscaled. Each image then received one of three levels of

compression: None, 90%, and 80% quality using the imagemagick [3] command

line utility, which implements JPEG compression. Introducing both upscaling

and compression allows for a more realistic test, since delivery of professional

content can include both lossless and compressed images. Note that images in

this dataset are likely downscaled, minimizing CFA interpolation artifacts.

For the proposed model, predictions of the upscaling ratio were made

using both a linear regressor and a Support Vector Regressor (SVR). We com-

pared performance between these regressors to show that a linear combination

of the proposed features yields a competitive predictor. Moreover, comparing

models using a linear regressor can provide a basis from which to start tuning

more complex models. For the alternative models, the suggested predictors
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Table 5.1: Median prediction performance across upscaling methods over 1000
train/test trials on “Berkeley” dataset.

Model Bilinear Bicubic
LCC MSE LCC MSE

Gallagher 0.624 0.404 0.615 0.431
Pfennig and Kirchner (SVR) 0.910 0.079 0.860 0.132

BRISQUE (SVR) 0.956 0.034 0.975 0.021
Feng et al. (SVR) 0.973 0.023 0.982 0.015
Proposed (Linear) 0.965 0.030 0.972 0.024
Proposed (SVR) 0.981 0.016 0.985 0.013

were used. Note that Gallagher directly estimated upscaling without need for

a regressor.

The Berkeley dataset was randomized, then partitioned into two sets,

with 75% of the dataset for training and 25% for testing. Models were evalu-

ated on the testing data using the Linear Correlation Coefficient (LCC) and

Mean-Squared Error (MSE). This process was repeated 1000 times, each time

re-randomizing the dataset order before partitioning. The median results of

this testing are reported in Tables 5.1 and 5.2.

As may be seen, the proposed algorithm achieved top prediction results

overall, except for Lanczos interpolation. When performance on all combined

categories was measured, the prediction performance of all models was found

to suffer. This could perhaps be overcome using a more complex machine

learning model, as exemplified by the results obtained using the SVR.
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Table 5.2: Median prediction performance across upscaling methods over 1000
train/test trials on “Berkeley” dataset. The presence of ’*’ indicates that all
upscaling methods are present in the testing and training sets.

Model Lanczos *
LCC MSE LCC MSE

Gallagher 0.629 0.476 0.420 0.495
Pfennig and Kirchner (SVR) 0.813 0.188 0.849 0.139

BRISQUE (SVR) 0.977 0.019 0.966 0.029
Feng et al. (SVR) 0.994 0.005 0.968 0.027
Proposed (Linear) 0.981 0.017 0.960 0.035
Proposed (SVR) 0.988 0.012 0.979 0.018

Table 5.3: Median prediction performance across upscaling methods over 1000
train/test trials on “Movie and TV Show” image dataset.

Model Bilinear Bicubic
LCC MSE LCC MSE

Gallagher 0.267 0.477 0.029 0.674
Pfennig and Kirchner (SVR) 0.745 0.199 0.460 0.471

BRISQUE (SVR) 0.952 0.041 0.930 0.058
Feng et al. (SVR) 0.796 0.161 0.877 0.099
Proposed (Linear) 0.970 0.025 0.961 0.033
Proposed (SVR) 0.979 0.018 0.978 0.019

5.1.3 Movie and TV Show Upscaling Prediction Performance

Since the Berkeley dataset was used when training the pre-filters, there

might be concern that performance on the Berkeley dataset may be inflated

owing to some unseen bias (e.g., in the human selection of content). To address

this concern, we collected 801 distinct video frames from the Netflix collection,

from movie and TV show sequences that were encoded at resolutions of 480p,

720p, 1080p, and 2160p with extremely light compression. Next, each of these

frames was subjected to upscaling as before, using bilinear, bicubic, or Lanczos
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Table 5.4: Median prediction performance across upscaling methods over 1000
train/test trials on “Movie and TV Show” image dataset. The presence of ’*’
indicates that all upscaling methods are present in the testing and training
sets.

Model Bilinear Bicubic
LCC MSE LCC MSE

Gallagher -0.069 0.772 0.416 0.500
Pfennig and Kirchner (SVR) 0.285 0.623 0.430 0.467

BRISQUE (SVR) 0.941 0.050 0.928 0.060
Feng et al. (SVR) 0.935 0.055 0.795 0.161
Proposed (Linear) 0.969 0.026 0.951 0.042
Proposed (SVR) 0.981 0.016 0.969 0.026

Table 5.5: Median classification accuracy across upscaling methods over 1000
train/test trials on “Berkeley” dataset. The presence of ’*’ indicates that all
upscaling methods are present in the testing and training sets.

Model None JPEG
90%

JPEG
80% *

BRISQUE (SVC) 0.872 0.816 0.752 0.768
Feng et al. (SVC) 0.968 0.960 0.952 0.944
Proposed (LDA) 0.984 0.928 0.856 0.880
Proposed (SVC) 0.976 0.912 0.856 0.872

upscaling. This time, JPEG compression was not applied, since, in practice,

source inspection of content is applied only to high quality videos.

Using the same 75%/25% training/test split and 1000 trials, we eval-

uated the prediction performance of each model, as shown in Tables 5.3 and

5.4. The proposed algorithm delivered outstanding performance on both the

3 datasets containing only a single type of upscaling and on the dataset with

multiple types of upscaling. For this particular use case, the energy-based

Feng et al. features appear to have significant difficulty for both bicubic and
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Table 5.6: Median classification accuracy across upscaling methods over 1000
train/test trials on “Movie and TV Show” dataset.

Model Accuracy
BRISQUE (SVC) 0.776
Feng et al. (SVC) 0.672
Proposed (LDA) 0.935
Proposed (SVC) 0.915

bilinear upscaling techniques.

5.1.4 General Classification Performance

Determining the interpolation method used is important for both foren-

sic artifact detection and for reporting source issues. At the same time, study

of model classification performance can lead to further insights into the ac-

tual artifacts. For instance, if classification accuracy of a model is high, then

information specific to each upscaling artifact is captured.

As listed in Table 5.5, several models were used to classify an image

as having been upscaled using bilinear, bicubic, or Lanczos interpolation. De-

cisions were made using Linear Discriminant Analysis (LDA) and Support

Vector Classifiers (SVCs) for the same reasons that we used linear regression.

Again, a total of 1000 randomized 75%/25% train/test splits were used, and

the median results reported in Table 5.5. Feng et al. largely outperformed the

other models.
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5.1.5 Movie and TV Show Upscaling Classification Performance

We also measured classification performance on the Netflix video frames

as shown in Table 5.6. Here, Feng et al. largely underperformed, indicating

that measurements on the frequency magnitude are more ambiguous for the

given content. When compared to Table 5.5, more mis-classifications occurred

for all models. The accuracies across all models are low, implying that classi-

fying the interpolation function is a difficult problem.

5.1.6 Discussion

We proposed a natural scene statistics-based method of predicting the

amount of upscaling that has been applied to a picture. We show it to be

an accurate and monotonic predictor of upscaling, which can be trained using

linear regressors. In addition, the proposed model is a general spatial model

that is not necessarily limited to the upscaling artifact.

In fact, we show that this approach can be extended to other artifact

types. Instead of estimating the basis functions using PCA, we solve for the

basis functions that work best for the specific detection task.
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5.2 VIDSPECT System Design
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Figure 5.5: VIDSPECT system for detecting and assessing artifact severity.
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Inspired by our study of natural scene statistics computed on basis

function responses, we introduce an effective, holistic, and compute-efficient

framework for detecting and assessing distortion artifacts in video masters,

as depicted in Fig. 5.5. In creating this concept, we make the following

contributions:

• We develop a first-of-a-kind video master inspection model and algorithm

called Video Impairment Detection by SParse Error CapTure (VID-

SPECT), which is designed to detect a set of the most common and

annoying artifacts that occur in digital source masters, then it assesses

the quality of the analyzed masters.

• We designed and built the LIVE Video Masters database described in

Chapter 4, which includes opinions gathered on distortions that are rele-

vant to the concerns of streaming digital video companies. Video sources

were obtained from both Netflix and the public domain, allowing us to

release a sizable subset of this database at [7].

• We devise a sparse dictionary learning model described in Sec. 5.1.1,

which can be used to learn a discriminative set of basis functions for

video impairment classification and quality prediction.

• We supply a free software release of VIDSPECT at [17].

Basis pursuit denoising (BPDN) is often used when modeling the data

distribution of a video signal. BPDN balances a trade-off between data fi-
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delity and sparsity, assuming that a higher dimensional video signal can be

represented in a lower dimension with minimal loss of information. In BPDN,

data is reconstructed using a weighted sum of basis functions. Limiting the

participation of basis functions in the reconstruction is an `0 norm, for which

finding an exact minimizing solution is NP-hard. Lasso [129] was developed

as a way of relaxing `0 minimization by instead using the `1 norm, which also

leads to sparse solutions in many instances.

5.2.1 Pre-Processing Model

VIDSPECT pre-processes each video frame by perceptually relevant

spatial bandpass filtering and subsequent local non-linear divisive normaliza-

tion [106]. Following the image quality literature, we will refer to this step

as Mean-Subtracted Contrast Normalization (MSCN) [106, 82, 81]. MSCN is

used in several successful image quality assessment (IQA) models as a pre-

processing step prior to feature extraction, since it tends to strongly Gaus-

sianize and decorrelate image pixels when applied to high-quality, undistorted

images (or video frames). This is the same normalization procedure applied in

VIDMAP It greatly reduces the image space to something resembling Gaussian

white noise. When distortions are present, this property often becomes lost,

hence statistical measurements made on MSCN-processed images are highly

sensitive to distortions, viz., are “quality-aware.” The MSCN coefficients of a

video frame I are given by

Î(x) =
I(x)− µ(x)

σ(x) + C
(5.1)
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where

µ(x) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(x)

and

σ(x) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(x)− µ(x))2,

where K = L = 3, x are spatial coordinates, and

w = {wk,l|k = −K, · · · , K, l = −L, · · · , L}

is a 2D circularly-symmetric, unit volume Gaussian weighting function sam-

pled out to 3 standard deviations. The parameter C = 1 avoids saturation on

low-contrast regions.

The BRISQUE IQA model [82] deploys parametric fits of empirical

probability distributions of the MSCN coefficients as the basis for extracting

quality-aware picture features. As we explain in the next section, we will

instead model local correlations using a set of basis functions as feature ex-

tractors. In this way, we will be able to characterize patterns that imply

degradations in quality. We consider only the luminance channel when com-

puting MSCN coefficients.

In Sections 5.2.2 and 5.2.3, two classes of modeling are described. In

Section 5.2.2, a method of modeling basis functions using patch-based data
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is described. To overcome limitations associated with this approach, Section

5.2.3 discusses the transition to convolutional-based learning of discriminative

basis functions.

5.2.2 Patch-based Sparsity Model

Neurons in human visual cortex decompose image signals into numerous

bandpass channels that extract local spatio-temporal information. Classically,

overcomplete wavelet transforms are often used to model this process. The

dual nature of image statistics and the way the early visual system efficiently

encodes information was highlighted by the discovery by Olshausen and Field

[92, 120], that filters used to efficiently represent natural images mimic those

found in visual cortex. Specifically, they learned a set of image basis functions

by using a simple sparsity penalty applied on total activation energy. Sparsity

priors have subsequently been successfully implemented in many image pro-

cessing tasks [23], such as facial recognition [149, 145, 72], pattern modeling,

denoising [43], and super-resolution [146].

We are interested in developing similar optimal encoding schemes for

specific visual detection tasks. Just as visual cortex can be modeled as an over-

complete filterbank, we consider the possibility of learning embedded patterns

in MSCN transformed images using an automatic feature extraction technique

that utilizes such a learned filterbank. Towards this purpose, sparse dictio-

nary learning can be used to discover those atoms which underlie pristine and

distorted natural images.
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Sparsity applied on image patches has shown utility in general recog-

nition and denoising problems. The patch-based sparsity functional, which

seeks to minimize the difference between batch of MSCN-transformed patches

S and a small number of weighted basis functions φ is defined by

argmin
X,φ

1

2

∥∥∥∥∥S −∑
k

φkXk

∥∥∥∥∥
2

2

+ λ ‖X‖1 (5.2)

subject to

‖φk‖2 = 1, X ≥ 0.

Note that each basis function in φ is constrained to share the same dimension as

the input MSCN patch Si. Sparsity is achieved by penalizing the absolute sum

of coding matrixX using an Lagrangian multiplier λ. This type of penalization

of the coding matrix is known as the `1 norm.

Since this functional is unsupervised, it does not fully exploit additional

information (such as labels). To overcome this, binary labels that indicate

artifact presence may be added to the functional. The updated functional

with labels is given by

argmin
X,φ,pc

[
1

2

∥∥∥∥∥S −∑
k

φkXk

∥∥∥∥∥
2

2

− α
∑
c

yc log(pc) (5.3)

+ λ ‖X‖1

]
,

subject to

‖φk‖2 = 1, X ≥ 0
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where the first term penalizes the reconstruction error and the second penal-

izes non-discriminative codes, y is a matrix of binary class labels, and ‖X‖1
is the sparsity term. The codes in X are constrained non-negative to enforce

an additive relationship among unit-normalized dictionary elements. The pre-

dicted class label vector pi is computed using a linear projection followed by

softmax normalization, using

pc =
e
∑
A(SWcφc)+bc∑

j e
∑
A(SWjφj)+bj

to project correlations between filters and the input signal onto probability

estimates. The diagonal weight matrix Wc is constrained non-negative to

enforce correlation between signal and φ while reweighing the contributions of

each correlation to the overall prediction of class c. Finally, b is the class bias.

The term SWcφ measures correlation of reweighted dictionary elements Wcφ

with the data S. The function A(·) is the ReLU activation function, the same

function commonly used between layers in neural networks. When an element

from φ correlates with the patch, the output should be a positive value that

scales with the degree of correlation. When φ has a non-positive correlation,

no response is passed through A(·). To isolate filters for particular classes,

values in Wc can be set to 0 to disable elements in φ for a class.

Discriminative sparse feature learning has been studied previously [147,

77, 55, 102, 73]. Previous methods have attempted to increase the dictionary

discrimination power by making the sparse codes more discriminative. Unfor-

tunately, we find that, at least in our application, this approach can couple
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the sparse code solution directly to the input labels. In other words, discrim-

inative codes are found based on the ground truth labels. Because of this, it

turns out that supervised dictionaries learned by making codes more discrim-

inative do no better than unsupervised dictionaries on the artifact detection

task. Our approach is different from previous methods, since the sparse code

is decoupled from the classification problem. Classification can be thought

of as a projection from the input data to the class labels. This approach to

incorporating labels into the sparse functional is closest to the work of Mairal

et. al. [77], but unlike Mairal et. al., there is no direct dependence between

the sparse coding problem and the classification problem. As a result, the dic-

tionary learned by minimizing Equation 5.3 will recover the same codes found

by minimizing Equation A.1 with the same dictionary. We find that enforcing

independence between the code update step and the dictionary update step is

necessary for the artifact detection task.

Since equation A.1 is convex in X while φ is fixed, we can rewrite

equation A.1 to take advantage of the Alternating Direction Method of Mul-

tipliers (ADMM) [32] to solve the `1 minimization. This derivation is further

explained in Appendix A.
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MSCN Transform Sparse Filterbank*

Average Top P % per Filter Response

Input Image

Machine Learning Model (RF, SVM, etc.)

Artifact Prediction

Figure 5.6: Processing stages of VIDSPECT used to compute an artifact pre-
diction given any input image and trained sparse filterbank.

This system of detecting artifacts in patches can be extended to images

and frames of videos, by applying basis functions as convolution templates.

In order to expand from patch-based to whole-frame analysis of artifacts, we

consider the sparse filterbanks learned by appropriate minimization of equa-

tions A.1 and 5.3 to be tuned for detecting artifacts and predicting artifact

intensity. We developed a VIDSPECT extraction model which uses this filter-

bank as a set of feature extractors. The processing stages of VIDSPECT are:

computing the MSCN transform on the input frame, using a pre-computed

filterbank designed by appropriately minimizing equation 5.3, convolving the

MSCN transformed video frame by that filterbank, averaging top responses,
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then mapping those averages to class labels, as depicted in Fig. 5.6. As we

will show, patch-based VIDSPECT performance well across multiple upscaling

tasks and for multiple configurations of sparsity and machine learning algo-

rithms.

5.2.2.1 Upscaling Problem Analysis

One approach to studying upscaling would be to model the anti-aliasing

filter kernel itself. Such an analysis might involve spatial/frequency analysis

of the filter along with analysis of the image spatial/frequency statistics. How-

ever, such a global analysis might overlook any peculiarities regarding how real

natural picture data is locally perturbed by upscaling. Of particular interest

is how to approach perturbations of the natural statistics that occur when

the amount of upscaling is arbitrary. To study how natural video frames are

perturbed by upscaling, we learned a set of sparse discriminative filters using

both upscaled and non-upscaled video frames.

We studied four upscaling interpolation schemes: bilinear, bicubic,

Lanczos, and nearest neighbor upscaling, since these are all commonly used

to resize, retarget, and otherwise edit video frames. To conduct the analysis,

we collected a large dataset of more than 100,000 high quality Netflix video

frames. We upscaled these frames using 1 of the 4 chosen interpolation func-

tions. The upscaling ratios were randomly applied in the range 1.25 to 3.0.

This range was chosen since we are interested in detecting a range of upscaling

factors that includes the practical extreme case where a 720p film is upscaled
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to 2160p.

To generalize our upscaling analysis, we mixed two philosophies. First,

we center cropped from within each video frame, then upscaled to the size

of the frame, which ensures that pristine frame data is only perturbed by

the upscaling artifact. In the second, alternative approach, we downscaled

the frame using a Lanczos-4 filter such that the upscaling factor maintains

the same size as the original frame, which ensures that content is held fixed

across upscaling factors. We also consider frames downscaled using Lanczos-4

as a part of our non-upscaled frame data. These two scenarios were selected

to alleviate concerns regarding scale in film content while also attempting to

maintain upscaled film grain noise artifacts.

We then extracted several 25x25 patches from each frame. This size

of 25x25 was determined based on the maximum interpolation kernel width,

which happens to be Lanczos kernel with upscaling factor of 3. We split this

collection of patches into training and testing halves, by dividing based on

frame content. This yielded 60,000 patches for testing and 100,000 patches

for training. A total of five classes are balanced in both patch datasets - "No

Upscaling," "Bilinear," "Bicubic," "Lanczos," and "Nearest Neighbor."

To explore the temporal aspect of videos, a separate dataset of frame-

differences was created using the same methodology. Two consecutive video

frames are differenced then processed using MSCN. Patches are extracted,

taking special care not to extract patches near frame edges. This allows us to

produce a second patch-based dataset of equal size to the single-frame dataset,
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allowing us to directly compare the difference in prediction performance be-

tween single-frame and frame-difference predictors.

Towards understanding how well the learned system can characterize

upscaling artifacts, we devised five tasks, the first of which involved use of just

the sparse code with the last four tasks involving only the use of VIDSPECT

features. The first task was to predict the interpolation kernel from the im-

age data using a sparse code. The second task was to discriminate between

upscaled and non-upscaled frames. The third involved identifying the inter-

polation scheme used from among non-upscaled (pristine), bilinear, bicubic,

Lanczos, and nearest neighbor upscaling. The fourth was to predict native

resolution of both pristine and upscaled images. Lastly, the fifth was to study

how effectively the sparse basis functions can be adapted to predict human

opinion scores of upscaling.

5.2.2.1.1 Detection Shallow machine learning algorithms yield models

that produce a final predictor following a process of feature extraction. For

example, BRISQUE [82] and Feng [44] use a support vector machine (SVM)

to produce a final mapping. Since it is not clear which model should be used

for mapping algorithm features to either class labels or continuous labels, we

evaluated two non-linear models, an SVM and a Random Forest (RF), and

compared them against linear models including Linear Discriminant Analysis

(LDA) and linear regression. Optimal parameters for each model are chosen

by maximizing the median performance of 5-fold cross validation using just
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Table 5.7: Upscaling detection performance measured on the test set of 20,000
patches, where upscaling type includes “Not Upscaled,” “Bilinear Upscaling,”
“Bicubic Upscaling,” “Lanczos Upscaling,” and “Nearest Neighbor Upscaling.”
The reported measure is the F1 score.

Algorithm Bilinear Bicubic Lanczos N.
Neighbor All

VIDSPECT (α = 1.0) 0.9950 0.9949 0.9952 0.9923 0.9909
VIDSPECT (α = 0.0) 0.9715 0.9843 0.9931 0.9810 0.9689
VIDSPECT-D (α = 10.0) 0.9884 0.9909 0.9934 0.9914 0.9875
VIDSPECT-D (α = 0.0) 0.9860 0.9894 0.9926 0.9884 0.9847
Goodall et al. [50] 0.9872 0.9885 0.9941 0.9977 0.9893
BRISQUE [82] 0.9331 0.8988 0.8847 0.8847 0.8730
Vázquez-Padín et al. [133] 0.9736 0.9706 0.9683 0.9929 0.9729
Feng et al. [44] 0.7207 0.8303 0.9155 0.8150 0.7206

(a) Evidence for upscaling (b) Evidence against upscaling

Figure 5.7: Filter developed for positive and negative evidence categories.

the training subset. To assess the binary classification performance, we mea-

sured the F1 score, which is the harmonic mean of precision and recall, and

the Matthews Correlation Coefficient (MCC), which is a balanced measure
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Table 5.8: Upscaling detection performance measured on the test set of 20,000
patches, where upscaling type includes “Not Upscaled,” “Bilinear Upscaling,”
“Bicubic Upscaling,” “Lanczos Upscaling,” and “Nearest Neighbor Upscaling.”
The reported measure is Matthew’s Correlation Coefficient (MCC).

Algorithm Bilinear Bicubic Lanczos N.
Neighbor All

VIDSPECT (α = 1.0) 0.9899 0.9897 0.9904 0.9845 0.9818
VIDSPECT (α = 0.0) 0.9427 0.9686 0.9862 0.9620 0.9379
VIDSPECT-D (α = 10.0) 0.9767 0.9819 0.9868 0.9827 0.9750
VIDSPECT-D (α = 0.0) 0.9719 0.9788 0.9853 0.9768 0.9693
Goodall et al. [50] 0.9744 0.9769 0.9882 0.9953 0.9786
BRISQUE [82] 0.8650 0.7949 0.7657 0.7639 0.7417
Vázquez-Padín et al. [133] 0.9469 0.9409 0.9361 0.9858 0.9454
Feng et al. [44] 0.7207 0.8303 0.9155 0.8150 0.7206
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Figure 5.8: Upscaling kernel prediction for individual samples randomly se-
lected from test set. The basis learned using λ = 0.1 and α = 1000.0 was
used.

related to the chi-square statistic. To assess multi-class classification perfor-

mance, we measured the F1-macro score, which is the harmonic mean of the

averaged precision and the average recall across classes. To assess regression

performance, we measured Spearman’s Rank-Ordered correlation Coefficient

(SRCC) for monotonicity and Mean-Squared Error (MSE) for point-wise ac-

curacy.
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Tables 5.7 and 5.8 list the performance results of VIDSPECT and

VIDSPECT-D on the upscaling detection task. VIDSPECT-D refers to VID-

SPECT applied on frame differences. We tested both detection performance

when only one interpolation method was present in the upscaled class, and also

when all interpolation methods were present in the upscaled class. Among all

machine-learning methods, the SVM classifier provided the best performance,

although the Random forest classifier achieved nearly identical performance.

In general, LDA yielded only slightly reduced performance. From these results,

we conclude that VIDSPECT yielded the best upscaling detector.

Evaluation can be done per-patch for whole frames using the model

in Fig. 5.6. Much more evidence of upscaling can be found when scanning

through a frame, since a frame is composed of many patches. A minimum of

one patch in the frame needs to exhibit strong evidence of upscaling to classify

the entire frame as upscaled.

We evaluated VIDSPECT by choosing parameters for each model that

reasonably spanned the parameter space for α and λ. We considered α ∈

{0.0, 1.0, 10.0} and λ ∈ {0.1, 0.5, 1.0}. The best learned positive and negative

evidence detection filters are provided in Fig. 5.7. From the positive evidence

for upscaling in Fig. 5.12a, we can see checkerboard patterns and directional

sinusoid-like patterns. From the negative evidence in Fig. 5.12b, we can see

much higher frequencies.

Table 5.5 lists the performance results of VIDSPECT on the upscaling

detection task. We tested both detection performance when only one interpo-
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lation method was present in the upscaled class, and also when all interpolation

methods were present in the upscaled class. Among all machine-learning meth-

ods, the SVM classifier provided the best performance, although the Random

forest classifier achieved nearly identical performance. In general, LDA yielded

only slightly reduced performance. From these results, we conclude that VID-

SPECT yielded the best upscaling detector, and that using different sparsity

methods in it provided only small differences in performance.

5.2.2.1.2 Method Discrimination The filters for the discrimination prob-

lem are provided in Fig. 5.9. These basis functions all exhibit directional high

frequency patterns, which intuitively follows since upscaling artifacts mostly

affect high-frequencies. Evidence against upscaling exhibits the highest fre-

quencies, which intuitively follows from how frequency spectra falloff more

rapidly for each of the different interpolation methods. If high frequencies are

well-represented in a patch, then it likely not upscaled. The progression in

interpolation order can be clearly seen across Bilinear, Bicubic, and Lanczos

basis classes. In other words, bilinear basis functions exhibit patterns with 1-2

cycles, bicubic basis functions exhibit 2-3 cycles, and Lanczos exhibits at least

two cycles, all at different orientations. Nearest neighbor is visually distinct,

picking up on different numbers of high-frequency cardinal edges.

Table 5.9 compares performance across methods for the upscaling type

discrimination task. Again, the task was to discriminate amongst the “Not Up-

scaled,” “Bilinear Upscaling,” “Bicubic Upscaling,” “Lanczos Upscaling,” and
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(a) Not up-
scaled

(b) Bilinear (c) Bicubic (d) Lanczos (e) Nearest
Neighbor

Figure 5.9: Dictionaries learned for each evidence category, when assigning 10
filters to each. Filter size is held constant at 25x25.

“Nearest Neighbor Upscaling” classes. VIDSPECT performed well when com-

pared against other models.

5.2.2.1.3 Kernel Estimation Using sparse filters, we can predict the

original kernel from the sparse coding matrix, using a small fully connected

neural network with a single hidden layer of 25 units to map from the sparse

code to the kernel function. We used

‖G−W2f(W1X + b1) + b2‖22 (5.4)

where G is the 25xN kernel matrix where N is number of samples and f is the

logistic function given by
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Table 5.9: Upscaling type discrimination performance on the test set of 20,000
video frame patches when classifying upscaling type among “Not Upscaled,”
“Bilinear Upscaling,” “Bicubic Upscaling,” “Lanczos Upscaling,” and “Nearest
Neighbor Upscaling.” Reported values are F1-macro scores, since the classes
are well-balanced. Algorithm F1-Macro

VIDSPECT (α = 1.0) 0.9225
VIDSPECT (α = 0.0) 0.9206
VIDSPECT-D (α = 10.0) 0.8965
VIDSPECT-D (α = 0.0) 0.8838
Goodall et al. [50] 0.8753
BRISQUE [82] 0.4921
Feng et al. [44] 0.7519

Table 5.10: MSE between predicted kernel and true kernel for different α and
λ evaluated on the test set of patches. The number of basis functions used is
100.

λ = 0.1 λ = 0.5 λ = 1.0

Single-frame α = 0.0 0.0129 0.0119 0.0134
Single-frame α = 1000.0 0.0086 0.0094 0.0120
Frame-diff α = 0.0 0.0165 0.0162 0.0169
Frame-diff α = 1000.0 0.0134 0.0130 0.0143

f(x) =
1

1 + e−x
(5.5)

. We used gradient descent to find the weights for W2, W1, b1, and b2 in Equa-

tion (5.4). Although we use this perceptron for mapping from code responses

to upscaling kernel, we believe any machine learning technique can be used.

Estimating the upscaling kernel allows for direct identification of the

impulse function used for interpolating the image data. OpenCV was used

to compute both the interpolation kernels, as it was also used for generating
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Table 5.11: Native resolution prediction on patches that were not upscaled, and
upscaled using “Bilinear Upscaling,” “Bicubic Upscaling,” “Lanczos Upscaling,”
and “Nearest Neighbor Upscaling” using upscaling ratios chosen from the range
1.25x to 3x. The metric being measured is SRCC.

Algorithm Bilinear Bicubic Lanczos N.
Neighbor All

VIDSPECT (α = 0.1) 0.9684 0.9669 0.9665 0.9357 0.9445
VIDSPECT (α = 0.0) 0.9678 0.9668 0.9667 0.9353 0.9353
VIDSPECT-D (α = 10.0) 0.9469 0.9578 0.9567 0.9260 0.9250
VIDSPECT-D (α = 0.0) 0.9383 0.9458 0.9581 0.9194 0.9179
Goodall et al. [50] 0.9076 0.9021 0.9092 0.9325 0.9055
BRISQUE [82] 0.8412 0.8235 0.8343 0.7933 0.7663
Vázquez-Padín et al. [133] 0.8713 0.8541 0.8460 0.8638 0.8591
Feng et al. [44] 0.8017 0.8702 0.9037 0.8647 0.8048
Pfennig and Kirchner [96] 0.6734 0.7142 0.7486 0.5546 0.6184

the upscaled images. As can be seen in Fig. 5.8, the upscaling kernel can

be estimated with great accuracy. In Table 5.10, we see improved kernel

prediction performance when using labels, by comparing α = 0 and α = 1000

cases.

5.2.2.1.4 Native Resolution Prediction Tables 5.11 and 5.12 list native

resolution prediction performances across algorithms. VIDSPECT delivered

much better predictions of native resolution than the other models, with each

sparsity configuration being close in performance. When evaluating different

machine learning algorithms, Random Forest Regression performed best for

this task.
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Table 5.12: Native resolution prediction on patches that were not upscaled, and
upscaled using “Bilinear Upscaling,” “Bicubic Upscaling,” “Lanczos Upscaling,”
and “Nearest Neighbor Upscaling” using upscaling ratios chosen from the range
1.25x to 3x. The metric being measured in MSE.

Algorithm Bilinear Bicubic Lanczos N.
Neighbor All

VIDSPECT (α = 0.1) 20.59 14.30 14.22 20.83 26.28
VIDSPECT (α = 0.0) 21.73 14.99 14.63 21.36 27.20
VIDSPECT-D (α = 10.0) 35.14 24.82 21.26 29.97 37.85
VIDSPECT-D (α = 0.0) 39.92 27.46 21.18 46.57 46.13
Goodall et al. [50] 63.83 77.21 63.87 15.58 70.70
BRISQUE [82] 168.44 202.19 189.64 250.26 282.86
Vázquez-Padín et al. [133] 201.81 234.94 250.88 227.76 227.66
Feng et al. [44] 250.54 141.57 76.88 147.70 238.02
Pfennig and Kirchner [96] 466.51 445.45 431.40 578.59 505.33

(a) Positive evidence (b) Negative evidence

Figure 5.10: Sparse filters learned for interlacing.

5.2.2.2 Interlace Detection

Combing artifacts can be much more visually obvious than upscaling

effects when viewed on progressive displays. Combing manifests as annoying
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jigsaw patterns, typically along edges, arising from interleaved rows shared

between original frames offset slightly in time. The artifact often becomes

increasingly obvious on scenes containing rapid motion.

We collected a training/validation dataset of 581 interlaced combed

sequences, where sequences consist of 3 frames. A combed sequence is one

where the middle frame exhibits visible combing (the others may also). To

balance these positive samples, an equally sized set of 581 non-interlaced video

sequences was gathered as negative examples. A negative sequence is one

where no frames exhibit visible combing. We collected a separate content-

distinct test dataset containing 75 interlaced three-frame sequences and 75

undistorted three-frame sequences.

The functional defined in Equation (5.10) was used to predict the comb-

ing artifact. Thus, for 338 basis functions, W is a 1x338 matrix and b is a

scalar. We evaluated parameters for α ∈ {0.0, 0.1, 1.0, 10.0} to understand how

classification capability is impacted. Sparsity parameters of λ ∈ {0.1, 0.5, 1.0}

were also evaluated.

Figure 5.10 depicts a set of basis functions that are correlated and a

set of basis functions that are uncorrelated with the interlacing artifact label,

based on values learned in W . In Fig. 5.10a, the zigzag pattern of combing is

apparent. In Fig. 5.10b, low-frequencies and vertical edges dominate, which

indeed do not indicate presence of combing.

Table 5.13 lists the F1 and MCC performances for the selected algo-
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Table 5.13: Combing detection results computed on the test set of 150 video
sequences.

Algorithm F1 MCC
VIDSPECT (α = 1.0) 0.9730 0.9470
VIDSPECT (α = 0.0) 0.9730 0.9470
VIDSPECT-D (α = 10.0) 0.9306 0.8695
VIDSPECT-D (α = 0.0) 0.9241 0.8552
BRISQUE [82] 0.8718 0.7357
FFmpeg 0.9167 0.8427
Baylon [28] 0.8811 0.7761

rithms. VIDSPECT performance is reported using a Random Forest classifier,

and we noticed little difference when testing SVM and LDA classification per-

formance. We observe that the each sparse configuration of the VIDSPECT

detector yielded much higher accuracy than the other compared detectors,

while requiring only a single frame. Of course, the single-frame sparse detec-

tor involves significantly higher computational load to achieve the increase in

performance. Optimized using 5-fold cross validation, the optimal threshold

parameter for FFmpeg’s detector is T1 = 1.0551, and the optimal parameters

for Baylon’s detector are T0 = 75, T1 = 1.113, and Z = 10.

5.2.3 Convolutional Sparsity Model

We find that a dictionary learned using convolution learns more spe-

cific structures of distortions. We start with the BPDN sparsity inducing `1

functional [129], in convolutional form
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argmin
x,φ

1

2

∥∥∥∥∥Î −∑
k

φ̂k ∗ xk

∥∥∥∥∥
2

2

+ λ ‖x‖1 (5.6)

subject to ∥∥∥φ̂k∥∥∥
2

= 1, x ≥ 0.

where Î is the pre-processed image, φ̂ are normalized dictionary elements, x is

the coding tensor, and xk is the spatial coding map for dictionary element k.

Sparsity is achieved by penalizing the coding tensor x. The idea behind this

minimization problem is that the optimized basis functions will reflect sparse

distortions from the otherwise very regular structure of natural images.

Given that we wish to detect a finite set of domain-specific distortions,

we instead learn a set of sparse basis functions by learning them on labeled

sets of distorted videos. Thus, as in the patch-based functional, we impose

binary labels that indicate the presence or absence of a distortion, to optimize

a discriminative set of basis functions for each distortion. Thus, modify (5.6)

with labels as

argmin
x,φ,p

1

2

∥∥∥∥∥Î −∑
k

φ̂k ∗ xk

∥∥∥∥∥
2

2

− αMN
∑
c

yc log(pc) + λ ‖x‖1 ,

(5.7)

subject to ∥∥∥φ̂k∥∥∥
2

= 1, x ≥ 0
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where α is the classification weight, yc are the binary class labels that indicate

the presence or absence of a given distortion, and p is the predicted distortion

probability. All values in the coding map must be non-negative to model

feature correlations with the distortion artifacts.

The normalized filterbank φ̂ is made more discriminative by applying

a logistic non-linearity

p =
1

1 + e−
∑

k max(A(S∗φ̂k))∗Wk−b
, (5.8)

whereWk is a scalar which remaps the filter activations to weighted evidence, b

is a scalar classification bias, A(·) is the ReLU activation function, and max(·)

outputs the maximum response over spatial indices. W is forced to be strictly

positive to reduce dependencies among the filters. For the artifact detection

problem, the two-class problem weighs evidence for, not against, the detection

of an artifact. Given this, filters learn to promote artifact detection, while the

bias balances the scales of evidence for detection.

To minimize (5.6) and (5.10), one could leverage the proximal methods

recently developed to compute efficient convolutional sparsity [143, 27]. Since

the data variable S is assumed to be much larger than available memory, the

learning must necessarily be done in batches, as in [138]. We opt for a simple

approach that can leverage any popular convolutional network framework. We

optimize x using a convolutional autoencoder, learned using gradient descent,

instead of optimizing for the sparse coding tensor x directly. We reformulate

the functionals to take the form of an autoencoder, by letting x = A(S ∗ φT ).
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Figure 5.11: Convolutional sparsity feature extraction flowchart.

Note that φT is the non-normalized transposed version of φ.

This approach allows multiple layers of sparse filters to be used. We

also define one additional layer, extending this approach using y = A(x ∗ θT ),

where θ is a new filterbank, and y are the response outputs of this new layer.

With this layer, Eq. (5.8) becomes

p =
1

1 + e−
∑

k max(yk)∗Wk−b
(5.9)

to enforce that response outputs contribute to the classification problem. We

find that this additional layer allows for a more compact representation of

artifacts, significantly improving artifact detection and subjective quality pre-

diction.

The revised supervised sparse functional that incorporates the autoen-

coder optimization is provided as

argmin
x,φ,pck

1

2

∥∥∥Î − y ∗ θ̂ ∗ φ̂∥∥∥2
2
− αMN

∑
c

yc log(p) + λ [‖x‖1 + ‖y‖1] .

(5.10)
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These sparse filterbanks φ and θ can be used for feature extraction

according to the flow depicted in Fig. 5.11. An input frame or frame differ-

ence is pre-processed using Eq. (5.1), convolved with filters in φ, then passed

through a ReLU activation layer to generate the response map tensor x. The

responses in x are convolved with θ and passed through a ReLU activation to

compute the response map tensor y. The responses are pooled by choosing

the maximum of each filter response to develop a final feature vector.

5.3 Distorted Video Datasets

Toward training and validating our artifact detection model, we devel-

oped a collection of independent distortion-specific video datasets. On consul-

tation with colleagues in the streaming video industry, we studied the follow-

ing important artifacts: upscaling, banding, video hits (MPEG2) and (H.264),

dropped frames, and incorrect aspect ratio. For each dataset, we collected a

number of pristine videos from the Netflix collection. To isolate scenes, we seg-

mented the pristine videos along scene boundaries using [93], which compares

luminance distributions between frames.

For the upscaled video dataset, we upscaled pristine video sources by

randomly choosing one from among the “Bilinear,” “Bicubic,” “Lanczos,” and

“Nearest neighbor” interpolation methods, and choosing a uniform random

number in the range [1.25, 6.0] as the upscaling factor. To complement this first

collection, we created another group of upscaled videos, by first downscaling

an input video by a uniform random factor chosen in the range [1.25, 6.0] using

101



Lanczos interpolation, then upscaling it back to native resolution using one

of the randomly chosen interpolation types. We did this to simulate realistic

occurrences whereby videos may have been downscaled, then later upscaled to

fit evolving display technologies. After upscaling a video, a number of 256x256

patches were extracted from regions exceeding a minimum variance threshold.

Without applying any threshold on minimum variance, pristine patches were

selected from random locations within the pristine video set, and additional

pristine patches were selected from the downscaled versions of the pristine

video set. In this way, we collected a total of 129,561 samples.

The quantized video dataset was produced from pristine video sources

by first selecting a quantization factor q ∈ {8, 16, 32}, then for a given ran-

domly selected patch P , applying

Q = q
⌊P
q

⌋
(5.11)

to yield a quantized patch Q. We selected the same 256x256 patch size as

in the upscaling dataset, for both quantized and non-quantized patches. For

quantized patches, a small threshold was used to reject low contrast patches.

A total of 64,925 quantized samples were produced in this manner.

The dataset for videos with dropped frames was created from pristine

videos by dropping N consecutive frames, where N ∈ {3, 6, 9}. To collect

positive examples of dropped frames, we captured the 2 frames preceding and

the 2 frames following the dropped frames, then concatenated them to form a

4 frame sequence. Next, we selected random spatial locations to extract four
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256x256 patches centered about each location. A minimum value of 5 of the

widely-used temporal activity index TI [141] was required across all frames

to ensure that enough motion was present such that a frame drop would be

visible. We did not threshold for negative samples. A total of 51,562 samples

were generated in this way.

Two video hits datasets were created by corrupting MPEG2 and H.264

bitstreams. To corrupt videos from the pristine corpus, we used FFmpeg’s

’bsf’ noise flag, which sets the corruption ratio, which is defined as the propor-

tion of correct bits relative to distorted bits. The lower this ratio, the more

corruptions that appear. We set the ratio to 1:2000000 for H.264 hits and

1:100000 for MPEG2 hits. These values were selected such that both small

and large-scale artifacts would appear in the corrupted videos. We then ex-

tracted 256x256 patches from corrupted videos, rejecting patches that did not

exceed a small threshold on the absolute difference between the patch and its

pristine version. We set the threshold to ensure that the video hits were just

noticeable when the video was played. We also avoided using error conceal-

ment during decoding of the corrupted videos. A total of 62,417 H.264 hit

samples, and 59,941 MPEG2 hit samples were generated.

The incorrect aspect ratio dataset was generated by either squeezing or

stretching the width of an input pristine video by a factor uniformly randomly

chosen in the range [1.15, 2.0]. This range of aspect ratio manipulation was

selected to cause visible distortions spanning barely noticeable to very notice-

able. All pristine videos was assumed to be of correct aspect ratio. Patches
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of size 256x256 were selected, each centered on a random spatial location in a

random frame. For patches selected from frames with incorrect aspect ratio,

a small threshold was used to reject regions of low contrast. A total of 38,670

patches of size 256x256 were collected in this way.

To facilitate detection of frame-differenced input data, we also extracted

spatially corresponding patches in the previous frame corresponding to the

patches extracted for incorrect aspect ratio, video hits, banding, and upscaling

datasets.

5.4 Model Analysis

We trained the VIDSPECT model on each dataset, using values of

α = 10.0 and λ = 1.0. For training, we used a batch size of 50 and a learning

rate of 1e-4. By measuring overall loss as shown in Fig. 5.14, we found that

VIDSPECT converged after 40,000 batch iterations.

Figure 5.12 depicts basis function sets φ, where each set is trained on

one of the five artifact types. The φ that were tuned for detecting upscal-

ing are shown in Fig. 5.12a. These exhibit a mixture of sinusoidal patterns

at various scales, which mimic the appearance of upscaling interpolation ker-

nels. Fig. 5.12b shows the banding basis functions, which contain highly

localized center-surround and edge patterns. For the hits basis functions in

Figs. 5.12c and 5.12d, more complex patterns appear, including patterns re-

sembling corner and edge detectors. Lastly, the aspect ratio basis functions in

Fig. 5.12e exhibit some stretching and squeezing in addition to both high and
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(a) (b) (c)

(d) (e)

Figure 5.12: Basis functions in φ, when training on (a) Upscaling; (b) Banding;
(c) Hits (H.264); (d) Hits (MPEG2); and (e) Incorrect Aspect Ratio.

low frequency details. Basis functions tuned for detecting dropped frames are

provided at [17], since they must be viewed as videos.

We further analyzed VIDSPECT by developing an input signal that

maximizes detection performance. The input signal was initialized using ran-
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(a) (b) (c)

(d) (e)

Figure 5.13: Hallucinated distortion patterns. (a) Upscaling; (b) Banding; (c)
Hits (H.264); (d) Hits (MPEG2); and (e) Incorrect Aspect Ratio.

dom Gaussian noise. Next, this input signal was iteratively refined to maximize

one feature in θ. After enough iterations, the input signal will mimic, or “hallu-

cinate,” the artifact. This method has been used to visualize the classification

responses of deep convolutional networks [121]. Figure 5.13 depicts halluci-

nation patterns for each distortion type. In Fig. 5.13a, the patterns exhibit

the rippling effect associated with upscaling artifacts. Semicircles indicating a

high-contrast and a flat region are observed in Fig. 5.13b. Figures 5.13c and

5.13d depict blocking artifacts associated with video hits, where larger blocks

are more useful for detecting MPEG2 hits. The hallucinations observed for in-

correct aspect ratio in Fig. 5.13e exhibit stretching and squeezing, in addition

to more complex patterns. The dropped frames artifact is further analyzed in

[17].
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Figure 5.14: Measurement of total loss of VIDSPECT during training.

5.5 Detection Analysis

We now assess the performance of the trained VIDSPECT model for

each detection task. To assess binary classification performance, we measured

the F1 score, which is the harmonic mean of precision and recall, and the

Matthews Correlation Coefficient (MCC), which is a balanced measure re-

lated to the chi-square statistic. We opted to have forty 25x25x1 filters in φ

and twenty 25x25x40 filters in θ, which effectively limits the output feature

vector length to twenty elements. To optimize this feature vector for detec-
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tion, we used a Support Vector Classifier (SVC). Each generated dataset was

divided equally into training and testing subsets, all methods are trained on

the training subset, and performance is evaluated on the testing subset.

According to the upscaling results in Table 5.14, VIDSPECT was com-

petitive with another specialized domain-specific filtering-based approach in

[50]. The generic IQA algorithm BRISQUE was next in order, which per-

formed surprisingly well, followed by Vázquez-Padín et al.’s method. Inter-

estingly, the frequency magnitude measurement method [44] performed worst,

although upscaling artifacts are theoretically simple to characterize in the fre-

quency domain.

Testing on banding artifacts showed that all of the compared methods

performed well, achieving very high F1 and MCC scores. This is not unex-

pected, since these artifacts are highly distinctive, and generally disrupt very

smooth, homogeneous regions along isolated spatial contours.

When evaluated on H.264 hits and MPEG2 hits, the performance of

VIDSPECT was the best, followed by that of VIDSPECT-D. The third-best in

both cases was the distortion-specific method by Glavota et. al.. BRISQUE

performed surprisingly well when detecting H.264 hits, but delivered poor

performance on MPEG2 hits.

When testing on dropped frame distortions, the detector developed by

Upadhyay and Singh [132] delivered the best results. Surprisingly, a modified

form of BRISQUE applied to frame differences instead of frames (denoted
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BRISQUE-D), was the second best detector of dropped frames, followed by

VIDSPECT. Wolf [144] performed worst.

On videos impaired by incorrect aspect ratios, VIDSPECT performed

significantly better than the other methods.

5.6 Video Quality Prediction Model

When using VIDSPECT for video quality prediction, we extract a total

of 20 features per frame, which represent maximum responses. To reduce the

computational burden, we process every 16 frames for Upscaling, Banding, and

incorrect aspect ratio. For video hits, we process every two frames, and for

dropped frames, we process every frame. To pool these frame-based features

for a video sequence, we simply average these features across frames, except

for video hits for which we compute the maximum across frames. We have a

final feature vector of 20 for each video sequence.

We used the Spearman’s Rank Ordered Correlation Coefficient (SRCC),

Pearson’s Linear Correlation Coefficient (LCC), and Root Mean Squared Error

(RMSE) to measure prediction performance, as recommended in [35]. We

considered each distortion separately when assessing algorithm performance.

For each distortion category, the data was randomly split into 80% training

and 20% testing subsets, meaning 20 contents were used for training and the

remaining 4 were used for testing. We measured performance on the test set,

then randomized the selected contents. Measurements were aggregated over

1000 trials, and the median values computed. For each model that required a
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machine learning step to remap features to scores, we used a Support Vector

Regressor (SVR) with the ’rbf’ kernel. The SVR hyper-parameters C and γ

were found using grid search and 5-fold cross-validation. We remapped the

score predictions using the nonlinear function

y = β1(0.5−
1

1 + eβ2(x−β3)
) + β4x+ β5 (5.12)

where x is the subjective score and βi, i = 1...5 are fitted parameters solved by

minimizing the squared error between y and the ground truth scores [71, 137].

This function was used prior to computing the various performance measures.

As in Table 5.15, we found that VIDSPECT and VIDSPECT-D achieved

top performance according to all metrics on Upscaling, Banding, Hits (H.264),

Hits (MPEG2), and Incorrect Aspect Ratio, with competitive performance for

Dropped Frames. Each of the competing methods performed poorly on Hits

(H.264), Hits (MPEG2), and incorrect aspect ratio distorted video.

To determine how well quality can be predicted when severity is known,

we included a method named “Oracle,” which uses only the distortion sever-

ities as features. We found that the performance of this oracle is often high,

meaning that a model that can accurately classify distortion severity can be

expected to correlate well with subjective quality. VIDSPECT is an excellent

distortion detector, and thus an excellent quality predictor for most distortion

types.

Since the sparse filter responses are used to detect distortions, and

since each filter in each distortion specific filterbank tends to be sensitive
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to a different aspect of a distortion, we also plotted the correlations of the

filter responses against the human opinions in Fig. 5.15. In the plot, the

basis functions are sorted according to their absolute correlation with MOS.

The plots are quite interesting. For some distortions, many basis responses

contribute nearly equally (e.g. Hits (MPEG2)), while for others (e.g. Banding)

only a few do. To understand the relatively poor predictive performance of

aspect ratio with respect to the oracle, we analyzed VIDSPECT trained on

stretching
TargetWidth

SourceWidth
> 1

and separately trained on squeezing

TargetWidth

SourceWidth
< 1

the aspect ratio. We find that even when simplifying the detection task, the

correlation between VIDSPECT features and MOS remains low overall. Fig.

5.15 nicely clarifies the relative difficulties of the distortions.

5.7 VIDSPECT System Analysis

Finally, we analyzed the end-to-end performance of the VIDSPECT

system, which operates by first ingesting a video, determining which distortion

dominates the video, then assessing the video quality given that the distortion

is known. We evaluated the first step by using the video database to map sparse

filter responses to whole-video detection labels. We combined the responses

from each filterbank to perform a 7-class discrimination problem, and divided
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Figure 5.15: Correlations of pooled θ output to human opinion scores. Re-
sponses are sorted by correlation magnitude.

the database into training and testing parts, by randomly splitting on content.

We left out 4 contents for testing, and trained the SVC discriminator on the

rest. The discrimination performance of the overall distortion detection system

reached an F1 macro score of 0.7203. When leaving out the two most difficult

distortions (dropped frames and incorrect aspect ratio), the problem is reduced

to a 5-class problem. For this reduced problem, we observed an F1 macro score

of 0.9597.

To evaluate the misclassification rates on each distortion class, we com-
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puted a confusion matrix by collecting the test set predictions over 1000 ran-

domized train-test split iterations. We then normalized the confusion matrix

row-wise, as shown in Table 5.16. We can see that distortion-free video is

difficult to classify and is confused mostly with dropped frames, which are

spatially distortion-free. There is some confusion in classifying the two types

of video hits, but less confusion than might be expected, since these artifacts

overlap somewhat in appearance.

To measure the overall VIDSPECT quality prediction performance, we

combined the class discrimination segment with the 6 per-distortion quality

prediction modeling segment. We evaluated performance on the test set af-

ter training the entire VIDSPECT pipeline on the training set. After 1000

train/test trials, we computed the median performance, obtaining an SRCC

of 0.8072, an LCC of 0.9017, and an RMSE of 9.4499. We repeated this test

by leaving out the two most difficult distortions (dropped frames and incorrect

aspect ratio), obtaining an SRCC of 0.8568, an LCC of 0.8791, and RMSE of

9.0596. These are very promising results, particularly in view of the subtlety

of some of the distortions.

5.8 Discussion and Conclusion

We proposed a new, integrated framework for detecting distortions and

rating videos based on quality. It effectively uses the responses of tuned filters

to detect artifacts with across-the-board state-of-the-art performance. We also

showed that the filter responses are excellent indicators of video quality. The
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distortions can be effectively characterized using the same filterbank in both

stages (detection and quality prediction) of the VIDSPECT system.

Future work might include investigating cases where source videos have

been multiply distorted. Examples of this include combinations like compres-

sion and rescaling to achieve a specific compression ratio, the appearance of

interlacing alongside VHS artifacts in legacy content, and combinations of

aliasing with aspect ratio changes.
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Table 5.14: Detection results evaluated on test datasets. Boldface indicates
best performing method.

Distortion Category Method F1 score MCC

Upscaling

VIDSPECT 0.9902 0.9804
VIDSPECT-D 0.9789 0.9583
Goodall [50] 0.9885 0.9769
BRISQUE [82] 0.9794 0.9585
Feng et. al. [44] 0.8956 0.7844
Vázquez-Padín et al. [133] 0.9774 0.9546

Banding

VIDSPECT 0.9933 0.9866
VIDSPECT-D 0.9851 0.9708
BRISQUE [82] 0.9954 0.9909
Luo et. al. [75] 0.9903 0.9806

Hits (H.264)

VIDSPECT 0.9240 0.8552
VIDSPECT-D 0.9196 0.8478
BRISQUE [82] 0.8273 0.6467
AIDB [115] 0.7342 0.4867
Glavota et. al. [49] 0.8794 0.7777
Winter et. al. [142] 0.5521 0.2059

Hits (MPEG2)

VIDSPECT 0.8420 0.6999
VIDSPECT-D 0.8081 0.6425
BRISQUE [82] 0.6342 0.2959
AIDB [115] 0.6413 0.3124
Glavota et. al. [49] 0.8024 0.6296
Winter et. al. [142] 0.5159 0.1070

Dropped Frames

VIDSPECT-D 0.9033 0.8115
BRISQUE-D [82] 0.9142 0.8249
Upadhyay and Singh [132] 0.9510 0.9007
Wolf [144] 0.6827 0.2406

Incorrect Aspect Ratio

VIDSPECT 0.9848 0.9700
VIDSPECT-D 0.8880 0.7792
BRISQUE [82] 0.8796 0.7543
Feng et. al. [44] 0.7177 0.4805
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Table 5.15: Median quality prediction results evaluated on 1000 randomized
train/test splits.
Distortion Category Method SRCC LCC RMSE

Upscaling

Oracle 0.9338 0.9518 6.9231
VIDSPECT 0.9029 0.9317 8.1234
VIDSPECT-D 0.9091 0.9494 7.6651
BRISQUE [82] 0.9029 0.9312 8.4999
Video BLIINDS [108] 0.8811 0.9032 9.5642
Li et. al. [69] 0.8324 0.8442 11.9187

Banding

Oracle 0.8853 0.8803 13.0261
VIDSPECT 0.9118 0.9186 10.4019
VIDSPECT-D 0.8824 0.8812 12.8926
BRISQUE [82] 0.8765 0.8974 12.9704
Video BLIINDS [108] 0.9029 0.9293 11.0157
Li et. al. [69] 0.8588 0.8762 13.2335

Hits (H.264)

Oracle 0.8574 0.9252 8.7628
VIDSPECT 0.7972 0.8909 10.8210
VIDSPECT-D 0.8531 0.8966 10.1576
BRISQUE [82] 0.2697 0.1388 22.4274
Video BLIINDS [108] 0.4333 0.3596 21.1707
Li et. al. [69] 0.1189 0.0614 22.3638

Hits (MPEG2)

Oracle 0.9461 0.9617 5.9580
VIDSPECT 0.9091 0.9363 7.8349
VIDSPECT-D 0.8951 0.9200 7.8652
BRISQUE [82] 0.3147 0.1848 19.2417
Video BLIINDS [108] 0.3636 0.2718 18.9376
Li et. al. [69] 0.3497 0.2742 18.8895

Dropped Frames

Oracle 0.6427 0.6361 6.1218
VIDSPECT-D 0.2108 0.1747 7.3637
BRISQUE-D [82] 0.3912 0.3955 7.1888
Video BLIINDS [108] 0.1054 -0.0143 7.3345
Li et. al. [69] 0.1054 0.1227 7.3218

Incorrect Aspect Ratio

Oracle 0.8278 0.8129 6.2237
VIDSPECT 0.4930 0.5015 8.6907
VIDSPECT-D 0.1861 0.1491 10.2052
BRISQUE [82] 0.1538 0.1393 10.3758
Video BLIINDS [108] 0.1608 0.1574 10.2469
Li et. al. [69] 0.0280 0.0121 10.3309
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Table 5.16: Normalized confusion matrix computed using VIDSPECT to clas-
sify videos in the Video Masters database. Class prediction probabilities are
averaged over 1000 trials. Boldface indicates highest predicted value. Aspect
Ratio is abbreviated as AR.
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Hits (H.264) 0.000 0.883 0.055 0.000 0.056 0.007 0.000
Hits (MPEG2) 0.000 0.096 0.869 0.000 0.034 0.002 0.000
Upscaling 0.000 0.000 0.000 1.000 0.000 0.000 0.000
Dropped Frames 0.002 0.023 0.013 0.000 0.759 0.203 0.000
Incorrect AR 0.000 0.019 0.012 0.003 0.344 0.621 0.000
Distortion-Free 0.001 0.017 0.013 0.000 0.752 0.218 0.000
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Chapter 6

Conclusion and Future Work

In this dissertation, we proposed a No-Reference (NR) video source

inspection concept called VIDMAP, which is able to effectively learn how to

detect and localize multiple types of video artifacts without using a priori

models of the statistics or structures of the artifacts. We showed that VIDMAP

achieves state-of-the-art detection performance in most categories tested, with

competitive performance in the others. It is a practical tool that also assists

a user in visualizing distortion types, locations, and severities. We envision

that this model will be useful as a tool for source inspection of streaming video

collections.

We also proposed VIDSPECT, a new, integrated framework for de-

tecting distortions and rating videos based on quality. This framework is

developed in two stages, a detection stage and a quality assessment stage. We

showed that both stages performed well, and we also showed that the VID-

SPECT output responses are excellent indicators of video quality. Distortions

can be effectively characterized using the same set of filterbanks in both stages

(detection and quality prediction) of the VIDSPECT system.

Last, we proposed the LIVE Video Masters database, which contains
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a number of distortion types that are highly relevant to modern digital video

streaming companies. We believe that sharing this database will provide an

invaluable resource for those developing and evaluating source inspection sys-

tems similar to VIDSPECT.

A number of changes to VIDMAP can be explored. First, the convolu-

tional network can easily extended to multi-class problems, to predict amongst

an array of distortions, like VIDSPECT. Second, it can be extended to regres-

sion problems to offer subjective quality prediction, noise severity predictions,

or even a measure of distance between two groups of videos. Third, this con-

volutional network architecture can be rearranged to take advantage of the

first filter layer, which holds many low level filter operators common amongst

artifacts. This would serve to reduce computational overhead when predicting

responses to more than one artifact, and it could be possible that the amount of

training data can be effectively reduced, while maintaining high performance.

Both VIDSPECT and VIDMAP prediction models can be extended us-

ing deeper spatio-temporal pre-processing models that better decorrelate data.

The perceptual pre-processing of the human visual system begins at the com-

plex retinal layers of the eye, which has been observed to reduce the entropy of

signals both spatially and temporally before information is delivered through

Magnocellular and Parvocellular pathways post-retina. Training both detec-

tion models after this pre-processing should improve representational capacity,

leading to reductions in complexity. A richer pre-processing stage that mim-

ics low-level human vision allows for stronger assumptions regarding natural
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scenes statistics in the visual signal, which should be also be more informative

when learning to detect artifacts.

Future work related to source inspection might include investigating

cases where source videos have been multiply distorted. Examples of this

include combinations like compression and rescaling to achieve a specific com-

pression ratio. Another real-world example includes modeling the appearance

of interlacing alongside VHS artifacts in legacy content, and combinations of

aliasing with aspect ratio changes. Along the same lines, a particular manifes-

tation of a distortion may mimic another type of distortion, meaning that there

can be inherent ambiguity when discriminating these two distortion types.

Representing both similarities and differences amongst distortion representa-

tions should yield more effective predictors.

Studying other modalities is also of interest. Artifacts that appear in

hand-drawn cartoon videos do not necessarily follow the natural scene statis-

tics that we previously described. It has been observed that existing detec-

tion models, such as those designed for detecting upscaling or combing, fail

for these hand-drawn contents. During ingest, streaming companies often

observe these contents, making their study an important next step. In ad-

dition, images which are formed using completely different capture methods

may not follow usual NSS models, thus it would be of interest to investigate

how VIDMAP/VIDSPECT might be used in these modalities.
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Appendix A

Sparse Functional in ADMM Form

The basis pursuit denoising (BPDN) functional is given by

(X∗, φ∗) = argmin
X,φ

1

2

∥∥∥∥∥S −∑
k

φkXk

∥∥∥∥∥
2

2

+ λ ‖X‖1 (A.1)

with constraints

‖φk‖2 ≤ 1

and

Xi ≥ 0,

where X is the coding matrix, the Lagrangian scalar multiplier λ, S is the

input signal, and φ is the dictionary. The codes X are constrained positive

and each element in the dictionary is normalized using the `2 norm. This

functional cannot be optimized directly with the use of gradient descent since

the `1 norm is not differentiable at every point.

Since equation A.1 is convex in X while φ is fixed, we can rewrite equa-

tion A.1 to take advantage of the Alternating Direction Method of Multipliers

(ADMM) [32] to solve the `1 minimization with constraints, which is designed
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to solve problems in the form

minimize f(x) + g(z)

subject to Ax+Bz = c

where f(x) and g(z) are convex.

The ADMM form of equation A.1 is

min

[
1

2

∥∥∥∥∥S −∑
k

φkXk

∥∥∥∥∥
2

2

+ λ ‖Z1‖1

]
(A.2)

subject to X = Z2, X = Z1, Z2 ≥ 0

where Z1 and Z2 are new variables upon which we apply the sparsity and

nonnegative constraints respectively.

The optimization in equation A.2 can be rewritten as an augmented

Lagrangian

L(X,Z1, Z2, U1, U2) =
1

2

∥∥∥∥∥S −∑
k

φkXk

∥∥∥∥∥
2

2

+ λ ‖Z1‖1 (A.3)

+ 〈U1, X − Z1〉+
ρ

2
‖X − Z1‖22

+ 〈U2, X − Z2〉+
ρ

2
‖X − Z2‖22

where U1 and U2 are dual variables that correspond to Z1 and Z2 respectively,

and ρ is the step-size parameter. The ADMM algorithm specifies how to

perform the minimization of Eq. A.3 for each variable. The iterative update

for X(k+1) is given by

X(k+1) = min
X

L(X,Z1, Z2, U1, U2) (A.4)
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which has the closed form solution

X(k+1) =
(
φφT + 2ρI

)−1 (
φST + ρ (Z1 + Z2)− U1 − U2

)
where variables Z1 and Z2 are subsequently updated as

Z
(k+1)
1 = min

Z1

L(X,Z1, Z2, U1, U2) (A.5)

=Sλ/ρ

(
X(k+1) +

1

ρ
U

(k)
1

)
Z

(k+1)
2 = min

Z2

L(X,Z1, Z2, U1, U2) (A.6)

=max
(
X(k+1) +

1

ρ
U

(k)
2 , 0

)
(A.7)

where Sλ is the soft thresholding operator defined as

Sλ(v) = (v − λ)+ − (−v − λ)+

and the dual variables are updated according to

U
(k+1)
1 = U

(k)
1 + ρ

(
X(k+1) − Z(k+1)

1

)
(A.8)

U
(k+1)
2 = U

(k)
2 + ρ

(
X(k+1) − Z(k+1)

2

)
. (A.9)

Convergence is reached when the primal and dual residuals are each sufficiently

small (≤ 0.001). The primal residuals are defined as

p1 =
∥∥∥X(k+1) − Z(k+1)

1

∥∥∥2
2

p2 =
∥∥∥X(k+1) − Z(k+1)

2

∥∥∥2
2
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and the dual residuals are defined by

d1 =
∥∥∥ρ(Z(k+1)

1 − Z(k)
1

)∥∥∥2
2

d2 =
∥∥∥ρ(Z(k+1)

2 − Z(k)
2

)∥∥∥2
2
.

The above algorithm can be simplified by observing that the nonnegative and

sparse constraints can be combined. The sparsity constraint can inorporate

non-negativity by dropping the negative component of the soft thresholding

operator. The terms related to Z2 and U2 are thus redundant and can be

removed from the algorithm.
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Appendix B

Combing Detection Algorithms

We provide a description of the compared combing detection algorithms

used in the context of our analysis, which involves identification of combing

within a single frame i. Algorithm 1 is derived from the source code for

FFmpeg’s “idet” filter [5]. Although Algorithm 2 is described by Baylon [28]

(in terms of separate top-field-first/bottom-field-first detection), we include

the algorithm here for clarity and for the sake of comparison.
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Algorithm 1 FFmpeg’s combing detector
Given 3 frames Vi−1, Vi, and Vi+1 of shape (M,N)
M := height and N := width
T1 := detection threshold

t← 0, b← 0
for k ∈ {1,M − 1} do

if k mod 2 is 0 then
t = t+ Vi(k − 1) + Vi(k + 1)− 2Vi−1(k)
b = b+ Vi(k − 1) + Vi(k + 1)− 2Vi+1(k)

else
t = t+ Vi(k − 1) + Vi(k + 1)− 2Vi+1(k)
b = b+ Vi(k − 1) + Vi(k + 1)− 2Vi−1(k)

end if
end for
if t > T1b or b > T1t then

Detect positive
else

Detect negative
end if
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Algorithm 2 Baylon’s combing detector
Given 2 frames Vi−1 and Vi of shape (M,N)
M := height and N := width
Z := zipper filter length
T0, T1 := thresholds
h[j] = (−1)j ∀ j ∈ {−Z/2 + 1, Z/2}

Construct x0 and x1:
for k ∈ {0, M−1

2
} do

x0(2k) = Vi−1(2k)
x0(2k + 1) = Vi(2k + 1)
x1(2k) = Vi(2k)
x1(2k + 1) = Vi−1(2k + 1)

end for
Convolve across rows using zipper filter:

y0 = |h ∗ x0|
y1 = |h ∗ x1|

C0 =
∑

1y0>T0 and C1 =
∑

1y1>T0

if C0 > T1C1 or C1 > T1C0 then
Detect positive

else
Detect negative

end if
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Appendix C

Instructions for Subjects

C.1 General Instructions

Your task is to judge the quality of each video sequence and not the

content of the sequence. There is no right answer in this experiment. Please

rely on your own judgment. This study is divided into three separate test

sessions. Each test session will be preceded by a short training session and

lasts approximately 40 minutes. At the end of each video you will be asked to

provide a quality score between bad and excellent, where labels are shown in

Table C.1.

During the study, please select a comfortable viewing distance of about

2 feet. Please remain upright in your seat and look directly at the monitor.

You can move around a little to stay comfortable, but try to keep your viewing

distance and angle as constant as possible, because the videos might look a

little different from different positions, and weâĂŹd like everyone to judge

the videos from about the same position. You might reposition your chair to

achieve this comfortably.
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Table C.1: Qualitative levels of the continuous video rating scale.

Level Video Quality
2 Excellent
1 Bad

Table C.2: Distortion types

Distortion Type Description
Upscaling The video appears to be of low resolution.

Incorrect Aspect Ratio
The width and/or height of the video is not appropri-
ately scaled resulting in objects that appear stretched
and/or squished.

Video Hits The video appears to contain corruptions.

Banding Smooth areas (e.g. sky) appear to contain false con-
tours. Gradients are not well represented.

C.2 How to Score the Videos

The system will guide your viewing and rating of the videos. For each

session, you will be asked to evaluate quality of experience based on the pos-

sible presence of different types of distortions. The distortion types you will

see are listed in Table C.2.

Note that we will not ask you to identify any distortions in the video.

However, we ask that you rate the video quality of each presentation qualita-

tively, based on your perception, holistically. Your opinion will evaluated at

the end of each video using a sliding bar, as shown in the screenshot below.

You should take approximately 10 seconds to decide and enter your

response (your opinion on the quality of the video). The evaluation screen will

only be displayed after a video has been completely viewed. After you submit
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the quality score and are ready to continue, the system will guide you to the

next video. Remember, your quality score should include everything that they

see in the video, even if you think that a distortion was not intended by us.

C.3 Training

The training videos shown at the beginning of each session are meant

to give you practice viewing and rating videos with particular distortions. In

each training session, you will get a sense of how videos with artifacts appear

as well as how to use the GUI. Please ask any questions during and after the

training session.
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